Articles | Volume 18, issue 11
https://doi.org/10.5194/tc-18-5031-2024
https://doi.org/10.5194/tc-18-5031-2024
Research article
 | 
06 Nov 2024
Research article |  | 06 Nov 2024

Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data

Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus

Related authors

Sea Ice Concentration Estimates from ICESat-2 Linear Ice Fraction. Part 2: Gridded Data Comparison and Bias Estimation
Christopher Horvat, Ellen M. Buckley, and Madelyn Stewart
EGUsphere, https://doi.org/10.5194/egusphere-2024-3864,https://doi.org/10.5194/egusphere-2024-3864, 2025
Short summary
Sea Ice Concentration Estimates from ICESat-2 Linear Ice Fraction. Part 1: Multi-sensor Comparison of Sea Ice Concentration Products
Ellen M. Buckley, Christopher Horvat, and Pittayuth Yoosiri
EGUsphere, https://doi.org/10.5194/egusphere-2024-3861,https://doi.org/10.5194/egusphere-2024-3861, 2024
Short summary
Linear Ice Fraction: Sea Ice Concentration Estimates from the ICESat-2 Laser Altimeter
Christopher Horvat, Ellen Buckley, Madelyn Stewart, Poom Yoosiri, and Monica M. Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2023-2312,https://doi.org/10.5194/egusphere-2023-2312, 2023
Preprint withdrawn
Short summary
Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2
Ellen M. Buckley, Sinéad L. Farrell, Ute C. Herzfeld, Melinda A. Webster, Thomas Trantow, Oliwia N. Baney, Kyle A. Duncan, Huilin Han, and Matthew Lawson
The Cryosphere, 17, 3695–3719, https://doi.org/10.5194/tc-17-3695-2023,https://doi.org/10.5194/tc-17-3695-2023, 2023
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Spring 2021 sea ice transport in the southern Beaufort Sea occurred during coastal-lead opening events
MacKenzie E. Jewell, Jennifer K. Hutchings, and Angela C. Bliss
The Cryosphere, 19, 1413–1430, https://doi.org/10.5194/tc-19-1413-2025,https://doi.org/10.5194/tc-19-1413-2025, 2025
Short summary
National Weather Service Alaska Sea Ice Program: gridded ice concentration maps for the Alaskan Arctic
Astrid Pacini, Michael Steele, and Mary-Beth Schreck
The Cryosphere, 19, 1391–1411, https://doi.org/10.5194/tc-19-1391-2025,https://doi.org/10.5194/tc-19-1391-2025, 2025
Short summary
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary

Cited articles

Alstott, J., Bullmore, E., and Plenz, D.: powerlaw: a Python package for analysis of heavy-tailed distributions, PloS one, 9, e85777, https://doi.org/10.1371/journal.pone.0095816, 2014. a
Asplin, M. G., Galley, R., Barber, D. G., and Prinsenberg, S.: Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms, J. Geophys. Res.-Oceans, 117, C06025, https://doi.org/10.1029/2011JC007221, 2012. a
Birnbaum, G. and Lüpkes, C.: A new parameterization of surface drag in the marginal sea ice zone, Tellus A, 54, 107–123, https://doi.org/10.3402/tellusa.v54i1.12121, 2002. a
Buckley, E.: ellenbuckley/FSD_segmentation: FSD paper code (v1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.14010776, 2024. a
Buckley, E. and Wilhelmus, M.: Ice Floe Segmentation of MODIS imagery, Zenodo [data set], https://doi.org/10.5281/zenodo.11553700, 2024. a
Download
Short summary
Arctic sea ice cover evolves seasonally from large plates separated by long, linear leads in the winter to a mosaic of smaller sea ice floes in the summer. Here, we present a new image segmentation algorithm applied to thousands of images and identify over 9 million individual pieces of ice. We observe the characteristics of the floes and how they evolve throughout the summer as the ice breaks up.
Share