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Abstract. Arctic sea ice cover evolves seasonally from large
plates separated by long, linear leads in the winter to a mo-
saic of smaller sea ice floes in the summer. The interplay be-
tween physical and thermodynamic mechanisms during this
process ultimately creates the observed sea ice floe size dis-
tribution (FSD), which is an important metric for characteriz-
ing the sea ice cover and assessing model performance. His-
torically, the FSD has been studied at fixed locations over
short periods, leaving a gap in our understanding of the spa-
tial and temporal evolution of the FSD at large scales. Here,
we present an automated framework for image segmenta-
tion, allowing the identification and labeling of individual
ice floes in Moderate Resolution Imaging Spectroradiome-
ter (MODIS) data. Using this algorithm, we automatically
process and segment 4861 images, identifying more than
9.4 million floes over 23 years. The extracted characteris-
tics of the floes – including area, perimeter, and orientation
– evolve throughout the spring and summer in the Beaufort
Sea. We find seasonal patterns of decreasing mean floe areas,
increasing FSD power law slopes, and increasing variability
in the floe orientation as the summer progresses.

1 Introduction

Arctic sea ice cover controls heat and moisture flux between
the atmosphere and the ocean. It has an annual cycle char-
acterized by the growth and melt of ice in which large, het-
erogeneous snow-covered winter ice floes fragment into an
ensemble of smaller floes in the summer. The breakup of
the ice cover and the resulting floe size distribution (FSD)
are set by complex feedback loops involving physical and

thermodynamic processes. For instance, given the higher
perimeter-to-area ratios of small floes compared to those of
larger floes, small floes experience proportionally more lat-
eral melting. This effect is observed to be especially pro-
nounced for floes smaller than 50 m in diameter (Steele,
1992; Horvat et al., 2016). Lateral melting shrinks floes, fur-
ther raising their perimeter-to-area ratios and thus leading to
a positive feedback cycle. Also, lateral melt creates density
gradients that contribute to the non-homogeneous stratifica-
tion of the upper-ocean mixed layer, enhancing mixing and
eddy formation (Horvat et al., 2016). Long waves from sum-
mer Arctic storms fracture the ice pack (Asplin et al., 2012),
an effect amplified by the retreating sea ice edge and length-
ened open-water fetch enhancing wave energy. The FSD also
yields information about how a sea ice field will respond to
oceanic and atmospheric forcing. Since the drag coefficient
between an ice floe and the ocean depends on the ice floe
size, the FSD is related to ocean–atmosphere energy and mo-
mentum transfer (Birnbaum and Lüpkes, 2002).

Following the original conceptualization of the FSD in
Rothrock and Thorndike (1984), numerous studies have doc-
umented FSDs in various regions throughout the Arctic and
the Antarctic (see Stern et al., 2018b, for a comprehensive
list of FSD studies). We focus on the Beaufort Sea, where
FSDs have previously been determined from radar imagery
(Holt and Martin, 2001; Hwang et al., 2017), high-resolution
optical satellite imagery (Wang et al., 2016; Denton and
Timmermans, 2022), and aerial photography (Rothrock and
Thorndike, 1984; Perovich and Jones, 2014). While these
studies have advanced our understanding of the FSD seasonal
evolution (e.g., the effect of storms on floe breakup and the
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relationship between sea ice concentration (SIC) and FSDs),
they are limited to small areas over short periods.

Moderate Resolution Imaging Spectroradiometer
(MODIS) data have been used previously in FSD stud-
ies (Toyota et al., 2016; Zhang et al., 2016; Stern et al.,
2018a), but only for a short term of a few years at most.
The Ice Floe Tracker (IFT) algorithm was developed
(Lopez-Acosta et al., 2019) to segment MODIS images
and track floes between consecutive images to evaluate sea
ice–ocean interactions but does not prioritize the capture
of the full FSD. We develop a new algorithm based on the
work by Denton and Timmermans (2022) focusing on high
identification rates of ice floes and retrieval of accurate
geometric properties. With 23 years of available data in the
spring-to-summer transition, the MODIS optical imagery
provides the potential to study interannual and decadal
changes in floe properties and analyze whether there is
a change in the observed FSD in the Arctic. The paper
is organized as follows. First we present our algorithm
for image segmentation and floe identification in optical
satellite imagery in a wide range of ice concentration and
melt states. We then present and validate the extracted
sea ice floe properties using higher-resolution data and
existing datasets. We also discuss the algorithm and the data
limitations and uncertainty in the segmentation algorithm
output. Then, the floe identification algorithm is applied
to thousands of MODIS images spanning from 2000 to
2022 in March through September in the Beaufort Sea. The
seasonal evolution and interannual variability of the floe
sizes are presented and discussed. We conclude the study
with an overview of our findings and suggestions for future
directions.

2 Study area and data

The Beaufort Sea has experienced profound changes over
recent decades. The end-of-summer sea ice area, measured
as the September monthly average, is decreasing at a rate
of 10 %–30 % per decade, resulting in substantially more
solar heating in the upper ocean (Timmermans and Toole,
2023). There is a loss of older and thicker multiyear ice in
the Beaufort Sea (Maslanik et al., 2007; Kwok and Cun-
ningham, 2010), and the multiyear ice edge is receding (Gal-
ley et al., 2016). Ice loss in the Beaufort Sea has influenced
the Beaufort Gyre circulation and freshwater (Timmermans
and Toole, 2023). We focus this study in the Beaufort Sea
on capturing the changes in the ice cover to further under-
stand these important processes (Fig. 1a). We hypothesize
that there is a quantifiable seasonal transition in the FSD from
high-concentration winter sea ice to the melting-fractured sea
ice of summer.

2.1 MODIS imagery

The MODIS instrument is on board two NASA satellites,
Terra and Aqua, launched in 1999 and 2002, respectively.
MODIS acquires data in 36 spectral bands spanning wave-
lengths from 0.4 to 14.4 µm with varying resolution. In this
work we use the true-color reflectance imagery (Fig. 1a), a
composite of Band 1 (red, 645 nm), Band 4 (green, 555 nm),
and Band 3 (blue, 469 nm) (Vermote, 2015). This compos-
ite product is available at 250 m resolution. Full Arctic cov-
erage imagery is provided four times daily outside of polar
night (March through mid-October in the Beaufort Sea). The
MODIS Cloud product (MOD06/MYD06, Platnick et al.,
2016) reports calculated cloud properties for each pixel in the
MODIS images and includes a cloud fraction derived from
the infrared imagery. We use the cloud fraction parameter to
mask out cloudy regions in the preprocessing step of the al-
gorithm (Sect. 3.1).

2.2 Sentinel-2 imagery

The Sentinel-2 satellites A and B, launched in 2015 and
2017, carry the multispectral instrument, acquiring data in
13 spectral bands. Sentinel-2 imagery is captured approxi-
mately twice daily in the Arctic and is available up to 20 km
off the coast. The Sentinel-2 Level-1C Top of Atmosphere
reflectance product includes four bands that provide data at
10 m resolution: Band 2 (blue, centered at 492.3 nm), Band 3
(green, 558.9 nm), Band 4 (red, 664.9 nm), and Band 8 (near-
infrared, 832.9 nm) (Drusch et al., 2012). In this work we use
the high-resolution Sentinel-2 data to understand the limita-
tions of the lower-resolution MODIS imagery.

3 Image segmentation methodology

Paget et al. (2001) describe an erosion–expansion algorithm
that erodes the boundaries of floes to separate them, and it
subsequently regrows them to their original shape. Denton
and Timmermans (2022) and Stern et al. (2018a) introduce
an iterative procedure that cycles through rounds of erosion
and expansion, varying the amount of erosion to identify
floes of different sizes. Building on the work in Denton and
Timmermans (2022), we develop a new algorithm for the
identification of ice floes that capture FSDs in the MODIS
dataset. We rewrite the algorithm in Python and automate
it to process thousands of images consecutively, introduc-
ing adaptive thresholds. The algorithm consists of four steps:
preprocessing, ice–water discrimination, segmentation, and
postprocessing (Fig. 2).

3.1 Preprocessing

We use the MODIS true-color reflectance data as a starting
point for our analysis. To ensure that we process only clear-
sky ocean imagery, we mask the land and any cloud-covered
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Figure 1. Study region. (a) True-color reflectance MODIS imagery of the Beaufort Sea on 22 May 2021: the study region is outlined in a
green box. (b) Location density of observed floes in the study region. The 2-D histogram shows the total number of floes observed in each
1°× 1° box. (c) Distribution of observed floes by year.

Figure 2. Image segmentation methodology. (a) Flow diagram showing the steps of the algorithm: preprocessing (pink), ice–water discrim-
ination (orange), segmentation (green), and postprocessing (blue). (b) The original MODIS true-color reflectance imagery in the region of
interest. The blue square shows the location of panels (d) and (e). (c) The MODIS true-color reflectance data with a mask (black) over the
land and cloudy regions. (d) Ice–water discrimination results showing ice (white) and water or a mask (black). (e) Final segmented image
showing individual floes in different colors (superimposed onto the original optical image). The example MODIS image shown here is from
10 June 2017.
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areas. Atmospheric noise can blur the edges of the floes.
Hence, we are conservative with cloud cover and use the
existing MODIS cloud fraction data to eliminate areas that
may be affected by clouds. We mask the areas with ≥ 95 %
cloud coverage according to the MODIS cloud fraction prod-
uct (Sect. 2.1, Fig. 2c). The presence of clouds in the Arctic
in the summer is ubiquitous: on average 58 % of an image is
covered in opaque clouds and unavailable for image process-
ing (see the discussion in Sect. 4 and Fig. 5a, b).

3.2 Ice–water discrimination

The images cover a large area with a range of ice conditions,
i.e., from the ice edge into the pack ice region, and we can-
not apply a simple threshold pixel value to distinguish the
bright ice from the dark open-water pixels (as was done by
Denton and Timmermans, 2022). The thin leads that sepa-
rate the large floes in the spring may be covered by a thin
layer of ice increasing the brightness of the lead beyond the
typical brightness values of the open ocean. Similarly, the
ubiquitous low-lying fog in the Arctic summer may locally
brighten the appearance of open water. Considering the vari-
able pixel values of open water, we apply an adaptive thresh-
old to determine local values for the ice–water discrimina-
tion. At this point, the land and cloud pixels are masked and
are not considered in this step. We apply this method to the
red-channel band of the MODIS imagery, which exhibits the
highest contrast in pixel values. The dynamic threshold value
is the weighted mean for the 399× 399-pixel neighborhood
(∼ 100 km×∼ 100 km). All pixels with brightness greater
(less) than the threshold are identified as ice (open water). In
this way, we are able to account for varying brightness levels
of open water given different ice concentrations and atmo-
spheric conditions.

3.3 Image segmentation

The image segmentation step follows an erosion–expansion
routine similar to that described by Paget et al. (2001) and
subsequent studies segmenting airborne and satellite imagery
of sea ice floes (e.g., Denton and Timmermans, 2022; Steer
et al., 2008). The input to the segmentation routine is the bi-
nary classified image created in the previous step (Sect. 3.2),
where 1 represents sea ice and 0 represents open water.
The morphological erosion operation is applied to the bi-
nary image, removing pixels on the object boundaries us-
ing a diamond-shaped structuring element with a radius of
1 px. The binary image is eroded a total of eight times in or-
der to ensure that floes are separated. This extensive erosion
removes small floes from the image. At this point, the re-
maining distinct floes are tagged and then regrown (dilated)
to their original state. Any identified floes touching the im-
age border, the land mask, or the cloud mask are removed
from the binary image. The remaining tagged floes are saved
in the floe library and then removed from the image, i.e.,

changed to 0, and the next iteration round begins for iden-
tification of smaller floes. This erosion–tag–expansion pro-
cess is repeated, with fewer erosions each time, allowing for
subsequent smaller floes to be identified with each iteration.
In this way, sea ice floes of varying sizes are separated and
identified. At the end of the image segmentation routine, an
image with each unique object labeled is produced. Over the
thousands of processed images, on average, 26 % of the clas-
sified sea ice area is identified as individual floes, with the
remaining sections consisting of ice filaments, brash ice, or
pieces of ice smaller than the minimum detectable floe size.
Here, we processed the years 2000–2022 from days of year
60–274 (approximately 1 March–30 September, encompass-
ing the time of year when light levels are sufficiently high
for optical imagery) and segmented 4861 images and days,
thereby identifying 9 448 563 floes.

3.4 Postprocessing

The following geometrical parameters are calculated for
each identified floe: centroid position, floe orientation, area,
perimeter, major and minor axes, circularity, and intensity
mean. The major (minor) axis is the length of the major (mi-
nor) axis of an ellipse with the same normalized second cen-
tral moments as the identified floe shape. The intensity mean
is the average red-channel value for the area of the floe. Floe
orientation is defined as the angle of the major axis of the
floe from polar stereographic north. Orientation values range
from −π2 to π

2 . The circular standard deviation of the ori-
entation is calculated to represent the variability of the floe
orientation, with low values representing the floe alignment.
We also calculate the circularity of a floe:

C =
4πA
P 2 , (1)

where A is the floe area, P is the floe perimeter, and a circle
has maximum circularity C = 1.

Finally, we examine the properties of each identified ob-
ject to ensure that it is a floe. We examine the red-channel
pixel-intensity mean of the floes and discard floes with a
value of less than 150, which is an empirically determined
value. Image pixels on ice floes have high red-channel val-
ues, and objects with a low-intensity mean may be incor-
rectly identified as floes. Rather, low-intensity values may
indicate clusters of brash ice, for example. This quality as-
surance step results in the elimination of 86 501 floes (< 1 %
of the total number of floes).

3.5 Floe size distribution

The FSD contributes to the characterization of the ice floe
field by providing a quantitative description of the ice floe
area statistics. Taken together with the floe geometry proper-
ties outlined in Sect. 3.4, the FSD and other parameters com-
monly used to describe floe fields, such as the SIC and av-
erage ice thickness, allow us to study the physical processes
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Figure 3. Validation of MODIS image segmentation with higher-resolution (10 m) Sentinel-2 imagery. Each row shows spatially coincident
MODIS (first column) and Sentinel-2 (second column) imagery captured on the same day. The segmentation algorithm is applied to each
of these images, and the individual identified floes are colored in the image. The third column shows the probability density function (PDF)
of the FSD for the Sentinel-2 (blue) and MODIS (red) images, with the best fit power law shown as the dashed line. The three rows are for
imagery captured on 4 September 2019 (40 % SIC), 12 June 2020 (70 % SIC), and 14 May 2021 (98 % SIC).

that shape the structure and evolution of sea ice. We utilize
the powerlaw Python package (Alstott et al., 2014) based on
the maximum likelihood estimation power-law-fitting meth-
ods described by Clauset et al. (2009) and Klaus et al. (2011).
The noncumulative power law is described by

p(x)= cx−α, (2)

where p(x) is the probability of a given instance of x (the
chosen geometric property of the sea ice floe – we use floe
area), c is a normalization constant ensuring that the function
integrates to 1, and α is the fitted parameter and slope of the

power law distribution. We specify minimum and maximum
floe size values, xmin = 5 km2 and xmax = 300 km2, based on
the range of observed floe sizes and the goodness of fit of
a power law distribution to this range. Approximately 97 %
of the floes fall in this size range. Setting xmin and xmax also
allows for a finite integration of the power law. With given
xmin and xmax values, the constant (c) is given by (see Ap-
pendix A)

c =
1−α

x1−α
max − x

1−α
min

. (3)
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Figure 4. Area comparison of identifications in MODIS and
Sentinel-2 imagery (Fig. 3). The 82 floes identified in both datasets
are shown, with the dot color corresponding to the date of the im-
ages as indicated in the legend.

The standard error of α is defined by Clauset et al. (2009) as

σ =
α− 1
√
n
+O(1/n), (4)

where n is the sample size and the higher-order correction is
positive. For these equations, α must be greater than 1. We
calculate the FSD power law fit for different datasets to un-
derstand how the ice cover evolves, seasonally and annually.

3.6 Validation

We evaluate the consistency of the algorithm by examin-
ing the floes extracted from Aqua and Terra images on the
same day. The images cover a large region and the acquisi-
tion times of Aqua and Terra are approximately 2 h apart, so
we can assume that the images cover the same expanse of
ice in same-day acquisitions. We can expect a similar power
law distribution of identified floe sizes on the same day, al-
beit from different satellites, given that they carry the same
MODIS instrument. We randomly selected 100 d from the
23-year collection of images to examine both Aqua and Terra
images. We segment both images, calculate floe properties,
and match floes based on the centroid location. We find a
correlation value of 0.99 for the matched floe areas. For each
pair of images where each image has at least 50 000 km2 of
identified floes, we fit a power law to the floe area distri-
bution (Sect. 3.5) and determine the slope (α). We find an
absolute mean difference in the Aqua and Terra α values of
0.009 and a standard deviation of 0.006. This suggests strong
agreement between the floes identified in the Aqua and Terra
satellite imagery, confirming that the segmentation algorithm
is consistently identifying floes.

To understand and quantify the limitations of the
moderate-resolution imagery used by the segmentation al-

gorithm, we apply the algorithm to higher-resolution 10 m
Sentinel-2 imagery. We examine spatially coincident MODIS
imagery and Sentinel-2 imagery observed on the same day
(Fig. 3). The extents of the two images are matched, so that
the same area is analyzed. We evaluate imagery in a range
of sea ice conditions: low SIC (40 %) seen at the end of the
summer (Fig. 3a–c), ice in the marginal ice zone in summer
(70 % SIC, Fig. 3d–f), and high SIC (98 %) at the beginning
of the melt season (Fig. 3g–i). The SIC was determined from
the ice–water discrimination step in the algorithm. We pair
floes identified in the coincident imagery based on the cen-
troid location and examine the corresponding floe properties.
The areas of the 82 matching floes agree well, with a squared
correlation of 0.99 and an absolute mean area difference of
0.18 km2 (Fig. 4). The 82 floes form 25 % of the Sentinel-2
floes and 21 % of the MODIS floes in the observable floe area
range for MODIS data (xmin = 5 km2, xmax = 300 km2). De-
spite a low percentage of matching floes, the identified floes
in both sets of images are a good representation of the floe
areas in each image.

We fit a power law to the FSD for all floes within the
floe range of each of the images (Fig. 3c, f, i). The FSDs
for each pair of Sentinel-2 and MODIS images agree well.
The difference in α values ranges from 0.06 to 0.25, with
1σ confidence intervals overlapping between Sentinel-2 and
MODIS distributions for the low- and high-SIC instances
(Fig. 3c and i), and there is a 2σ overlap for the medium-
SIC example (Fig. 3f). Note that the identification of floes in
the Sentinel-2 imagery was not limited to the MODIS range
of floe sizes, and approximately 82 % of the floes identi-
fied in the Sentinel-2 imagery are less than the determined
xmin value for the MODIS imagery. In the overlapping range
of floe areas (xmin = 5 km2, xmax = 300 km2), 14 % more
floes are identified in the MODIS imagery compared to the
Sentinel-2 imagery. The higher resolution of Sentinel-2 al-
lows for identification of smaller floes, but the segmenta-
tion algorithm performs similarly to the lower-resolution im-
agery for larger floes. In the high-SIC scenario (Fig. 3g–i),
the narrow leads seen in both images make the separation
of floes more challenging. The segmented floes seen in pan-
els (g) and (h) look different, but the agreement of the FSD
α values indicates that the floes identified in the images are
a good representation of the ice cover. We note that, in high-
concentration regions, there is more uncertainty due to the
difficulty in identifying individual floes separated by narrow
leads. Despite the resolution limitations of the MODIS im-
agery, our validation shows that the algorithm applied to the
MODIS imagery samples the floe sizes sufficiently to pro-
duce an accurate FSD α value and that the floes identified in
both images have highly correlated floe areas.

Finally, we apply a bootstrapping approach to quantify
uncertainty in the derived parameters. We begin by ran-
domly selecting 100 segmented MODIS images (correspond-
ing to 100 different days), where each image has at least
50 000 km2 of identified floes. We then create 1000 bootstrap
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Figure 5. Image statistics. Panels (a) and (b) show cloud fraction statistics from the cloud mask. Panels (c) and (d) show the total ice area
identified from the ice–water discrimination (orange) and the total area of the identified ice floes (blue). The gray line shows the number of
identified ice floes. Panels (a) and (c) show statistics over the season, and panels (b) and (d) show statistics over the years.

datasets of floes for each of the 100 images, where each boot-
strapped sample has the same number of identified floes (N )
as the original image. This is done by randomly selecting N
floes from an image, such that after each floe is selected it
is returned to the original image (i.e., sampling with replace-
ment). We then calculate the power law distributions of the
bootstrap datasets and the standard deviation of the α values
over the 1000 bootstrap datasets for each of the 100 images.
The standard deviation of α generated from the bootstrapping
of an image is on average 0.024, ranging from 0.007 to 0.08.
The standard deviation increases as the α value increases, in-
dicating more uncertainty.

3.7 Data and algorithm limitations

We note that there are limitations to our analysis due to the
moderate resolution of the imagery. The separation of floes
requires openings between floes (such as leads) that are at
least the size of an image pixel (250 m), and typically multi-
ple pixels are required to fully resolve a lead. This results in
multiple floes being considered a single floe (examples can
be seen in Fig. 3g). This phenomenon is especially preva-
lent in the early spring, when floes are still tightly packed
and have not experienced lateral melt and floe divergence.
In addition, larger floes are more likely to intersect the im-
age border. Floes that intersect the image border are removed
from the identified floes as the properties are not correct, and
thus large floes are preferentially eliminated. For these rea-
sons, we limit the range of the power law fit and do not draw

conclusions about the power law distribution of floes greater
than 300 km2. Nonetheless, the error associated with the FSD
is largest when the SIC is high in the early spring.

We chose to analyze MODIS imagery due to its long
record and consistent coverage, but other higher-resolution
imagery is required to examine the FSD for floes smaller
than 5 km2. Other studies have examined FSD in synthetic
aperture radar (SAR) imagery, which eliminates the need for
clear-sky conditions as SAR is not sensitive to clouds. How-
ever, SAR data are not as widely available for long-term ap-
plications and have other limitations and complications, such
as speckle, granular noise, and ambiguous returns when melt-
water is present on the ice surface.

4 Spring-to-summer transition of floe characteristics

After processing 4861 images, we analyzed the basic statis-
tics of the classification and segmentation routine. Over
9.4 million floes were identified, and the distribution of their
locations is shown in Fig. 1b. Note that these are not 9.4
unique floes as each image is taken as an independent ob-
servation. The MODIS cloud fraction in the study region is
consistent with the Arctic-wide pattern of the highest cloud
fraction in the summer and fall (Fig. 5) (Schweiger, 2004).
Although this study is not focused on atmospheric trends, we
do not find a significant long-term trend in the cloud frac-
tion over our study region and period (Fig. 5b). We note that
our analysis of cloud-free areas only is limited due to a high
percentage of cloud cover obscuring the sea ice in optical
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Figure 6. The 1 March through 30 September evolution of the floe properties. The properties were aggregated into a 10 d running window
and sampled every 5 d. (a) Mean floe area for the observed (solid) and analytical (dashed) values (see Appendix A2). The 75th percentile
of the floe area is also shown (dark blue). (b) Median floe area for the observed (solid) and analytical (dashed) values (see Appendix A3).
(c) Power law slope (α). (d) Standard deviation of the orientation of floes for all floes.

imagery. As expected, the total classified sea ice area and the
total identified floe area in the imagery decrease throughout
the summer as the ice melts (Fig. 5c, orange and blue). The
largest difference between the ice area (orange) and the iden-
tified floe area (blue) is in the spring. There are a number of
reasons why the majority of the ice cover is not able to be
segmented into floes in the spring. The floes in the spring are
larger (Fig. 6a) and therefore are more likely to intersect the
border of an image and be eliminated to ensure that only floes
fully captured by the imagery are used. Also, the ice floes are
tightly packed in the spring and the MODIS imagery does not
resolve small leads (Fig. 3h). Thus, floes cannot be separated
as well compared to in the summer, when floes are separated
by larger areas of open water (Fig. 3e). The number of iden-
tified floes (Fig. 5c, gray) is not correlated with the total area
of observed floes (Fig. 5c, orange). More floes are identified
as the ice separates in the summer, but as the ice melts and
advects out of the study area, there is less ice and fewer floes
are identified. There are no significant trends in the ice and
floe areas or the number of floes identified over the 23 years
of observations (Figs. 1c and 5d).

4.1 Floe area

In the spring, the Beaufort Sea has a high ice concentration
consisting of large floes with rectilinear fractures. During the
summer, as the ice edge recedes from the Alaskan and Cana-
dian shorelines, the ice cover transitions to a dynamic collec-
tion of randomly oriented floes among brash ice. We analyze
floe characteristics from 1 March through 30 September in
the MODIS imagery and observe patterns corresponding to
this transition. The mean floe area first increases from 32 km2

on 6 March to the seasonal high of 36 km2 on 10 April
(Fig. 6a, blue). The mean floe area then decreases through-
out the summer, plateauing in August around 21 km2 and
then increasing to reach a mean area of 23 km2 by the end of
September. The mean floe area closely follows the 75th per-
centile floe area (Fig. 6a, dark blue). The median floe area is
consistently lower than the mean floe area (Fig. 6b, orange),
as the distribution is positively skewed with many small floes.
Because of the high skewness of the distribution, the standard
deviation is large (38.9 km2 on average) as it is influenced by
floes much larger than the mean floe area. The median floe
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Figure 7. Observed floe properties compared to sea ice concentration (SIC). (a) Standard deviation of the orientation of floes on a given day
compared to the image’s SIC. (b) Mean floe area compared to SIC on a given day. The color bar indicates the total image count.

size exhibits a similar pattern to that of the mean, with a max-
imum median value of 16 km2 on 10 April and decreasing to
11.5 km2 on 30 September. We also see the largest floes in
areas of the highest SICs (Fig. 7b). Large ice floes and high
SICs exist in the early spring. Floes that exist in areas of low
ice concentration are more likely to experience the effect of
waves and may break up into smaller floes due to wave frac-
ture (Squire et al., 1995).

We note that the magnitudes of the median and mean floe
area values are sensitive to changes in the xmin and xmax val-
ues. However, the pattern of evolving floe sizes is related to
the changing sea ice cover. The mean (expected value) and
median (where the cumulative distribution function is 0.5) of
the fitted power law can be expressed analytically (see Ap-
pendix A2 and A3). These values, with xmin and xmax set, are
functions of the evolving α. We show the analytical mean and
median as dot-dashed lines in Fig. 6a–b, respectively, which
indicate that the analytical solutions are consistently less than
the observed mean and median floe areas. This is because the
power law fit is dominated by small floes, as there are more
of them. Thus, there is greater error in the fit associated with
the large observed floes.

4.2 Power law fit to the floe size distribution

We fit a power law to the collection of floes grouped in a
10 d running window. The value of α (slope of the power law
distribution) of all identified floes is 1.85 but ranges from
1.74 to 2.0 throughout the spring-to-summer period (Fig. 6c).
The standard deviations and the confidence intervals of all
the power law fits are less than 0.01. The power law α is
inversely correlated with the mean floe area. The slope value
decreases from the beginning of March to the minimum on
9 April, then increases throughout the summer to a maximum
on 12 August, and slowly begins to decrease again for the
remainder of the summer. The inverse relationship with the
mean floe area is expected (see Appendix A2), as a higher
frequency of small floes will decrease the mean floe area and
increase the slope of the FSD fit. We find the magnitude and
seasonal trends of α to be consistent with previous studies.

Stern et al. (2018a) examined 116 MODIS images in 2013
and 2014 and fit a power law to floes ranging from 2 to
30 km in size, which is approximately equivalent to 2.64 to
594 km2 (Rothrock and Thorndike, 1984). To compare re-
sults, we must account for the fact that we have fit a power
law to the floe area, while Stern et al. (2018a) found a power
law slope (αn) using the mean caliper diameter. This value is
related to our reported α as (see, e.g., Denton and Timmer-
mans, 2022)

αn = 2α− 1. (5)

Stern et al. (2018a) found that αn (α) was approximately 2.0
(1.5) in May, increased to about 2.9 (1.95) in July, and then
decreased to about 2.2 (1.6) by October. We find compara-
ble slopes and observe a similar evolution with an α value
of about 1.75 in May, a maximum α in August of 2.0, and
then a slight decrease in September (Fig. 6c). The small dif-
ferences in values are likely due to the locations and times
of the observed floes. Denton and Timmermans (2022) ana-
lyzed smaller floes (50 m2 to 5 km2) in the Canada Basin and
found a seasonal trend in the FSD, with α ranging from 1.65
to 2.03.

The FSD trend is also consistent with previous studies
that have taken a Lagrangian approach, tracking the same ice
throughout the summer. During the Surface Heat Budget of
the Arctic (SHEBA) campaign in 1998 in the Beaufort and
Chukchi seas, aerial photography was collected in the prox-
imity of the ship. Perovich and Jones (2014) found that α val-
ues increased throughout the summer, reached a maximum
on 10 August, and subsequently decreased into September
as small floes froze and fused into larger floes (Perovich and
Jones, 2014). Hwang et al. (2017) observed the FSD from
satellite SAR imagery tracking four buoys in the Beaufort
Sea in 2014 and capturing images of the same ice, finding
an increase in FSD α values from July through August with
enhanced floe breakup linked to wind events.

We examine the FSD power law slope over the 23-year
MODIS record to quantify the interannual variability and dis-
cern any decadal trends. As the FSD exhibits seasonal vari-
ability, we look at the monthly FSD power law slopes and
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Figure 8. α values of a power-law-fitted FSD for each month of analysis. Each strip shows the α value for all floes identified in that month
over the 23-year analysis. The dotted line is the line of best fit, the slope of which is printed in the bottom-right-hand corner of each strip.

compare them over the years. We see no significant trends in
the monthly FSD slopes over the 23-year period (Fig. 8). The
error in all the calculated α values is < 0.01, as determined
by 1000 bootstrap samples to calculate a 95 % confidence
interval and the standard error calculated as in Eq. (4). The
month of September exhibits the most variability, with α val-
ues ranging from 1.85 to 2.17 (Figs. 6c and 8). One may ex-
pect a trend towards larger α values (steeper FSD power law
slopes) as the Beaufort Sea ice cover exhibits earlier retreat
(Fetterer et al., 2017) and a transition to first-year ice that is
more susceptible to fracture (Galley et al., 2016). However,
this is not exhibited in our data. This lack of a significant
decadal trend on the FSD slope may be due to the large study
region that simultaneously contains pack ice and open water,
or, because MODIS cannot resolve floes smaller than 5 km2

in area, there may be many more small floes in recent years
that are not identified in the MODIS data.

4.3 Floe orientation

In the late winter and spring, the Beaufort Sea has a high SIC.
As external wind stresses are applied to the ice pack, the ice
pack experiences strain, leading to a fracture in a preferential
direction that depends on the orientation of the force rela-
tive to the coast (Lewis and Hutchings, 2019; Jewell et al.,
2023). When we examine the newly fractured floes during
the spring, we find low variability in their orientation within
the 10 d window (Fig. 6d). This effect is especially noticeable
in areas of high ice concentration, where the ice movement
and readjustment to external forces are limited by the sur-
rounding ice and thus lower standard deviation of orientation
with a greater SIC (Fig. 7a). The small fractures, or cracks,
grow into leads that can be seen in the MODIS imagery (e.g.,
Fig. 3g). As the summer progresses, SIC decreases and ice
floes break up and disperse, resulting in a decreasing average
floe area (Fig. 6a) and an increasing standard deviation of

floe orientations with lower sea ice concentrations (Figs. 6d
and 7). We also examine the floes with the highest eccentric-
ity (> 75th percentile), which is the ratio of the major axis
to the minor axis. This subset of floes exhibits a similar but
less extreme trend of an increasing standard deviation of ori-
entation throughout the summer. The orientations of the floes
are an indication of the stresses that have caused ice breakup
and can provide insight into the structural properties of the
ice pack to inform how it may respond to future stresses.
When ice floes can rotate with minimal to no interaction with
other floes, their rotation rates can be related to ocean vortic-
ity (Manucharyan et al., 2022).

5 Conclusions

The algorithm developed in this study establishes the ability
to derive meaningful floe size information from the longest
daily global satellite observation record of Earth to date.
The MODIS dataset has Arctic-wide coverage and spans
23 years. The expansive dataset combined with the modi-
fied segmentation algorithm presented here allows for contin-
ued study of ice conditions and characteristics in the spring
and summer. To validate the feasibility of using moderate-
resolution imagery, the identified floes are validated visu-
ally and compared with floes identified in higher-resolution
Sentinel-2 imagery. We demonstrate that, in the specified
range of floes with areas greater than 5 km2, the segmentation
algorithm performs equally well on images of moderate res-
olution (MODIS) and high resolution (Sentinel-2). Although
the algorithm is able to identify smaller floes in the Sentinel-
2 imagery, the retrieved floe sizes and the FSD agree well
between the Sentinel-2 and MODIS imagery. This allows us
to confidently apply this systematic method to analyze thou-
sands of images over 23 years covering a wide range of ice
conditions.
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We examine the seasonal evolution of the FSD and as-
pects of the floe geometry in the Beaufort Sea from mid-
April through early August. We find a decrease in the mean
and median floe size, increasing α (steepening power law
slope), and an increase in the variability in the orientation
of the floes. As the sea ice cover appears and behaves sig-
nificantly differently depending on the time of year, it is es-
sential to use floe characteristics from the specific time pe-
riod of interest when evaluating or tuning models. While no
significant decadal trends were observed in the monthly FSD
over the 23-year period, future work considering smaller spa-
tial domains may be necessary to investigate interannual and
decadal variability in detail.

Expanding the analysis to new areas of the marginal ice
zone may show regional differences in the floe characteristics
and timing of floe breakup in the summer. Combining this
new information with existing satellite measurements (e.g.,
ice drift, ice type, or ice thickness) can provide further in-
sights into the behavior of the ice pack. We chose to analyze
MODIS imagery due to its long record and consistent cov-
erage, but other higher-resolution imagery is required to an-
alyze how the FSD holds for small floes. It may also be of
interest to examine the floe evolution throughout the winter,
which would require active sensors that can produce images
when there is no sun illumination available. Further work
will include incorporating this image segmentation algorithm
into the pipeline of the IFT algorithm (Lopez-Acosta et al.,
2019). This routine tracks floes with similar characteristics
between consecutive MODIS images and can thus determine
ice velocities and rotation rates, inferring ocean dynamics in
regions that are otherwise under-observed. With a new seg-
mentation algorithm able to identify floes in a wider range of
sizes, we can expand the IFT output to also include the FSD
and uncover more information about the underlying ocean.

Appendix A: Mathematical derivations for a power law
floe size distribution

A1 Calculation of the power law constant

To solve for c in the power law distribution (Eq. 2), we inte-
grate the power law from xmin to xmax, noting that the sum of
all probabilities in the range is 1:

xmax∫
xmin

cx−αdx =
−cx1−α

α− 1

∣∣∣xmax

xmin
=−

cx1−α
max

α− 1
+
cx1−α

min
α− 1

= 1, (A1)

where α > 1.
This yields

c =
1−α

x1−α
max − x

1−α
min

. (A2)

A2 Analytical mean

The expected value of a distribution is

E =

xmax∫
xmin

xp(x)dx. (A3)

With Eq. (2), this is

E =

xmax∫
xmin

cx1−αdx, (A4)

where c is given by Eq. (A2).
Integrating yields

E =
c

2−α

(
x2−α

max − x
2−α
min

)
, (A5)

where E depends only on α because xmin and xmax are set as
5 and 300 km2, respectively. The full equation, substituting c
from Eq. (A2), is

E =
1−α
2−α

x2−α
max − x

2−α
min

x1−α
max − x

1−α
min

(A6)

for α 6= 2.

A3 Analytical median

The median of a distribution xo is found where the cumula-
tive distribution is equal to 0.5. That is,

xo∫
xmin

p(x)dx =
c

1−α
x1−α

∣∣∣xo
xmin
= 0.5. (A7)

Solving for xo yields

xo =

[
x1−α

min +
1−α

2c

] 1
1−α
, (A8)

which, with Eq. (A2), yields

xo =

[
1
2
(x1−α

min + x
1−α
max )

] 1
1−α
. (A9)
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(Buckley and Wilhelmus, 2024).
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