Articles | Volume 18, issue 9
https://doi.org/10.5194/tc-18-4399-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-4399-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying the influence of snow over sea ice morphology on L-band passive microwave satellite observations in the Southern Ocean
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Julienne Stroeve
Centre for Earth Observation Science (CEOS), University of Manitoba, Winnipeg, Canada
Centre for Polar Observation Modelling (CPOM), University College London, London, United Kingdom
National Snow and Ice Data Center (NSIDC), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, USA
Vishnu Nandan
Department of Electronics & Communication Engineering, Amrita School of Engineering, Amrita University, Bengaluru, India
Department of Geography, University of Calgary, Alberta, Canada
Rosemary Willatt
Centre for Polar Observation Modelling (CPOM), University College London, London, United Kingdom
Department of Geography and Environmental Sciences, Centre for Polar Observation and Modelling, Northumbria University, Newcastle, United Kingdom
Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Tsinghua University, Beijing, China
University Corporation for Polar Research, Beijing, China
Weixin Zhu
Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Tsinghua University, Beijing, China
Sahra Kacimi
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Stefanie Arndt
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Institute of Oceanography, University of Hamburg, Hamburg, Germany
Zifan Yang
School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
Related authors
Weixin Zhu, Siqi Liu, Shiming Xu, and Lu Zhou
Earth Syst. Sci. Data, 16, 2917–2940, https://doi.org/10.5194/essd-16-2917-2024, https://doi.org/10.5194/essd-16-2917-2024, 2024
Short summary
Short summary
In the polar ocean, wind waves generate and propagate into the sea ice cover, forming marginal ice zones (MIZs). Using ESA's CryoSat-2, we construct a 12-year dataset of the MIZ in the Atlantic Arctic, a key region for climate change and human activities. The dataset is validated with high-resolution observations by ICESat2 and Sentinel-1. MIZs over 300 km wide are found under storms in the Barents Sea. The new dataset serves as the basis for research areas, including wave–ice interactions.
Céline Heuzé, Lu Zhou, Martin Mohrmann, and Adriano Lemos
The Cryosphere, 15, 3401–3421, https://doi.org/10.5194/tc-15-3401-2021, https://doi.org/10.5194/tc-15-3401-2021, 2021
Short summary
Short summary
For navigation or science planning, knowing when sea ice will open in advance is a prerequisite. Yet, to date, routine spaceborne microwave observations of sea ice are unable to do so. We present the first method based on spaceborne infrared that can forecast an opening several days ahead. We develop it specifically for the Weddell Polynya, a large hole in the Antarctic winter ice cover that unexpectedly re-opened for the first time in 40 years in 2016, and determine why the polynya opened.
Shiming Xu, Jialiang Ma, Lu Zhou, Yan Zhang, Jiping Liu, and Bin Wang
Geosci. Model Dev., 14, 603–628, https://doi.org/10.5194/gmd-14-603-2021, https://doi.org/10.5194/gmd-14-603-2021, 2021
Short summary
Short summary
A multi-resolution tripolar grid hierarchy is constructed and integrated in CESM (version 1.2.1). The resolution range includes 0.45, 0.15, and 0.05°. Based on atmospherically forced sea ice experiments, the model simulates reasonable sea ice kinematics and scaling properties. Landfast ice thickness can also be systematically shifted due to non-convergent solutions to an
elastic–viscous–plastic (EVP) model. This work is a framework for multi-scale modeling of the ocean and sea ice with CESM.
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary
Short summary
Snow on sea ice plays an important role in the Arctic climate system. Large spatial and temporal discrepancies among the eight snow depth products are analyzed together with their seasonal variability and long-term trends. These snow products are further compared against various ground-truth observations. More analyses on representation error of sea ice parameters are needed for systematic comparison and fusion of airborne, in situ and remote sensing observations.
Shiming Xu, Lu Zhou, and Bin Wang
The Cryosphere, 14, 751–767, https://doi.org/10.5194/tc-14-751-2020, https://doi.org/10.5194/tc-14-751-2020, 2020
Short summary
Short summary
Sea ice thickness parameters are key to polar climate change studies and forecasts. Airborne and satellite measurements provide complementary observational capabilities. The study analyzes the variability in freeboard and snow depth measurements and its changes with scale in Operation IceBridge, CryoVEx, CryoSat-2 and ICESat. Consistency between airborne and satellite data is checked. Analysis calls for process-oriented attribution of variability and covariability features of these parameters.
Lu Zhou, Shiming Xu, Jiping Liu, and Bin Wang
The Cryosphere, 12, 993–1012, https://doi.org/10.5194/tc-12-993-2018, https://doi.org/10.5194/tc-12-993-2018, 2018
Short summary
Short summary
This work proposes a new data synergy method for the retrieval of sea ice thickness and snow depth by using colocating L-band passive remote sensing and active laser altimetry. Physical models are adopted for the retrieval, including L-band radiation model and buoyancy relationship. Covariability of snow depth and total freeboard is further utilized to mitigate resolution differences and improve retrievability. The method can be applied to future campaigns including ICESat-2 and WCOM.
Rui Xu, Chaofang Zhao, Stefanie Arndt, and Christian Haas
The Cryosphere, 18, 5769–5788, https://doi.org/10.5194/tc-18-5769-2024, https://doi.org/10.5194/tc-18-5769-2024, 2024
Short summary
Short summary
The onset of snowmelt on Antarctic sea ice is an important indicator of sea ice change. In this study, we used two radar scatterometers to detect the onset of snowmelt on perennial Antarctic sea ice. Results show that since 2007, snowmelt onset has demonstrated strong interannual and regional variabilities. We also found that the difference in snowmelt onsets between the two scatterometers is closely related to snow metamorphism.
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
The Cryosphere, 18, 5641–5652, https://doi.org/10.5194/tc-18-5641-2024, https://doi.org/10.5194/tc-18-5641-2024, 2024
Short summary
Short summary
Until recently, satellite data showed an increase in Antarctic sea ice area since 1979, but climate models simulated a decrease over this period. This mismatch was one reason for low confidence in model projections of 21st-century sea ice loss. We show that following low Antarctic sea ice in 2022 and 2023, we can no longer conclude that modelled and observed trends differ. However, differences in the manner of the decline mean that model sea ice projections should still be viewed with caution.
Chenhui Ning, Shiming Xu, Yan Zhang, Xuantong Wang, Zhihao Fan, and Jiping Liu
Geosci. Model Dev., 17, 6847–6866, https://doi.org/10.5194/gmd-17-6847-2024, https://doi.org/10.5194/gmd-17-6847-2024, 2024
Short summary
Short summary
Sea ice models are mainly based on non-moving structured grids, which is different from buoy measurements that follow the ice drift. To facilitate Lagrangian analysis, we introduce online tracking of sea ice in Community Ice CodE (CICE). We validate the sea ice tracking with buoys and evaluate the sea ice deformation in high-resolution simulations, which show multi-fractal characteristics. The source code is openly available and can be used in various scientific and operational applications.
Weixin Zhu, Siqi Liu, Shiming Xu, and Lu Zhou
Earth Syst. Sci. Data, 16, 2917–2940, https://doi.org/10.5194/essd-16-2917-2024, https://doi.org/10.5194/essd-16-2917-2024, 2024
Short summary
Short summary
In the polar ocean, wind waves generate and propagate into the sea ice cover, forming marginal ice zones (MIZs). Using ESA's CryoSat-2, we construct a 12-year dataset of the MIZ in the Atlantic Arctic, a key region for climate change and human activities. The dataset is validated with high-resolution observations by ICESat2 and Sentinel-1. MIZs over 300 km wide are found under storms in the Barents Sea. The new dataset serves as the basis for research areas, including wave–ice interactions.
Stefanie Arndt, Nina Maaß, Leonard Rossmann, and Marcel Nicolaus
The Cryosphere, 18, 2001–2015, https://doi.org/10.5194/tc-18-2001-2024, https://doi.org/10.5194/tc-18-2001-2024, 2024
Short summary
Short summary
Antarctic sea ice maintains year-round snow cover, crucial for its energy and mass budgets. Despite its significance, snow depth remains poorly understood. Over the last decades, Snow Buoys have been deployed extensively on the sea ice to measure snow accumulation but not actual depth due to snow transformation into meteoric ice. Therefore, in this study we utilize sea ice and snow models to estimate meteoric ice fractions in order to calculate actual snow depth in the Weddell Sea.
Moein Mellat, Amy R. Macfarlane, Camilla F. Brunello, Martin Werner, Martin Schneebeli, Ruzica Dadic, Stefanie Arndt, Kaisa-Riikka Mustonen, Jeffrey M. Welker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-719, https://doi.org/10.5194/egusphere-2024-719, 2024
Preprint archived
Short summary
Short summary
Our research, utilizing data from the Arctic MOSAiC expedition, reveals how snow on Arctic sea ice changes due to weather conditions. By analyzing snow samples collected over a year, we found differences in snow layers that tell us about their origins and how they've been affected by the environment. We discovered variations in snow and vapour that reflect the influence of weather patterns and surface processes like wind and sublimation.
Wiebke Margitta Kolbe, Rasmus T. Tonboe, and Julienne Stroeve
Earth Syst. Sci. Data, 16, 1247–1264, https://doi.org/10.5194/essd-16-1247-2024, https://doi.org/10.5194/essd-16-1247-2024, 2024
Short summary
Short summary
Current satellite-based sea-ice climate data records (CDRs) usually begin in October 1978 with the first multichannel microwave radiometer data. Here, we present a sea ice dataset based on the single-channel Electrical Scanning Microwave Radiometer (ESMR) that operated from 1972-1977 onboard NASA’s Nimbus 5 satellite. The data were processed using modern methods and include uncertainty estimations in order to provide an important, easy-to-use reference period of good quality for current CDRs.
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
EGUsphere, https://doi.org/10.5194/egusphere-2023-2509, https://doi.org/10.5194/egusphere-2023-2509, 2023
Short summary
Short summary
Snow on sea ice is vital for near-shore sea ice geophysical and biological processes. Past studies have measured snow depths using satellite altimeters Cryosat-2 and ICESat-2 (Cryo2Ice) but estimating sea surface height from lead-less land-fast sea ice remains challenging. Snow depths from Cryo2Ice are compared to in-situ after adjusting for tides. Realistic snow depths are retrieved but difference in roughness, satellite footprints and snow geophysical properties are identified as challenges.
Alistair Duffey, Robbie Mallett, Peter J. Irvine, Michel Tsamados, and Julienne Stroeve
Earth Syst. Dynam., 14, 1165–1169, https://doi.org/10.5194/esd-14-1165-2023, https://doi.org/10.5194/esd-14-1165-2023, 2023
Short summary
Short summary
The Arctic is warming several times faster than the rest of the planet. Here, we use climate model projections to quantify for the first time how this faster warming in the Arctic impacts the timing of crossing the 1.5 °C and 2 °C thresholds defined in the Paris Agreement. We show that under plausible emissions scenarios that fail to meet the Paris 1.5 °C target, a hypothetical world without faster warming in the Arctic would breach that 1.5 °C target around 5 years later.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Yan Zhang, Xuantong Wang, Yuhao Sun, Chenhui Ning, Shiming Xu, Hengbin An, Dehong Tang, Hong Guo, Hao Yang, Ye Pu, Bo Jiang, and Bin Wang
Geosci. Model Dev., 16, 679–704, https://doi.org/10.5194/gmd-16-679-2023, https://doi.org/10.5194/gmd-16-679-2023, 2023
Short summary
Short summary
We construct a new ocean model, OMARE, that can carry out multi-scale ocean simulation with adaptive mesh refinement. OMARE is based on the refactorization of NEMO with a third-party, high-performance piece of middleware. We report the porting process and experiments of an idealized western-boundary current system. The new model simulates turbulent and temporally varying mesoscale and submesoscale processes via adaptive refinement. Related topics and future work with OMARE are also discussed.
Younjoo J. Lee, Wieslaw Maslowski, John J. Cassano, Jaclyn Clement Kinney, Anthony P. Craig, Samy Kamal, Robert Osinski, Mark W. Seefeldt, Julienne Stroeve, and Hailong Wang
The Cryosphere, 17, 233–253, https://doi.org/10.5194/tc-17-233-2023, https://doi.org/10.5194/tc-17-233-2023, 2023
Short summary
Short summary
During 1979–2020, four winter polynyas occurred in December 1986 and February 2011, 2017, and 2018 north of Greenland. Instead of ice melting due to the anomalous warm air intrusion, the extreme wind forcing resulted in greater ice transport offshore. Based on the two ensemble runs, representing a 1980s thicker ice vs. a 2010s thinner ice, a dominant cause of these winter polynyas stems from internal variability of atmospheric forcing rather than from the forced response to a warming climate.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
William Gregory, Julienne Stroeve, and Michel Tsamados
The Cryosphere, 16, 1653–1673, https://doi.org/10.5194/tc-16-1653-2022, https://doi.org/10.5194/tc-16-1653-2022, 2022
Short summary
Short summary
This research was conducted to better understand how coupled climate models simulate one of the large-scale interactions between the atmosphere and Arctic sea ice that we see in observational data, the accurate representation of which is important for producing reliable forecasts of Arctic sea ice on seasonal to inter-annual timescales. With network theory, this work shows that models do not reflect this interaction well on average, which is likely due to regional biases in sea ice thickness.
Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve
The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, https://doi.org/10.5194/tc-15-4909-2021, 2021
Short summary
Short summary
Scientists can estimate sea ice thickness using satellites that measure surface height. To determine the sea ice thickness, we also need to know the snow depth and density. This paper shows that the chosen snow depth product has a considerable impact on the findings of sea ice thickness state and trends in Baffin Bay, showing mean thinning with some snow depth products and mean thickening with others. This shows that it is important to better understand and monitor snow depth on sea ice.
Stefanie Arndt, Christian Haas, Hanno Meyer, Ilka Peeken, and Thomas Krumpen
The Cryosphere, 15, 4165–4178, https://doi.org/10.5194/tc-15-4165-2021, https://doi.org/10.5194/tc-15-4165-2021, 2021
Short summary
Short summary
We present here snow and ice core data from the northwestern Weddell Sea in late austral summer 2019, which allow insights into possible reasons for the recent low summer sea ice extent in the Weddell Sea. We suggest that the fraction of superimposed ice and snow ice can be used here as a sensitive indicator. However, snow and ice properties were not exceptional, suggesting that the summer surface energy balance and related seasonal transition of snow properties have changed little in the past.
Céline Heuzé, Lu Zhou, Martin Mohrmann, and Adriano Lemos
The Cryosphere, 15, 3401–3421, https://doi.org/10.5194/tc-15-3401-2021, https://doi.org/10.5194/tc-15-3401-2021, 2021
Short summary
Short summary
For navigation or science planning, knowing when sea ice will open in advance is a prerequisite. Yet, to date, routine spaceborne microwave observations of sea ice are unable to do so. We present the first method based on spaceborne infrared that can forecast an opening several days ahead. We develop it specifically for the Weddell Polynya, a large hole in the Antarctic winter ice cover that unexpectedly re-opened for the first time in 40 years in 2016, and determine why the polynya opened.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Short summary
We re-estimate pan-Arctic sea ice thickness (SIT) values by combining data from the Envisat and CryoSat-2 missions with data from a new, reanalysis-driven snow model. Because a decreasing amount of ice is being hidden below the waterline by the weight of overlying snow, we argue that SIT may be declining faster than previously calculated in some regions. Because the snow product varies from year to year, our new SIT calculations also display much more year-to-year variability.
Rasmus T. Tonboe, Vishnu Nandan, John Yackel, Stefan Kern, Leif Toudal Pedersen, and Julienne Stroeve
The Cryosphere, 15, 1811–1822, https://doi.org/10.5194/tc-15-1811-2021, https://doi.org/10.5194/tc-15-1811-2021, 2021
Short summary
Short summary
A relationship between the Ku-band radar scattering horizon and snow depth is found using a radar scattering model. This relationship has implications for (1) the use of snow climatology in the conversion of satellite radar freeboard into sea ice thickness and (2) the impact of variability in measured snow depth on the derived ice thickness. For both 1 and 2, the impact of using a snow climatology versus the actual snow depth is relatively small.
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021, https://doi.org/10.5194/tc-15-821-2021, 2021
Shiming Xu, Jialiang Ma, Lu Zhou, Yan Zhang, Jiping Liu, and Bin Wang
Geosci. Model Dev., 14, 603–628, https://doi.org/10.5194/gmd-14-603-2021, https://doi.org/10.5194/gmd-14-603-2021, 2021
Short summary
Short summary
A multi-resolution tripolar grid hierarchy is constructed and integrated in CESM (version 1.2.1). The resolution range includes 0.45, 0.15, and 0.05°. Based on atmospherically forced sea ice experiments, the model simulates reasonable sea ice kinematics and scaling properties. Landfast ice thickness can also be systematically shifted due to non-convergent solutions to an
elastic–viscous–plastic (EVP) model. This work is a framework for multi-scale modeling of the ocean and sea ice with CESM.
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary
Short summary
Snow on sea ice plays an important role in the Arctic climate system. Large spatial and temporal discrepancies among the eight snow depth products are analyzed together with their seasonal variability and long-term trends. These snow products are further compared against various ground-truth observations. More analyses on representation error of sea ice parameters are needed for systematic comparison and fusion of airborne, in situ and remote sensing observations.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Sahra Kacimi and Ron Kwok
The Cryosphere, 14, 4453–4474, https://doi.org/10.5194/tc-14-4453-2020, https://doi.org/10.5194/tc-14-4453-2020, 2020
Short summary
Short summary
Our current understanding of Antarctic ice cover is largely informed by ice extent measurements from passive microwave sensors. These records, while useful, provide a limited picture of how the ice is responding to climate change. In this paper, we combine measurements from ICESat-2 and CryoSat-2 missions to assess snow depth and ice thickness of the Antarctic ice cover over an 8-month period (April through November 2019). The potential impact of salinity in the snow layer is discussed.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Stefanie Arndt, Mario Hoppmann, Holger Schmithüsen, Alexander D. Fraser, and Marcel Nicolaus
The Cryosphere, 14, 2775–2793, https://doi.org/10.5194/tc-14-2775-2020, https://doi.org/10.5194/tc-14-2775-2020, 2020
Shiming Xu, Lu Zhou, and Bin Wang
The Cryosphere, 14, 751–767, https://doi.org/10.5194/tc-14-751-2020, https://doi.org/10.5194/tc-14-751-2020, 2020
Short summary
Short summary
Sea ice thickness parameters are key to polar climate change studies and forecasts. Airborne and satellite measurements provide complementary observational capabilities. The study analyzes the variability in freeboard and snow depth measurements and its changes with scale in Operation IceBridge, CryoVEx, CryoSat-2 and ICESat. Consistency between airborne and satellite data is checked. Analysis calls for process-oriented attribution of variability and covariability features of these parameters.
Robbie D. C. Mallett, Isobel R. Lawrence, Julienne C. Stroeve, Jack C. Landy, and Michel Tsamados
The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020, https://doi.org/10.5194/tc-14-251-2020, 2020
Short summary
Short summary
Soils store large carbon and are important for global warming. We do not know what factors are important for soil carbon storage in the alpine Andes and how they work. We studied how rainfall affects soil carbon storage related to soil structure. We found soil structure is not important, but soil carbon storage and stability controlled by rainfall are dependent on rocks under the soils. The results indicate that we should pay attention to the rocks when studying soil carbon storage in the Andes.
Stefanie Arndt and Christian Haas
The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019, https://doi.org/10.5194/tc-13-1943-2019, 2019
Isobel R. Lawrence, Michel C. Tsamados, Julienne C. Stroeve, Thomas W. K. Armitage, and Andy L. Ridout
The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, https://doi.org/10.5194/tc-12-3551-2018, 2018
Short summary
Short summary
In this paper we estimate the thickness of snow cover on Arctic sea ice from space. We use data from two radar altimeter satellites, AltiKa and CryoSat-2, that have been operating synchronously since 2013. We produce maps of monthly average snow depth for the four growth seasons (October to April): 2012–2013, 2013–2014, 2014–2015, and 2015–2016. Snow depth estimates are essential for the accurate retrieval of sea ice thickness from satellite altimetry.
Ron Kwok and Sahra Kacimi
The Cryosphere, 12, 2789–2801, https://doi.org/10.5194/tc-12-2789-2018, https://doi.org/10.5194/tc-12-2789-2018, 2018
Short summary
Short summary
The variability of snow depth and ice thickness in three years of repeat surveys of an IceBridge (OIB) transect across the Weddell Sea is examined. Retrieved thicknesses suggest a highly variable but broadly thicker ice cover compared to that inferred from drilling and ship-based measurements. The use of lidar and radar altimeters to estimate snow depth for thickness calculations is analyzed, and the need for better characterization of biases due to radar penetration effects is highlighted.
Julienne C. Stroeve, David Schroder, Michel Tsamados, and Daniel Feltham
The Cryosphere, 12, 1791–1809, https://doi.org/10.5194/tc-12-1791-2018, https://doi.org/10.5194/tc-12-1791-2018, 2018
Short summary
Short summary
This paper looks at the impact of the warm winter and anomalously low number of total freezing degree days during winter 2016/2017 on thermodynamic ice growth and overall thickness anomalies. The approach relies on evaluation of satellite data (CryoSat-2) and model output. While there is a negative feedback between rapid ice growth for thin ice, with thermodynamic ice growth increasing over time, since 2012 that relationship is changing, in part because the freeze-up is happening later.
Lu Zhou, Shiming Xu, Jiping Liu, and Bin Wang
The Cryosphere, 12, 993–1012, https://doi.org/10.5194/tc-12-993-2018, https://doi.org/10.5194/tc-12-993-2018, 2018
Short summary
Short summary
This work proposes a new data synergy method for the retrieval of sea ice thickness and snow depth by using colocating L-band passive remote sensing and active laser altimetry. Physical models are adopted for the retrieval, including L-band radiation model and buoyancy relationship. Covariability of snow depth and total freeboard is further utilized to mitigate resolution differences and improve retrievability. The method can be applied to future campaigns including ICESat-2 and WCOM.
Alek A. Petty, Julienne C. Stroeve, Paul R. Holland, Linette N. Boisvert, Angela C. Bliss, Noriaki Kimura, and Walter N. Meier
The Cryosphere, 12, 433–452, https://doi.org/10.5194/tc-12-433-2018, https://doi.org/10.5194/tc-12-433-2018, 2018
Short summary
Short summary
There was significant scientific and media attention surrounding Arctic sea ice in 2016, due primarily to the record-warm air temperatures and low sea ice conditions observed at the start of the year. Here we quantify and assess the record-low monthly sea ice cover in winter, spring and fall, and the lack of record-low sea ice conditions in summer. We explore the primary drivers of these monthly sea ice states and explore the implications for improved summer sea ice forecasting.
Julienne C. Stroeve, John R. Mioduszewski, Asa Rennermalm, Linette N. Boisvert, Marco Tedesco, and David Robinson
The Cryosphere, 11, 2363–2381, https://doi.org/10.5194/tc-11-2363-2017, https://doi.org/10.5194/tc-11-2363-2017, 2017
Short summary
Short summary
As the sea ice has declined strongly in recent years there has been a corresponding increase in Greenland melting. While both are likely a result of changes in atmospheric circulation patterns that favor summer melt, this study evaluates whether or not sea ice reductions around the Greenland ice sheet are having an influence on Greenland summer melt through enhanced sensible and latent heat transport from open water areas onto the ice sheet.
Guangliang Fu, Hai Xiang Lin, Arnold Heemink, Sha Lu, Arjo Segers, Nils van Velzen, Tongchao Lu, and Shiming Xu
Geosci. Model Dev., 10, 1751–1766, https://doi.org/10.5194/gmd-10-1751-2017, https://doi.org/10.5194/gmd-10-1751-2017, 2017
Short summary
Short summary
We propose a mask-state algorithm (MS) which records the sparsity information of the full ensemble state matrix and transforms the full matrix into a relatively small one. It will reduce the computational cost in the analysis step for plume assimilation applications. Ensemble-based DA with the mask-state algorithm is generic and flexible, because it implements exactly the standard DA without any approximation and it realizes the satisfying performance without any change of the full model.
Lars H. Smedsrud, Mari H. Halvorsen, Julienne C. Stroeve, Rong Zhang, and Kjell Kloster
The Cryosphere, 11, 65–79, https://doi.org/10.5194/tc-11-65-2017, https://doi.org/10.5194/tc-11-65-2017, 2017
Short summary
Short summary
Export of Arctic sea ice area southwards through the Fram Strait from 1935 to 2014 is calculated based on satellite radar images and surface pressure observations. The annual mean export is 880 000 km2, representing 10 % of the Arctic sea ice area. In recent years the export has been above 1 million km2, and there are positive trends over the last 30 years. Increased ice export during spring and summer contributes to more open water in September, and this correlations has increased over time.
Dirk Notz, Alexandra Jahn, Marika Holland, Elizabeth Hunke, François Massonnet, Julienne Stroeve, Bruno Tremblay, and Martin Vancoppenolle
Geosci. Model Dev., 9, 3427–3446, https://doi.org/10.5194/gmd-9-3427-2016, https://doi.org/10.5194/gmd-9-3427-2016, 2016
Short summary
Short summary
The large-scale evolution of sea ice is both an indicator and a driver of climate changes. Hence, a realistic simulation of sea ice is key for a realistic simulation of the climate system of our planet. To assess and to improve the realism of sea-ice simulations, we present here a new protocol for climate-model output that allows for an in-depth analysis of the simulated evolution of sea ice.
Julienne C. Stroeve, Stephanie Jenouvrier, G. Garrett Campbell, Christophe Barbraud, and Karine Delord
The Cryosphere, 10, 1823–1843, https://doi.org/10.5194/tc-10-1823-2016, https://doi.org/10.5194/tc-10-1823-2016, 2016
Short summary
Short summary
Sea ice variability within the marginal ice zone and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Assessments are complicated, however, by which sea ice algorithm is used, with impacts on interpretations on seabird populations.
Marco Tedesco, Sarah Doherty, Xavier Fettweis, Patrick Alexander, Jeyavinoth Jeyaratnam, and Julienne Stroeve
The Cryosphere, 10, 477–496, https://doi.org/10.5194/tc-10-477-2016, https://doi.org/10.5194/tc-10-477-2016, 2016
Short summary
Short summary
Summer surface albedo over Greenland decreased at a rate of 0.02 per decade between 1996 and 2012. The decrease is due to snow grain growth, the expansion of bare ice areas, and trends in light-absorbing impurities on snow and ice surfaces. Neither aerosol models nor in situ observations indicate increasing trends in impurities in the atmosphere over Greenland. Albedo projections through to the end of the century under different warming scenarios consistently point to continued darkening.
S. Xu, B. Wang, and J. Liu
Geosci. Model Dev., 8, 3471–3485, https://doi.org/10.5194/gmd-8-3471-2015, https://doi.org/10.5194/gmd-8-3471-2015, 2015
Short summary
Short summary
This article applies Schwarz-Christoffel (SC) conformal mappings for single-connected and multiple-connected regions to the generation of general orthogonal grids for OGCMs, to achieve 1) the enlarged lat-lon proportion, 2) the removal of landmass and easier load balancing, 3) better spatial resolution on continental boundaries, and 4) alignment of grid lines to large-scale coastlines. The generated grids could be readily utilized by the majority of OGCMs that support general orthogonal grids.
S. Arndt and M. Nicolaus
The Cryosphere, 8, 2219–2233, https://doi.org/10.5194/tc-8-2219-2014, https://doi.org/10.5194/tc-8-2219-2014, 2014
J. Stroeve, A. Barrett, M. Serreze, and A. Schweiger
The Cryosphere, 8, 1839–1854, https://doi.org/10.5194/tc-8-1839-2014, https://doi.org/10.5194/tc-8-1839-2014, 2014
Related subject area
Discipline: Sea ice | Subject: Antarctic
Brief communication: New perspectives on the skill of modelled sea ice trends in light of recent Antarctic sea ice loss
The role of atmospheric conditions in the Antarctic sea ice extent summer minima
Sources of low-frequency variability in observed Antarctic sea ice
A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone
Multidecadal variability and predictability of Antarctic sea ice in the GFDL SPEAR_LO model
Signature of the stratosphere–troposphere coupling on recent record-breaking Antarctic sea-ice anomalies
Southern Ocean polynyas and dense water formation in a high-resolution, coupled Earth system model
A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting
Annual evolution of the ice–ocean interaction beneath landfast ice in Prydz Bay, East Antarctica
The response of sea ice and high-salinity shelf water in the Ross Ice Shelf Polynya to cyclonic atmosphere circulations
Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode
Evolution of the dynamics, area, and ice production of the Amundsen Sea Polynya, Antarctica, 2016–2021
Modulation of the seasonal cycle of the Antarctic sea ice extent by sea ice processes and feedbacks with the ocean and the atmosphere
Ice Sheet and Sea Ice Ultrawideband Microwave radiometric Airborne eXperiment (ISSIUMAX) in Antarctica: first results from Terra Nova Bay
Influence of fast ice on future ice shelf melting in the Totten Glacier area, East Antarctica
A comparison between Envisat and ICESat sea ice thickness in the Southern Ocean
An indicator of sea ice variability for the Antarctic marginal ice zone
Physical and mechanical properties of winter first-year ice in the Antarctic marginal ice zone along the Good Hope Line
Altimetric observation of wave attenuation through the Antarctic marginal ice zone using ICESat-2
Flexural and compressive strength of the landfast sea ice in the Prydz Bay, East Antarctic
The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: a case study at Zhongshan Station, Antarctica
An evaluation of Antarctic sea-ice thickness from the Global Ice-Ocean Modeling and Assimilation System based on in situ and satellite observations
Rectification and validation of a daily satellite-derived Antarctic sea ice velocity product
Weddell Sea polynya analysis using SMOS–SMAP apparent sea ice thickness retrieval
Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
Brief communication: The anomalous winter 2019 sea-ice conditions in McMurdo Sound, Antarctica
Southern Ocean polynyas in CMIP6 models
Airborne mapping of the sub-ice platelet layer under fast ice in McMurdo Sound, Antarctica
Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea
The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth, and ice thickness
Seasonal and interannual variability of landfast sea ice in Atka Bay, Weddell Sea, Antarctica
Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model
Retrieval of snow freeboard of Antarctic sea ice using waveform fitting of CryoSat-2 returns
Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
The Cryosphere, 18, 5641–5652, https://doi.org/10.5194/tc-18-5641-2024, https://doi.org/10.5194/tc-18-5641-2024, 2024
Short summary
Short summary
Until recently, satellite data showed an increase in Antarctic sea ice area since 1979, but climate models simulated a decrease over this period. This mismatch was one reason for low confidence in model projections of 21st-century sea ice loss. We show that following low Antarctic sea ice in 2022 and 2023, we can no longer conclude that modelled and observed trends differ. However, differences in the manner of the decline mean that model sea ice projections should still be viewed with caution.
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024, https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
Short summary
We analyze years with extraordinarily low sea ice extent in Antarctica during summer, until the striking record in 2022. We highlight common aspects among these events, such as the fact that the exceptional melting usually occurs in two key regions and that it is related to winds with a similar direction. We also investigate whether the summer conditions are preceded by an unusual state of the sea ice during the previous winter, as well as the physical processes involved.
David B. Bonan, Jakob Dörr, Robert C. J. Wills, Andrew F. Thompson, and Marius Årthun
The Cryosphere, 18, 2141–2159, https://doi.org/10.5194/tc-18-2141-2024, https://doi.org/10.5194/tc-18-2141-2024, 2024
Short summary
Short summary
Antarctic sea ice has exhibited variability over satellite records, including a period of gradual expansion and a period of sudden decline. We use a novel statistical method to identify sources of variability in observed Antarctic sea ice changes. We find that the gradual increase in sea ice is likely related to large-scale temperature trends, and periods of abrupt sea ice decline are related to specific flavors of equatorial tropical variability known as the El Niño–Southern Oscillation.
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024, https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary
Short summary
Synoptic events have a significant influence on the evolution of Antarctic sea ice. Our current understanding of the interactions between cyclones and sea ice remains limited. Using two ensembles of buoys, deployed in the north-eastern Weddell Sea region during winter and spring of 2019, we show how the evolution and spatial pattern of sea ice drift and deformation in the Antarctic marginal ice zone were affected by the balance between atmospheric and oceanic forcing and the local ice.
Yushi Morioka, Liping Zhang, Thomas L. Delworth, Xiaosong Yang, Fanrong Zeng, Masami Nonaka, and Swadhin K. Behera
The Cryosphere, 17, 5219–5240, https://doi.org/10.5194/tc-17-5219-2023, https://doi.org/10.5194/tc-17-5219-2023, 2023
Short summary
Short summary
Antarctic sea ice extent shows multidecadal variations with its decrease in the 1980s and increase after the 2000s until 2015. Here we show that our climate model can predict the sea ice decrease by deep convection in the Southern Ocean and the sea ice increase by the surface wind variability. These results suggest that accurate simulation and prediction of subsurface ocean and atmosphere conditions are important for those of Antarctic sea ice variability on a multidecadal timescale.
Raúl R. Cordero, Sarah Feron, Alessandro Damiani, Pedro J. Llanillo, Jorge Carrasco, Alia L. Khan, Richard Bintanja, Zutao Ouyang, and Gino Casassa
The Cryosphere, 17, 4995–5006, https://doi.org/10.5194/tc-17-4995-2023, https://doi.org/10.5194/tc-17-4995-2023, 2023
Short summary
Short summary
We investigate the response of Antarctic sea ice to year-to-year changes in the tropospheric–stratospheric dynamics. Our findings suggest that, by affecting the tropospheric westerlies, the strength of the stratospheric polar vortex has played a major role in recent record-breaking anomalies in Antarctic sea ice.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Steven Fons, Nathan Kurtz, and Marco Bagnardi
The Cryosphere, 17, 2487–2508, https://doi.org/10.5194/tc-17-2487-2023, https://doi.org/10.5194/tc-17-2487-2023, 2023
Short summary
Short summary
Antarctic sea ice thickness is an important quantity in the Earth system. Due to the thick and complex snow cover on Antarctic sea ice, estimating the thickness of the ice pack is difficult using traditional methods in radar altimetry. In this work, we use a waveform model to estimate the freeboard and snow depth of Antarctic sea ice from CryoSat-2 and use these values to calculate sea ice thickness and volume between 2010 and 2021 and showcase how the sea ice pack has changed over this time.
Haihan Hu, Jiechen Zhao, Petra Heil, Zhiliang Qin, Jingkai Ma, Fengming Hui, and Xiao Cheng
The Cryosphere, 17, 2231–2244, https://doi.org/10.5194/tc-17-2231-2023, https://doi.org/10.5194/tc-17-2231-2023, 2023
Short summary
Short summary
The oceanic characteristics beneath sea ice significantly affect ice growth and melting. The high-frequency and long-term observations of oceanic variables allow us to deeply investigate their diurnal and seasonal variation and evaluate their influences on sea ice evolution. The large-scale sea ice distribution and ocean circulation contributed to the seasonal variation of ocean variables, revealing the important relationship between large-scale and local phenomena.
Xiaoqiao Wang, Zhaoru Zhang, Michael S. Dinniman, Petteri Uotila, Xichen Li, and Meng Zhou
The Cryosphere, 17, 1107–1126, https://doi.org/10.5194/tc-17-1107-2023, https://doi.org/10.5194/tc-17-1107-2023, 2023
Short summary
Short summary
The bottom water of the global ocean originates from high-salinity water formed in polynyas in the Southern Ocean where sea ice coverage is low. This study reveals the impacts of cyclones on sea ice and water mass formation in the Ross Ice Shelf Polynya using numerical simulations. Sea ice production is rapidly increased caused by enhancement in offshore wind, promoting high-salinity water formation in the polynya. Cyclones also modulate the transport of this water mass by wind-driven currents.
Serena Schroeter, Terence J. O'Kane, and Paul A. Sandery
The Cryosphere, 17, 701–717, https://doi.org/10.5194/tc-17-701-2023, https://doi.org/10.5194/tc-17-701-2023, 2023
Short summary
Short summary
Antarctic sea ice has increased over much of the satellite record, but we show that the early, strongly opposing regional trends diminish and reverse over time, leading to overall negative trends in recent decades. The dominant pattern of atmospheric flow has changed from strongly east–west to more wave-like with enhanced north–south winds. Sea surface temperatures have also changed from circumpolar cooling to regional warming, suggesting recent record low sea ice will not rapidly recover.
Grant J. Macdonald, Stephen F. Ackley, Alberto M. Mestas-Nuñez, and Adrià Blanco-Cabanillas
The Cryosphere, 17, 457–476, https://doi.org/10.5194/tc-17-457-2023, https://doi.org/10.5194/tc-17-457-2023, 2023
Short summary
Short summary
Polynyas are key sites of sea ice production, biological activity, and carbon sequestration. The Amundsen Sea Polynya is of particular interest due to its size and location. By analyzing radar imagery and climate and sea ice data products, we evaluate variations in the dynamics, area, and ice production of the Amundsen Sea Polynya. In particular, we find the local seafloor topography and associated grounded icebergs play an important role in the polynya dynamics, influencing ice production.
Hugues Goosse, Sofia Allende Contador, Cecilia M. Bitz, Edward Blanchard-Wrigglesworth, Clare Eayrs, Thierry Fichefet, Kenza Himmich, Pierre-Vincent Huot, François Klein, Sylvain Marchi, François Massonnet, Bianca Mezzina, Charles Pelletier, Lettie Roach, Martin Vancoppenolle, and Nicole P. M. van Lipzig
The Cryosphere, 17, 407–425, https://doi.org/10.5194/tc-17-407-2023, https://doi.org/10.5194/tc-17-407-2023, 2023
Short summary
Short summary
Using idealized sensitivity experiments with a regional atmosphere–ocean–sea ice model, we show that sea ice advance is constrained by initial conditions in March and the retreat season is influenced by the magnitude of several physical processes, in particular by the ice–albedo feedback and ice transport. Atmospheric feedbacks amplify the response of the winter ice extent to perturbations, while some negative feedbacks related to heat conduction fluxes act on the ice volume.
Marco Brogioni, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, Stephen F. Ackley, Alexandra Bringer, Ludovic Brucker, Oguz Demir, Giacomo Fontanelli, Caglar Yardim, Lars Kaleschke, Francesco Montomoli, Leung Tsang, Silvia Becagli, and Massimo Frezzotti
The Cryosphere, 17, 255–278, https://doi.org/10.5194/tc-17-255-2023, https://doi.org/10.5194/tc-17-255-2023, 2023
Short summary
Short summary
In 2018 the first Antarctic campaign of UWBRAD was carried out. UWBRAD is a new radiometer able to collect microwave spectral signatures over 0.5–2 GHz, thus outperforming existing similar sensors. It allows us to probe thicker sea ice and ice sheet down to the bedrock. In this work we tried to assess the UWBRAD potentials for sea ice, glaciers, ice shelves and buried lakes. We also highlighted the wider range of information the spectral signature can provide to glaciological studies.
Guillian Van Achter, Thierry Fichefet, Hugues Goosse, and Eduardo Moreno-Chamarro
The Cryosphere, 16, 4745–4761, https://doi.org/10.5194/tc-16-4745-2022, https://doi.org/10.5194/tc-16-4745-2022, 2022
Short summary
Short summary
We investigate the changes in ocean–ice interactions in the Totten Glacier area between the last decades (1995–2014) and the end of the 21st century (2081–2100) under warmer climate conditions. By the end of the 21st century, the sea ice is strongly reduced, and the ocean circulation close to the coast is accelerated. Our research highlights the importance of including representations of fast ice to simulate realistic ice shelf melt rate increase in East Antarctica under warming conditions.
Jinfei Wang, Chao Min, Robert Ricker, Qian Shi, Bo Han, Stefan Hendricks, Renhao Wu, and Qinghua Yang
The Cryosphere, 16, 4473–4490, https://doi.org/10.5194/tc-16-4473-2022, https://doi.org/10.5194/tc-16-4473-2022, 2022
Short summary
Short summary
The differences between Envisat and ICESat sea ice thickness (SIT) reveal significant temporal and spatial variations. Our findings suggest that both overestimation of Envisat sea ice freeboard, potentially caused by radar backscatter originating from inside the snow layer, and the AMSR-E snow depth biases and sea ice density uncertainties can possibly account for the differences between Envisat and ICESat SIT.
Marcello Vichi
The Cryosphere, 16, 4087–4106, https://doi.org/10.5194/tc-16-4087-2022, https://doi.org/10.5194/tc-16-4087-2022, 2022
Short summary
Short summary
The marginal ice zone (MIZ) in the Antarctic is the largest in the world ocean. Antarctic sea ice has large year-to-year changes, and the MIZ represents its most variable component. Processes typical of the MIZ have also been observed in fully ice-covered ocean and are not captured by existing diagnostics. A new statistical method has been shown to address previous limitations in assessing the seasonal cycle of MIZ extent and to provide a probability map of sea ice state in the Southern Ocean.
Sebastian Skatulla, Riesna R. Audh, Andrea Cook, Ehlke Hepworth, Siobhan Johnson, Doru C. Lupascu, Keith MacHutchon, Rutger Marquart, Tommy Mielke, Emmanuel Omatuku, Felix Paul, Tokoloho Rampai, Jörg Schröder, Carina Schwarz, and Marcello Vichi
The Cryosphere, 16, 2899–2925, https://doi.org/10.5194/tc-16-2899-2022, https://doi.org/10.5194/tc-16-2899-2022, 2022
Short summary
Short summary
First-year sea ice has been sampled at the advancing outer edge of the Antarctic marginal ice zone (MIZ) along the Good Hope Line. Ice cores were extracted from five pancake ice floes and subsequently analysed for their physical and mechanical properties. Of particular interest was elucidating the transition of ice composition within the MIZ in terms of differences in mechanical stiffness and strength properties as linked to physical and textural characteristics at early-stage ice formation.
Jill Brouwer, Alexander D. Fraser, Damian J. Murphy, Pat Wongpan, Alberto Alberello, Alison Kohout, Christopher Horvat, Simon Wotherspoon, Robert A. Massom, Jessica Cartwright, and Guy D. Williams
The Cryosphere, 16, 2325–2353, https://doi.org/10.5194/tc-16-2325-2022, https://doi.org/10.5194/tc-16-2325-2022, 2022
Short summary
Short summary
The marginal ice zone is the region where ocean waves interact with sea ice. Although this important region influences many sea ice, ocean and biological processes, it has been difficult to accurately measure on a large scale from satellite instruments. We present new techniques for measuring wave attenuation using the NASA ICESat-2 laser altimeter. By measuring how waves attenuate within the sea ice, we show that the marginal ice zone may be far wider than previously realised.
Qingkai Wang, Zhaoquan Li, Peng Lu, Yigang Xu, and Zhijun Li
The Cryosphere, 16, 1941–1961, https://doi.org/10.5194/tc-16-1941-2022, https://doi.org/10.5194/tc-16-1941-2022, 2022
Short summary
Short summary
A large area of landfast sea ice exists in the Prydz Bay, and it is always a safety concern to transport cargos on ice to the research stations. Knowing the mechanical properties of sea ice is helpful to solve the issue; however, these data are rarely reported in this region. We explore the effects of sea ice physical properties on the flexural strength, effective elastic modulus, and uniaxial compressive strength, which gives new insights into assessing the bearing capacity of landfast sea ice.
Fengguan Gu, Qinghua Yang, Frank Kauker, Changwei Liu, Guanghua Hao, Chao-Yuan Yang, Jiping Liu, Petra Heil, Xuewei Li, and Bo Han
The Cryosphere, 16, 1873–1887, https://doi.org/10.5194/tc-16-1873-2022, https://doi.org/10.5194/tc-16-1873-2022, 2022
Short summary
Short summary
The sea ice thickness was simulated by a single-column model and compared with in situ observations obtained off Zhongshan Station in the Antarctic. It is shown that the unrealistic precipitation in the atmospheric forcing data leads to the largest bias in sea ice thickness and snow depth modeling. In addition, the increasing snow depth gradually inhibits the growth of sea ice associated with thermal blanketing by the snow.
Sutao Liao, Hao Luo, Jinfei Wang, Qian Shi, Jinlun Zhang, and Qinghua Yang
The Cryosphere, 16, 1807–1819, https://doi.org/10.5194/tc-16-1807-2022, https://doi.org/10.5194/tc-16-1807-2022, 2022
Short summary
Short summary
The Global Ice-Ocean Modeling and Assimilation System (GIOMAS) can basically reproduce the observed variability in Antarctic sea-ice volume and its changes in the trend before and after 2013, and it underestimates Antarctic sea-ice thickness (SIT) especially in deformed ice zones. Assimilating additional sea-ice observations with advanced assimilation methods may result in a more accurate estimation of Antarctic SIT.
Tian R. Tian, Alexander D. Fraser, Noriaki Kimura, Chen Zhao, and Petra Heil
The Cryosphere, 16, 1299–1314, https://doi.org/10.5194/tc-16-1299-2022, https://doi.org/10.5194/tc-16-1299-2022, 2022
Short summary
Short summary
This study presents a comprehensive validation of a satellite observational sea ice motion product in Antarctica by using drifting buoys. Two problems existing in this sea ice motion product have been noticed. After rectifying problems, we use it to investigate the impacts of satellite observational configuration and timescale on Antarctic sea ice kinematics and suggest the future improvement of satellite missions specifically designed for retrieval of sea ice motion.
Alexander Mchedlishvili, Gunnar Spreen, Christian Melsheimer, and Marcus Huntemann
The Cryosphere, 16, 471–487, https://doi.org/10.5194/tc-16-471-2022, https://doi.org/10.5194/tc-16-471-2022, 2022
Short summary
Short summary
In this paper we show that the activity leading to the open-ocean polynyas near the Maud Rise seamount that have occurred repeatedly from 1974–1976 as well as 2016–2017 does not simply stop for polynya-free years. Using apparent sea ice thickness retrieval, we have identified anomalies where there is thinning of sea ice on a scale that is comparable to that of the polynya events of 2016–2017. These anomalies took place in 2010, 2013, 2014 and 2018.
Alexander D. Fraser, Robert A. Massom, Mark S. Handcock, Phillip Reid, Kay I. Ohshima, Marilyn N. Raphael, Jessica Cartwright, Andrew R. Klekociuk, Zhaohui Wang, and Richard Porter-Smith
The Cryosphere, 15, 5061–5077, https://doi.org/10.5194/tc-15-5061-2021, https://doi.org/10.5194/tc-15-5061-2021, 2021
Short summary
Short summary
Landfast ice is sea ice that remains stationary by attaching to Antarctica's coastline and grounded icebergs. Although a variable feature, landfast ice exerts influence on key coastal processes involving pack ice, the ice sheet, ocean, and atmosphere and is of ecological importance. We present a first analysis of change in landfast ice over an 18-year period and quantify trends (−0.19 ± 0.18 % yr−1). This analysis forms a reference of landfast-ice extent and variability for use in other studies.
Greg H. Leonard, Kate E. Turner, Maren E. Richter, Maddy S. Whittaker, and Inga J. Smith
The Cryosphere, 15, 4999–5006, https://doi.org/10.5194/tc-15-4999-2021, https://doi.org/10.5194/tc-15-4999-2021, 2021
Short summary
Short summary
McMurdo Sound sea ice can generally be partitioned into two regimes: a stable fast-ice cover forming south of approximately 77.6° S and a more dynamic region north of 77.6° S that is regularly impacted by polynyas. In 2019, a stable fast-ice cover formed unusually late due to repeated break-out events. This subsequently affected sea-ice operations in the 2019/20 field season. We analysed the 2019 sea-ice conditions and found a strong correlation with unusually large southerly wind events.
Martin Mohrmann, Céline Heuzé, and Sebastiaan Swart
The Cryosphere, 15, 4281–4313, https://doi.org/10.5194/tc-15-4281-2021, https://doi.org/10.5194/tc-15-4281-2021, 2021
Short summary
Short summary
Polynyas are large open-water areas within the sea ice. We developed a method to estimate their area, distribution and frequency for the Southern Ocean in climate models and observations. All models have polynyas along the coast but few do so in the open ocean, in contrast to observations. We examine potential atmospheric and oceanic drivers of open-water polynyas and discuss recently implemented schemes that may have improved some models' polynya representation.
Christian Haas, Patricia J. Langhorne, Wolfgang Rack, Greg H. Leonard, Gemma M. Brett, Daniel Price, Justin F. Beckers, and Alex J. Gough
The Cryosphere, 15, 247–264, https://doi.org/10.5194/tc-15-247-2021, https://doi.org/10.5194/tc-15-247-2021, 2021
Short summary
Short summary
We developed a method to remotely detect proxy signals of Antarctic ice shelf melt under adjacent sea ice. It is based on aircraft surveys with electromagnetic induction sounding. We found year-to-year variability of the ice shelf melt proxy in McMurdo Sound and spatial fine structure that support assumptions about the melt of the McMurdo Ice Shelf. With this method it will be possible to map and detect locations of intense ice shelf melt along the coast of Antarctica.
Qian Shi, Qinghua Yang, Longjiang Mu, Jinfei Wang, François Massonnet, and Matthew R. Mazloff
The Cryosphere, 15, 31–47, https://doi.org/10.5194/tc-15-31-2021, https://doi.org/10.5194/tc-15-31-2021, 2021
Short summary
Short summary
The ice thickness from four state-of-the-art reanalyses (GECCO2, SOSE, NEMO-EnKF and GIOMAS) are evaluated against that from remote sensing and in situ observations in the Weddell Sea, Antarctica. Most of the reanalyses can reproduce ice thickness in the central and eastern Weddell Sea but failed to capture the thick and deformed ice in the western Weddell Sea. These results demonstrate the possibilities and limitations of using current sea-ice reanalysis in Antarctic climate research.
Sahra Kacimi and Ron Kwok
The Cryosphere, 14, 4453–4474, https://doi.org/10.5194/tc-14-4453-2020, https://doi.org/10.5194/tc-14-4453-2020, 2020
Short summary
Short summary
Our current understanding of Antarctic ice cover is largely informed by ice extent measurements from passive microwave sensors. These records, while useful, provide a limited picture of how the ice is responding to climate change. In this paper, we combine measurements from ICESat-2 and CryoSat-2 missions to assess snow depth and ice thickness of the Antarctic ice cover over an 8-month period (April through November 2019). The potential impact of salinity in the snow layer is discussed.
Stefanie Arndt, Mario Hoppmann, Holger Schmithüsen, Alexander D. Fraser, and Marcel Nicolaus
The Cryosphere, 14, 2775–2793, https://doi.org/10.5194/tc-14-2775-2020, https://doi.org/10.5194/tc-14-2775-2020, 2020
Hailong Wang, Jeremy G. Fyke, Jan T. M. Lenaerts, Jesse M. Nusbaumer, Hansi Singh, David Noone, Philip J. Rasch, and Rudong Zhang
The Cryosphere, 14, 429–444, https://doi.org/10.5194/tc-14-429-2020, https://doi.org/10.5194/tc-14-429-2020, 2020
Short summary
Short summary
Using a climate model with unique water source tagging, we found that sea-ice anomalies in the Southern Ocean and accompanying SST changes have a significant influence on Antarctic precipitation and its source attribution through their direct impact on moisture sources and indirect impact on moisture transport. This study also highlights the importance of atmospheric dynamics in affecting the thermodynamic impact of sea-ice anomalies on regional Antarctic precipitation.
Steven W. Fons and Nathan T. Kurtz
The Cryosphere, 13, 861–878, https://doi.org/10.5194/tc-13-861-2019, https://doi.org/10.5194/tc-13-861-2019, 2019
Short summary
Short summary
A method to measure the snow freeboard of Antarctic sea ice from CryoSat-2 data is developed. Through comparisons with data from airborne campaigns and another satellite mission, we find that this method can reasonably retrieve snow freeboard across the Antarctic and shows promise in retrieving snow depth in certain locations. Snow freeboard data from CryoSat-2 are important because they enable the calculation of sea ice thickness and help to better understand snow depth on Antarctic sea ice.
Ron Kwok and Sahra Kacimi
The Cryosphere, 12, 2789–2801, https://doi.org/10.5194/tc-12-2789-2018, https://doi.org/10.5194/tc-12-2789-2018, 2018
Short summary
Short summary
The variability of snow depth and ice thickness in three years of repeat surveys of an IceBridge (OIB) transect across the Weddell Sea is examined. Retrieved thicknesses suggest a highly variable but broadly thicker ice cover compared to that inferred from drilling and ship-based measurements. The use of lidar and radar altimeters to estimate snow depth for thickness calculations is analyzed, and the need for better characterization of biases due to radar penetration effects is highlighted.
Cited articles
Ackley, S., Perovich, D., Maksym, T., Weissling, B., and Xie, H.: Surface flooding of Antarctic summer sea ice, Ann. Glaciol., 61, 117–126, https://doi.org/10.1017/aog.2020.22, 2020. a
Alaska Satellite Facility: ALOS Phased Array type L-band Synthetic Aperture Radar, Alaska Satellite Facility [data set], https://doi.org/10.5067/NXY378J3DFZQ, 2010. a
Al Bitar, A., Mialon, A., Kerr, Y. H., Cabot, F., Richaume, P., Jacquette, E., Quesney, A., Mahmoodi, A., Tarot, S., Parrens, M., Al-Yaari, A., Pellarin, T., Rodriguez-Fernandez, N., and Wigneron, J.-P.: The global SMOS Level 3 daily soil moisture and brightness temperature maps, Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, 2017. a
Arndt, S.: Sensitivity of Sea Ice Growth to Snow Properties in Opposing Regions of the Weddell Sea in Late Summer, Geophys. Res. Lett., 49, e2022GL099653, https://doi.org/10.1029/2022GL099653, 2022. a
Arndt, S. and Paul, S.: Variability of winter snow properties on different spatial scales in the Weddell Sea, J. Geophys. Res.-Oceans, 123, 8862–8876, https://doi.org/10.1029/2018JC014447, 2018. a, b
Arndt, S., Willmes, S., Dierking, W., and Nicolaus, M.: Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations, J. Geophys. Res.-Oceans, 121, 5916–5930, https://doi.org/10.1002/2015JC011504, 2016. a
Arndt, S., Meiners, K. M., Ricker, R., Krumpen, T., Katlein, C., and Nicolaus, M.: Influence of snow depth and surface flooding on light transmission through Antarctic pack ice, J. Geophys. Res.-Oceans, 122, 2108–2119, https://doi.org/10.1002/2016JC012325, 2017. a
Brodzik, M., Long, D., and Hardman, M.: SMAP Radiometer Twice-Daily rSIR-Enhanced EASE-Grid 2.0 Brightness Temperatures, Version 2, Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/YAMX52BXFL10, 2021. a, b
Burke, W., Schmugge, T., and Paris, J.: Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations, J. Geophys. Res.-Oceans, 84, 287–294, https://doi.org/10.1029/JC084iC01p00287, 1979. a
Calonne, N., Flin, F., Morin, S., Lesaffre, B., du Roscoat, S. R., and Geindreau, C.: Numerical and experimental investigations of the effective thermal conductivity of snow, Geophys. Res. Lett., 38, L23501, https://doi.org/10.1029/2011GL049234, 2011. a
Cavalieri, D. J., Markus, T., and Comiso, J. C.: AMSR-E/Aqua Daily L3 12.5 km Brightness Temperature, Sea Ice Concentration, & Snow Depth Polar Grids, Version 3, Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/AMSR-E/AE_SI12.003, 2014. a
Cox, G. F. and Weeks, W. F.: Equations for determining the gas and brine volumes in sea-ice samples, J. Glaciol., 29, 306–316, https://doi.org/10.3189/S0022143000008364, 1983. a
Cox, G. F. N. and Weeks, W. F.: Brine Drainage and Initial Salt Entrapment in Sodium Chloride Ice, U.S. Army Cold Regions Research and Engineering Laboratory. Research Report 345, http://hdl.handle.net/11681/5820 (last access: 19 September 2024), 1975. a
Deming, J., Ewert, M., Bowman, J., Colangelo-Lillis, J., and Carpenter, S.: Brine-Wetted Snow on the Surface of Sea Ice: A Potentially Vast and Overlooked Microbial Habitat, in: AGU Fall Meeting Abstracts, vol. 2010, pp. C43D–0575, https://ui.adsabs.harvard.edu/abs/2010AGUFM.C43D0575D/abstract (last access: 19 September 2024), 2010. a
Drinkwater, M. R. and Crocker, G.: Modelling Changes in Scattering Properties of the Dielectric and Young Snow-Covered Sea Ice at GHz Requencies, J. Glaciol., 34, 274–282, https://doi.org/10.3189/S0022143000007012, 1988. a
Fuller, M. C., Isleifson, D., Barber, D., and Yackel, J.: A framework for coupling thermodynamic and backscatter models toward the estimation of Arctic sea ice, snow on sea ice, and snow brine volume, in: 2021 IEEE 19th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), pp. 1–2, IEEE, https://doi.org/10.1109/ANTEM51107.2021.9518905, 2021. a
Geldsetzer, T., Langlois, A., and Yackel, J.: Dielectric properties of brine-wetted snow on first-year sea ice, Cold Reg. Sci. Technol., 58, 47–56, https://doi.org/10.1016/j.coldregions.2009.03.009, 2009. a, b, c
Giles, K. A., Laxon, S. W., and Worby, A. P.: Antarctic sea ice elevation from satellite radar altimetry, Geophys. Res. Lett., 35, L03503, https://doi.org/10.1029/2007GL031572, 2008. a
Gusmeroli, A. and Grosse, G.: Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska, The Cryosphere, 6, 1435–1443, https://doi.org/10.5194/tc-6-1435-2012, 2012. a
Heil, P., Massom, R., Stevens, R., Steer, A., and Hutchings, J.: Ice-physics transect data obtained during the SIPEX II voyage of the Aurora Australis, 2012, Ver. 1, Australian Antarctic Data Centre [data set], https://doi.org/10.4225/15/5a8f94c228afb, 2018. a, b
Huntemann, M., Patilea, C., and Heygster, G.: Thickness of thin sea ice retrieved from SMOS and SMAP, in: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5248–5251, IEEE, https://doi.org/10.1109/IGARSS.2016.7730367, 2016. a
Jackson, K., Wilkinson, J., Maksym, T., Meldrum, D., Beckers, J., Haas, C., and Mackenzie, D.: A novel and low-cost sea ice mass balance buoy, J. Atmos. Ocean. Tech., 30, 2676–2688, https://doi.org/10.1175/JTECH-D-13-00058.1, 2013. a
Ji, Q., Pang, X., Zhao, X., and Lei, R.: Snow features on sea ice in the western Arctic Ocean during summer 2016, Int. J. Digit. Earth, 14, 1397–1410, https://doi.org/10.1080/17538947.2021.1966524, 2021. a
Jiménez, C., Tenerelli, J., Prigent, C., Kilic, L., Lavergne, T., Skarpalezos, S., Hoeyer, J. L., Reul, N., and Donlon, C.: Ocean and Sea Ice Retrievals From an End-To-End Simulation of the Copernicus Imaging Microwave Radiometer (CIMR) 1.4–36.5 GHz Measurements, J. Geophys. Res.-Oceans, 126, e2021JC017610, https://doi.org/10.1029/2021JC017610, 2021. a
Jutila, A., King, J., Paden, J., Ricker, R., Hendricks, S., Polashenski, C., Helm, V., Binder, T., and Haas, C.: High-resolution snow depth on arctic sea ice from low-altitude airborne microwave radar data, IEEE T. Geosci. Remote, 60, 1–16, https://doi.org/10.1109/TGRS.2021.3063756, 2021. a
Jutras, M., Vancoppenolle, M., Lourenço, A., Vivier, F., Carnat, G., Madec, G., Rousset, C., and Tison, J.-L.: Thermodynamics of slush and snow–ice formation in the Antarctic sea-ice zone, Deep-Sea Res. Pt. II, 131, 75–83, https://doi.org/10.1016/j.dsr2.2016.03.008, 2016. a, b
Kacimi, S. and Kwok, R.: Arctic snow depth, ice thickness and volume from ICESat-2 and CryoSat-2: 2018-2021, Geophys. Res. Lett., 49, e2021GL097448, https://doi.org/10.1029/2021GL097448, 2022. a
Kaleschke, L., Maaß, N., Haas, C., Hendricks, S., Heygster, G., and Tonboe, R. T.: A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice, The Cryosphere, 4, 583–592, https://doi.org/10.5194/tc-4-583-2010, 2010. a
Kaleschke, L., Tian-Kunze, X., Maaß, N., Mäkynen, M., and Drusch, M.: Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period, Geophys. Res. Lett., 39, L05501, https://doi.org/10.1029/2012GL050916, 2012. a
Kaleschke, L., Tian-Kunze, X., Maaß, N., Beitsch, A., Wernecke, A., Miernecki, M., Müller, G., Fock, B. H., Gierisch, A. M., Schlünzen, K. H., Pohlmann, T., Dobrynin, M., Hendricks, S., Asseng, J., Gerdes, R., Jochmann, P., Reimer, N., Holfort, J., Melsheimer, C., Heygster, G., Spreen, G., Gerland, S., King, J., Skou, N., Schmidl Søbjærg, S., Haas, C., Richter, F., and Casal, T.: SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone, Remote Sens. Environ., 180, 264–273, https://doi.org/10.1016/j.rse.2016.03.009, 2016. a
Kern, S.: ESA-CCI_Phase2_Standardized_Manual_Visual_Ship-Based_SeaIceObservations_v01, World Data Center for Climate [data set], https://doi.org/10.26050/WDCC/ESACCIPSMVSBSIO, 2019. a
Kern, S.: ESA-CCI_Phase2_Standardized_Manual_Visual_Ship-Based_SeaIceObservations_v02, World Data Center for Climate (WDCC) at DKRZ [data set], https://doi.org/10.26050/WDCC/ESACCIPSMVSBSIOV2, 2020. a
Kerr, Y. H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.-J., Font, J., Reul, N., Gruhier, C., Juglea, S. E., Drinkwater, M. R., Hahne, A., Martín-Neira, M., and Mecklenburg, S.: The SMOS mission: New tool for monitoring key elements ofthe global water cycle, Proc. IEEE, 98, 666–687, https://doi.org/10.1109/JPROC.2010.2043032, 2010. a
Kilic, L., Tonboe, R. T., Prigent, C., and Heygster, G.: Estimating the snow depth, the snow–ice interface temperature, and the effective temperature of Arctic sea ice using Advanced Microwave Scanning Radiometer 2 and ice mass balance buoy data, The Cryosphere, 13, 1283–1296, https://doi.org/10.5194/tc-13-1283-2019, 2019. a
Kilic, L., Prigent, C., Aires, F., Heygster, G., Pellet, V., and Jimenez, C.: Ice concentration retrieval from the analysis of microwaves: A new methodology designed for the copernicus imaging microwave radiometer, Remote Sens., 12, 1060, https://doi.org/10.3390/rs12071060, 2020. a
King, J., Brady, M., and Newman, T.: kingjml/pySnowRadar: Updated IEEE TGRS Submission, Zenodo [code], https://doi.org/10.5281/zenodo.4071947, 2020a. a
King, J., Howell, S., Brady, M., Toose, P., Derksen, C., Haas, C., and Beckers, J.: Local-scale variability of snow density on Arctic sea ice, The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, 2020b. a
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 reanalysis: General specifications and basic characteristics, J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015. a
Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P., Lindsay, R., Onana, V. D., Panzer, B., and Sonntag, J. G.: Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data, The Cryosphere, 7, 1035–1056, https://doi.org/10.5194/tc-7-1035-2013, 2013. a
Kurtz, N., Studinger, M., Harbeck, J., Onana, V., and Yi., D.: IceBridge L4 Sea Ice Freeboard, Snow Depth, and Thickness, Version 1, Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/G519SHCKWQV6, 2015. a, b
Kwok, R. and Kacimi, S.: Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2, The Cryosphere, 12, 2789–2801, https://doi.org/10.5194/tc-12-2789-2018, 2018. a, b
Kwok, R., Cunningham, G. F., Manizade, S., and Krabill, W.: Arctic sea ice freeboard from IceBridge acquisitions in 2009: Estimates and comparisons with ICESat, J. Geophys. Res.-Oceans, 117, C02018, https://doi.org/10.1029/2011JC007654, 2012. a
Kwok, R., Kurtz, N. T., Brucker, L., Ivanoff, A., Newman, T., Farrell, S. L., King, J., Howell, S., Webster, M. A., Paden, J., Leuschen, C., MacGregor, J. A., Richter-Menge, J., Harbeck, J., and Tschudi, M.: Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge, The Cryosphere, 11, 2571–2593, https://doi.org/10.5194/tc-11-2571-2017, 2017. a
Lavergne, T. and Down, E.: A climate data record of year-round global sea-ice drift from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF), Earth Syst. Sci. Data, 15, 5807–5834, https://doi.org/10.5194/essd-15-5807-2023, 2023. a
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40, 732–737, https://doi.org/10.1002/grl.50193, 2013. a
Lecomte, O., Fichefet, T., Vancoppenolle, M., Dominé, F., Massonnet, F., Mathiot, P., Morin, S., and Barriat, P.-Y.: On the formulation of snow thermal conductivity in large-scale sea ice models, J. Adv. Model. Earth Sy., 5, 542–557, https://doi.org/10.1002/jame.20039, 2013. a
Lemke, P.: The expedition of the research vessel Polarstern to the Antarctic in 2013 (ANT-XXIX/6), TIB [data set], https://doi.org/10.2312/BzPM_0679_2014, 2014. a, b
Leppäranta, M. and Manninen, T.: The brine and gas content of sea ice with attention to low salinities and high temperatures, http://hdl.handle.net/1834/23905 (last access: 19 September 2024), 1988. a
Lewis, M., Tison, J.-L., Weissling, B., Delille, B., Ackley, S., Brabant, F., and Xie, H.: Sea ice and snow cover characteristics during the winter–spring transition in the Bellingshausen Sea: An overview of SIMBA 2007, Deep-Sea Res. Pt. II, 58, 1019–1038, https://doi.org/10.1109/TGRS.2006.883134, 2011. a
Li, N., Lei, R., and Li, B.: Temperature and mass balance measurements from sea ice mass balance buoy ZS2009, deployed on landfast ice of east Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950178, 2022a. a
Li, N., Lei, R., and Li, B.: Temperature and mass balance measurements from sea ice mass balance buoy ZS2010, deployed on landfast ice of east Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950181, 2022b. a
Li, N., Lei, R., and Li, B.: Temperature and heating induced temperature difference measurements from SIMBA-type sea ice mass balance buoy ZS2013a, deployed on landfast ice in Prydz Bay, East Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950095, 2022c. a
Li, N., Lei, R., and Li, B.: Temperature and heating induced temperature difference measurements from SIMBA-type sea ice mass balance buoy ZS2013b, deployed on landfast ice in Prydz Bay, East Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950126, 2022d. a
Li, N., Lei, R., and Li, B.: Temperature and heating induced temperature difference measurements from SIMBA-type sea ice mass balance buoy ZS2014, deployed on landfast ice in Prydz Bay, East Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950151, 2022e. a
Li, N., Lei, R., and Li, B.: Temperature and heating induced temperature difference measurements from SIMBA-type sea ice mass balance buoy ZS2015, deployed on landfast ice in Prydz Bay, East Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950068, 2022f. a
Li, N., Lei, R., and Li, B.: Temperature and heating induced temperature difference measurements from SIMBA-type sea ice mass balance buoy DS2014, deployed on landfast ice in Prydz Bay, East Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950086, 2022g. a
Li, N., Lei, R., and Li, B.: Temperature and heating induced temperature difference measurements from SIMBA-type sea ice mass balance buoy DS2015, deployed on landfast ice in Prydz Bay, East Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950131, 2022h. a
Li, N., Lei, R., and Li, B.: Temperature and heating induced temperature difference measurements from SIMBA-type sea ice mass balance buoy DS2016, deployed on landfast ice in Prydz Bay, East Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950044, 2022i. a
Li, N., Lei, R., and Li, B.: Temperature and heating induced temperature difference measurements from SIMBA-type sea ice mass balance buoy DS2018a, deployed on landfast ice in Prydz Bay, East Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950141, 2022j. a
Li, N., Lei, R., and Li, B.: Temperature and heating induced temperature difference measurements from SIMBA-type sea ice mass balance buoy DS2018b, deployed on landfast ice in Prydz Bay, East Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950121, 2022k. a
Li, N., Lei, R., Heil, P., Cheng, B., Ding, M., Tian, Z., and Li, B.: Seasonal and interannual variability of the landfast ice mass balance between 2009 and 2018 in Prydz Bay, East Antarctica, The Cryosphere, 17, 917–937, https://doi.org/10.5194/tc-17-917-2023, 2023. a
Ludwig, V., Spreen, G., Haas, C., Istomina, L., Kauker, F., and Murashkin, D.: The 2018 North Greenland polynya observed by a newly introduced merged optical and passive microwave sea-ice concentration dataset, The Cryosphere, 13, 2051–2073, https://doi.org/10.5194/tc-13-2051-2019, 2019. a
Lytle, V. and Ackley, S.: Snow-ice growth: a fresh-water flux inhibiting deep convection in the Weddell Sea, Antarctica, Ann. Glaciol., 33, 45–50, https://doi.org/10.3189/172756401781818752, 2001. a
Mahmud, M. S., Geldsetzer, T., Howell, S. E., Yackel, J. J., Nandan, V., and Scharien, R. K.: Incidence angle dependence of HH-polarized C-and L-band wintertime backscatter over Arctic sea ice, IEEE T. Geosci. Remote, 56, 6686–6698, https://doi.org/10.1109/TGRS.2018.2841343, 2018. a
Mahmud, M. S., Nandan, V., Howell, S. E., Geldsetzer, T., and Yackel, J.: Seasonal evolution of L-band SAR backscatter over landfast Arctic sea ice, Remote Sens. Environ., 251, 112049, https://doi.org/10.1016/j.rse.2020.112049, 2020. a
Maksym, T. and Jeffries, M. O.: A one-dimensional percolation model of flooding and snow ice formation on Antarctic sea ice, J. Geophys. Res.-Oceans, 105, 26313–26331, https://doi.org/10.1029/2000JC900130, 2000. a, b
Maksym, T. and Markus, T.: Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth, J. Geophys. Res.-Oceans, 113, C02S12, https://doi.org/10.1029/2006JC004085, 2008. a
Mallett, R. D. C., Stroeve, J. C., Tsamados, M., Landy, J. C., Willatt, R., Nandan, V., and Liston, G. E.: Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover, The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, 2021. a
Markus, T. and Cavalieri, D. J.: Snow depth distribution over sea ice in the Southern Ocean from satellite passive microwave data, Antarctic sea ice: physical processes, interactions and variability, 74, 19–39, https://doi.org/10.1029/AR074p0019, 1998. a
Markus, T. and Cavalieri, D. J.: An enhancement of the NASA Team sea ice algorithm, IEEE T. Geosci. Remote, 38, 1387–1398, https://doi.org/10.1109/36.843033, 2000. a, b
Maaß, N.: Remote sensing of sea ice thickness using SMOS data, Ph.D. thesis, University of Hamburg Hamburg, https://pure.mpg.de/rest/items/item_1737721/component/file_1737720/content (last access: 19 September 2024), 2013. a
Maaß, N., Kaleschke, L., Tian-Kunze, X., and Drusch, M.: Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data, The Cryosphere, 7, 1971–1989, https://doi.org/10.5194/tc-7-1971-2013, 2013. a, b, c
Massom, R., Lytle, V., Worby, A., and Allison, I.: Winter snow cover variability on East Antarctic sea ice, J. Geophys. Res.-Oceans, 103, 24837–24855, https://doi.org/10.1029/98JC01617, 1998. a, b
Massom, R. A., Eicken, H., Hass, C., Jeffries, M. O., Drinkwater, M. R., Sturm, M., Worby, A. P., Wu, X., Lytle, V. I., Ushio, S., Morris, K., Reid, P. A., Warren, S. G., and Allison, I.: Snow on Antarctic sea ice, Rev. Geophys., 39, 413–445, https://doi.org/10.1029/2000RG000085, 2001. a, b, c, d, e
Massonnet, F., Barthélemy, A., Worou, K., Fichefet, T., Vancoppenolle, M., Rousset, C., and Moreno-Chamarro, E.: On the discretization of the ice thickness distribution in the NEMO3.6-LIM3 global ocean–sea ice model, Geosci. Model Dev., 12, 3745–3758, https://doi.org/10.5194/gmd-12-3745-2019, 2019. a
Mätzler, C.: Microwave permittivity of dry snow, IEEE T. Geosci. Remote, 34, 573–581, https://doi.org/10.1109/36.485133, 1996. a
Mätzler, C.: Microwave properties of ice and snow, in: Solar System Ices: Based on Reviews Presented at the International Symposium “Solar System Ices”, 27–30 March 1995, Toulouse, France, pp. 241–257, Springer, https://doi.org/10.1007/978-94-011-5252-5_10, 1998. a
Mätzler, C. (Ed.): Thermal microwave radiation: applications for remote sensing, in: Electromagnetic Waves, Institution of Engineering and Technology, https://doi.org/10.1049/PBEW052E, 2006. a
Mätzler, C. and Wiesmann, A.: Extension of the microwave emission model of layered snowpacks to coarse-grained snow, Remote Sens. Environ., 70, 317–325, https://doi.org/10.1016/S0034-4257(99)00047-4, 1999. a
Matzler, C., Schanda, E., and Good, W.: Towards the definition of optimum sensor specifications for microwave remote sensing of snow, IEEE T. Geosci. Remote, GE-20, 57–66, https://doi.org/10.1109/TGRS.1982.4307521, 1982. a
Melsheimer, C., Spreen, G., Ye, Y., and Shokr, M.: First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data, The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023, 2023. a
Merkouriadi, I., Cheng, B., Graham, R. M., Rösel, A., and Granskog, M. A.: Critical role of snow on sea ice growth in the Atlantic sector of the Arctic Ocean, Geophys. Res. Lett., 44, 10–479, https://doi.org/10.1002/2017GL075494, 2017. a
Morey, R. M., Kovacs, A., and Cox, G. F.: Electromagnetic properties of sea ice, Cold Reg. Sci. Technol., 9, 53–75, https://doi.org/10.1016/0165-232X(84)90048-X, 1984. a
Nandan, V., Geldsetzer, T., Yackel, J., Mahmud, M., Scharien, R., Howell, S., King, J., Ricker, R., and Else, B.: Effect of snow salinity on CryoSat-2 Arctic first-year sea ice freeboard measurements, Geophys. Res. Lett., 44, 10–419, https://doi.org/10.1002/2017GL074506, 2017. a, b
Nandan, V., Scharien, R. K., Geldsetzer, T., Kwok, R., Yackel, J. J., Mahmud, M. S., Rösel, A., Tonboe, R., Granskog, M., Willatt, R., Stroeve, J., Nomura, D., and Frey, M.: Snow Property Controls on Modeled Ku-Band Altimeter Estimates of First-Year Sea Ice Thickness: Case Studies From the Canadian and Norwegian Arctic, IEEE J. Sel. Top. Appl. Earth Obs., 13, 1082–1096, https://doi.org/10.1109/JSTARS.2020.2966432, 2020. a, b, c
Newman, T., Farrell, S. L., Richter-Menge, J., Connor, L. N., Kurtz, N. T., Elder, B. C., and McAdoo, D.: Assessment of radar-derived snow depth over Arctic sea ice, J. Geophys. Res.-Oceans, 119, 8578–8602, https://doi.org/10.1002/2014JC010284, 2014. a
Nicolaus, M., Haas, C., and Willmes, S.: Evolution of first-year and second-year snow properties on sea ice in the Weddell Sea during spring-summer transition, J. Geophys. Res.-Atmos., 114, D17109, https://doi.org/10.1029/2008JD011227, 2009. a
Nicolaus, M., Hoppmann, M., Arndt, S., Hendricks, S., Katlein, C., Nicolaus, A., Rossmann, L., Schiller, M., and Schwegmann, S.: Snow depth and air temperature seasonality on sea ice derived from snow buoy measurements, Front. Marine Sci., 8, 655446, https://doi.org/10.3389/fmars.2021.655446, 2021. a
Nomura, D., Aoki, S., Simizu, D., and Iida, T.: Influence of sea ice crack formation on the spatial distribution of nutrients and microalgae in flooded Antarctic multiyear ice, J. Geophys. Res.-Oceans, 123, 939–951, https://doi.org/10.1002/2017JC012941, 2018. a
Paul, S., Arndt, S., and Stoll, N.: Snow density measurements at ice stations during POLARSTERN cruise PS81 (ANT-XXIX/6, AWECS), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.881717, 2017a. a, b, c
Paul, S., Arndt, S., and Stoll, N.: Snow salinity measurements at ice stations during POLARSTERN cruise PS81 (ANT-XXIX/6, AWECS), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.881714, 2017b. a, b, c
Paul, S., Arndt, S., and Stoll, N.: Snow grain size and type measurements at ice stations during POLARSTERN cruise PS81 (ANT-XXIX/6, AWECS), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.881713, 2017c. a
Picard, G. and Fily, M.: Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes in acquisition hours, Remote Sens. Environ., 104, 325–336, https://doi.org/10.1016/j.rse.2006.05.010, 2006. a
Picard, G., Sandells, M., and Löwe, H.: SMRT: an active–passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0), Geosci. Model Dev., 11, 2763–2788, https://doi.org/10.5194/gmd-11-2763-2018, 2018. a, b
Piepmeier, J. R., Focardi, P., Horgan, K. A., Knuble, J., Ehsan, N., Lucey, J., Brambora, C., Brown, P. R., Hoffman, P. J., French, R. T., Mikhaylov, R. L., Kwack, E.-Y., Slimko, E. M., Dawson, D. E., Hudson, D., Peng, J., Mohammed, P. N., De Amici, G., Freedman, A. P., Medeiros, J., Sacks, F., Estep, R., Spencer, M. W., Chen, C. W., Wheeler, K. B., Edelstein, W. N., O'Neill, P. E., and Njoku, E. G.: SMAP L-band microwave radiometer: Instrument design and first year on orbit, IEEE T. Geosci. Remote, 55, 1954–1966, https://doi.org/10.1109/TGRS.2016.2631978, 2017. a
Poe, G., Stogryn, A., and Edgerton, A.: A Study of the Microwave Emission Characteristics of the Sea Ice: Final Technical Report, Report (Aerojet-General Corporation. Aerojet ElectroSystems Company), Aerojet ElectroSystems Company, Aerojet-General Corporation, https://books.google.nl/books?id=Ej5hzwEACAAJ (last access: 19 September 2024), 1972. a
Pouder, E.: CHAPTER 7 – The Thermal and Electrical Properties of Ice, in: The Physics of Ice, edited by: Pouder, E., pp. 116–132, Pergamon, ISBN 978-1-4832-1353-8, https://doi.org/10.1016/B978-1-4832-1353-8.50010-6, 1965. a
Raphael, M. N. and Handcock, M. S.: A new record minimum for Antarctic sea ice, Nat. Rev. Earth Environ., 3, 215–216, https://doi.org/10.1038/s43017-022-00281-0, 2022. a
Rösel, A., Farrell, S. L., Nandan, V., Richter-Menge, J., Spreen, G., Divine, D. V., Steer, A., Gallet, J.-C., and Gerland, S.: Implications of surface flooding on airborne estimates of snow depth on sea ice, The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021, 2021. a
Rostosky, P., Spreen, G., Farrell, S., Heygster, G., Frost, T., and Melsheimer, C.: Snow depth on Arctic sea ice retrieval from passive microwave radiometers – Improvements and extension to lower frequencies, J. Geophys. Res.-Oceans, 123, 7120–7138, https://doi.org/10.1029/2018JC014028, 2018. a
Saloranta, T. M.: Modeling the evolution of snow, snow ice and ice in the Baltic Sea, Tellus A, 52, 93–108, https://doi.org/10.3402/tellusa.v52i1.12255, 2000. a, b
Scarlat, R. C., Spreen, G., Heygster, G., Huntemann, M., Paţilea, C., Pedersen, L. T., and Saldo, R.: Sea ice and atmospheric parameter retrieval from satellite microwave radiometers: Synergy of AMSR2 and SMOS compared with the CIMR candidate mission, J. Geophys. Res.-Oceans, 125, e2019JC015749, https://doi.org/10.1029/2019JC015749, 2020. a
Schmidt, K. and Wauer, J.: Application of the dense medium radiative transfer theory for calculating microwave emissivities of different sea ice types, Int. J. Remote Sens., 20, 3165–3182, https://doi.org/10.1080/014311699211688, 1999. a
Segal, R. A., Scharien, R. K., Cafarella, S., and Tedstone, A.: Characterizing winter landfast sea-ice surface roughness in the Canadian Arctic Archipelago using Sentinel-1 synthetic aperture radar and the Multi-angle Imaging SpectroRadiometer, Ann. Glaciol., 61, 284–298, https://doi.org/10.1017/aog.2020.48, 2020. a
Sihvola, A. H.: Electromagnetic mixing formulas and applications, Iet, 47, https://doi.org/10.1049/PBEW047E, 1999. a
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008. a
Stogryn, A. and Desargant, G.: The dielectric properties of brine in sea ice at microwave frequencies, IEEE Transactions on Antennas and Propagation, 33, 523–532, https://doi.org/10.1109/TAP.1985.1143610, 1985. a, b
Studinger, M., Smith, B. E., Kurtz, N., Petty, A., Sutterley, T., and Tilling, R.: Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models, The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, 2024. a
Sturm, M. and Benson, C. S.: Vapor transport, grain growth and depth-hoar development in the subarctic snow, J. Glaciol., 43, 42–59, https://doi.org/10.3189/S0022143000002793, 1997. a, b, c
Sturm, M. and Massom, R. A.: Snow in the sea ice system: friend or foe?, chap. 3, pp. 65–109, John Wiley & Sons, Ltd, ISBN 9781118778371, https://doi.org/10.1002/9781118778371.ch3, 2017. a, b, c
Sturm, M., Morris, K., and Massom, R.: The Winter Snow Cover of the West Antarctic Pack Ice: Its Spatial and Temporal Variability, https://figshare.utas.edu.au/articles/chapter/The_Winter_Snow_Cover_of_the_West_Antarctic_Pack_Ice_Its_Spatial_and_Temporal_Variability/23122187 (last access: 19 September 2024), 1998. a
Takizawa, T.: Salination of snow on sea ice and formation of snow ice, Ann. Glaciol., 6, 309–310, https://doi.org/10.3189/1985AoG6-1-309-310, 1985. a
Tian-Kunze, X., Kaleschke, L., and Maass, N.: SMOS Daily Polar Gridded Brightness Temperatures, 2010–2019, Digital Media, ICDC, University of Hamburg, Hamburg, Germany [data set], https://www.cen.uni-hamburg.de/en/icdc/data/cryosphere/l3b-smos-tb.html, 2012. a
Tonboe, R., Andersen, S., Toudal, L., and Heygster, G.: Sea ice emission modelling, IET Digital Library, https://doi.org/10.1049/PBEW052E_ch4, 2006. a
Toyota, T., Massom, R., Tateyama, K., Tamura, T., and Fraser, A.: Properties of snow overlying the sea ice off East Antarctica in late winter, 2007, Deep-Sea Res. Pt. II, 58, 1137–1148, https://doi.org/10.1016/j.dsr2.2010.12.002, 2011. a
Toyota, T., Massom, R., Lecomte, O., Nomura, D., Heil, P., Tamura, T., and Fraser, A. D.: On the extraordinary snow on the sea ice off East Antarctica in late winter, 2012, Deep-Sea Res. Pt. II, 131, 53–67, https://doi.org/10.1016/j.dsr2.2016.02.003, 2016. a
Toyota, T., Lecomte, O., Massom, R., Giles, B., and Heil, P.: Ice and snow pit measurements observed during the SIPEX II voyage of the Aurora Australis, 2012, Ver. 1, Australian Antarctic Data Centre [data set], https://doi.org/10.4225/15/59b0c7fd5c76f, 2017. a, b
Tsang, L., Kong, J. A., and Ding, K.-H.: Scattering of electromagnetic waves: theories and applications, John Wiley & Sons, Ltd, ISBN 9780471224280, https://doi.org/10.1002/0471224286, 2000. a
Tucker III, W. B., Perovich, D. K., Gow, A. J., Weeks, W. F., and Drinkwater, M. R.: Physical Properties of Sea Ice Relevant to Remote Sensing, Chap. 2, pp. 9–28, American Geophysical Union (AGU), ISBN 9781118663950, https://doi.org/10.1029/GM068p0009, 1992. a
Ulaby, F., Fung, A., and Moore, R.: Microwave Remote Sensing: Active and Passive. 1 : Microwave remote sensing fundamentals and radiometry, ISBN 0201107600, 9780201107609, 1981. a
Ulaby, F., Long, D., and of Michigan. Press, U.: Microwave Radar and Radiometric Remote Sensing, University of Michigan Press, ISBN 9780472119356, 2014. a
Vancoppenolle, M., Fichefet, T., and Goosse, H.: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 2. Importance of sea ice salinity variations, Ocean Model., 27, 54–69, https://doi.org/10.1016/j.ocemod.2008.11.003, 2009. a
Webster, M., Gerland, S., Holland, M., Hunke, E., Kwok, R., Lecomte, O., Massom, R., Perovich, D., and Sturm, M.: Snow in the changing sea-ice systems, Nat. Clim. Change, 8, 946–953, https://doi.org/10.1038/s41558-018-0286-7, 2018. a, b
Weissling, B., Ackley, S., Wagner, P., and Xie, H.: EISCAM – Digital image acquisition and processing for sea ice parameters from ships, Cold Reg. Sci. Technol., 57, 49–60, https://doi.org/10.1016/j.coldregions.2009.01.001, 2009. a
Wever, N.: One-dimensional and spatially distributed simulations of the effect of snow on mass balance and flooding of Antarctic sea ice, Zenodo [code], https://doi.org/10.5281/zenodo.4717809, 2021. a
Wever, N., Maksym, T., White, S., and Leonard, K. C.: Automatic weather station buoy data PS81/506-1 from Weddell Sea, Antarctica, 2013–2014, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.933415, 2021b. a
Wever, N., Maksym, T., White, S., and Leonard, K. C.: Ice mass balance data PS81/506-1 from Weddell Sea, Antarctica, 2013–2014, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.933417, 2021c. a
Wever, N., Maksym, T., White, S., and Leonard, K. C.: Automatic weather station buoy data PS81/517 from Weddell Sea, Antarctica, 2013, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.933425, 2021d. a
Wever, N., Maksym, T., White, S., and Leonard, K. C.: Ice mass balance data PS81/517 from Weddell Sea, Antarctica, 2013, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.933424, 2021e. a
Willatt, R. C., Giles, K. A., Laxon, S. W., Stone-Drake, L., and Worby, A. P.: Field Investigations of Ku-Band Radar Penetration Into Snow Cover on Antarctic Sea Ice, IEEE T. Geosci. Remote, 48, 365–372, https://doi.org/10.1109/TGRS.2009.2028237, 2010. a
Willmes, S., Nicolaus, M., and Haas, C.: The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer: a model study, The Cryosphere, 8, 891–904, https://doi.org/10.5194/tc-8-891-2014, 2014. a
Worby, A. P. and Ackley, S. F.: Antarctic research yields circumpolar sea ice thickness data, Eos, Transactions American Geophysical Union, 81, 181–185, https://doi.org/10.1029/00EO00124, 2000. a
Worby, A. P., Jeffries, M. O., Weeks, W. F., Morris, K., and Jaña, R.: The thickness distribution of sea ice and snow cover during late winter in the Bellingshausen and Amundsen Seas, Antarctica, J. Geophys. Res.-Oceans, 101, 28441–28455, https://doi.org/10.1029/96JC02737, 1996. a
Worby, A. P., Geiger, C. A., Paget, M. J., Van Woert, M. L., Ackley, S. F., and DeLiberty, T. L.: Thickness distribution of Antarctic sea ice, J. Geophys. Res.-Oceans, 113, C05S92, https://doi.org/10.1029/2007JC004254, 2008. a, b
Xu, S., Zhou, L., Liu, J., Lu, H., and Wang, B.: Data Synergy between Altimetry and L-Band Passive Microwave Remote Sensing for the Retrieval of Sea Ice Parameters—A Theoretical Study of Methodology, Remote Sens., 9, 1079, https://doi.org/10.3390/rs9101079, 2017. a
Zhaka, V., Bridges, R., Riska, K., Hagermann, A., and Cwirzen, A.: Initial snow-ice formation on a laboratory scale, Ann. Glaciol., 64, 77–94, https://doi.org/10.1017/aog.2023.58, 2023. a, b
Zhou, L. and Xu, S.: RAdiative transfer model Developed for Ice and Snow in the L-band (RADIS-L) v1.0., Zenodo [code], https://doi.org/10.5281/zenodo.10003441, 2023. a
Zhou, L., Xu, S., Liu, J., and Wang, B.: On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data, The Cryosphere, 12, 993–1012, https://doi.org/10.5194/tc-12-993-2018, 2018. a
Short summary
Snow over Antarctic sea ice, influenced by highly variable meteorological conditions and heavy snowfall, has a complex stratigraphy and profound impact on the microwave signature. We employ advanced radiation transfer models to analyse the effects of complex snow properties on brightness temperatures over the sea ice in the Southern Ocean. Great potential lies in the understanding of snow processes and the application to satellite retrievals.
Snow over Antarctic sea ice, influenced by highly variable meteorological conditions and heavy...