Articles | Volume 18, issue 11
https://doi.org/10.5194/tc-18-5323-2024
https://doi.org/10.5194/tc-18-5323-2024
Research article
 | 
19 Nov 2024
Research article |  | 19 Nov 2024

Unlocking the potential of melting calorimetry: a field protocol for liquid water content measurement in snow

Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin

Related authors

Unlocking the Potential of Melting Calorimetry: A Field Protocol for Liquid Water Content Measurement in Snow
Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin
EGUsphere, https://doi.org/10.5194/egusphere-2023-2892,https://doi.org/10.5194/egusphere-2023-2892, 2024
Preprint archived
Short summary
Exploring the use of multi-source high-resolution satellite data for snow water equivalent reconstruction over mountainous catchments
Valentina Premier, Carlo Marin, Giacomo Bertoldi, Riccardo Barella, Claudia Notarnicola, and Lorenzo Bruzzone
The Cryosphere, 17, 2387–2407, https://doi.org/10.5194/tc-17-2387-2023,https://doi.org/10.5194/tc-17-2387-2023, 2023
Short summary

Related subject area

Discipline: Snow | Subject: Field Studies
Impact of shrub branches on the shortwave vertical irradiance profile in snow
Florent Domine, Mireille Quémener, Ludovick Bégin, Benjamin Bouchard, Valérie Dionne, Sébastien Jerczynski, Raphaël Larouche, Félix Lévesque-Desrosiers, Simon-Olivier Philibert, Marc-André Vigneault, Ghislain Picard, and Daniel C. Côté
The Cryosphere, 19, 1757–1774, https://doi.org/10.5194/tc-19-1757-2025,https://doi.org/10.5194/tc-19-1757-2025, 2025
Short summary
Analyzing vegetation effects on snow depth variability in Alaska's boreal forests with airborne lidar
Lora May, Svetlana Stuefer, Scott Goddard, and Christopher Larsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4042,https://doi.org/10.5194/egusphere-2024-4042, 2025
Short summary
Elucidation of spatiotemporal structures from high-resolution blowing-snow observations
Kouichi Nishimura, Masaki Nemoto, Yoichi Ito, Satoru Omiya, Kou Shimoyama, and Hirofumi Niiya
The Cryosphere, 18, 4775–4786, https://doi.org/10.5194/tc-18-4775-2024,https://doi.org/10.5194/tc-18-4775-2024, 2024
Short summary
Spatially distributed snow depth, bulk density, and snow water equivalent from ground-based and airborne sensor integration at Grand Mesa, Colorado, USA
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024,https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
Assessing the key concerns in snow storage: a case study for China
Xing Wang, Feiteng Wang, Jiawen Ren, Dahe Qin, and Huilin Li
The Cryosphere, 18, 3017–3031, https://doi.org/10.5194/tc-18-3017-2024,https://doi.org/10.5194/tc-18-3017-2024, 2024
Short summary

Cited articles

Austin, R. T.: Determination of the liquid water content of snow by freezing calorimetry, Tech. rep., https://deepblue.lib.umich.edu/bitstream/handle/2027.42/3328/bab0470.0001.001.pdf?sequence=5 (last access: 8 November 2024), 1990. a, b, c, d, e
Avanzi, F., Petrucci, G., Matzl, M., Schneebeli, M., and De Michele, C.: Early formation of preferential flow in a homogeneous snowpack observed by micro-CT, Water Resour. Res., 53, 3713–3729, https://doi.org/10.1002/2016WR019502, 2017. a
Barella, R.: Melting Calorimeter TC, Github Repository [code], https://github.com/bare92/melting_calorimeter_TC (last access: 14 November 2024), 2024. a
Boyne, H. and Fisk, D.: A comparison of snow cover liquid water measurement techniques, Water Resour. Res., 23, 1833–1836, 1987. a, b, c, d, e, f
Camp, P. R.: Determination of the water content of snow by dielectric measurements, vol. 92, US Government Printing Office, https://apps.dtic.mil/sti/tr/pdf/ADA256299.pdf (last access: 8 November 2024), 1992. a, b
Download
Short summary
This research revisits a classic scientific technique, melting calorimetry, to measure snow liquid water content. This study shows with a novel uncertainty propagation framework that melting calorimetry, traditionally less trusted than freezing calorimetry, can produce accurate results. The study defines optimal experiment parameters and a robust field protocol. Melting calorimetry has the potential to become a valuable tool for validating other liquid water content measuring techniques.
Share