Articles | Volume 18, issue 8
https://doi.org/10.5194/tc-18-3765-2024
https://doi.org/10.5194/tc-18-3765-2024
Research article
 | 
22 Aug 2024
Research article |  | 22 Aug 2024

Evaluating L-band InSAR snow water equivalent retrievals with repeat ground-penetrating radar and terrestrial lidar surveys in northern Colorado

Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng

Related authors

Spatially distributed snow depth, bulk density, and snow water equivalent from ground-based and airborne sensor integration at Grand Mesa, Colorado, USA
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024,https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Radar-equivalent snowpack: reducing the number of snow layers while retaining their microwave properties and bulk snow mass
Julien Meloche, Nicolas R. Leroux, Benoit Montpetit, Vincent Vionnet, and Chris Derksen
The Cryosphere, 19, 2949–2962, https://doi.org/10.5194/tc-19-2949-2025,https://doi.org/10.5194/tc-19-2949-2025, 2025
Short summary
Evaluating sensitivity of optical snow grain size retrievals to radiative transfer models, shape parameters, and inversion techniques
James W. Dillon, Christopher P. Donahue, Evan N. Schehrer, and Kevin D. Hammonds
The Cryosphere, 19, 2913–2933, https://doi.org/10.5194/tc-19-2913-2025,https://doi.org/10.5194/tc-19-2913-2025, 2025
Short summary
Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Christopher J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
The Cryosphere, 19, 2315–2320, https://doi.org/10.5194/tc-19-2315-2025,https://doi.org/10.5194/tc-19-2315-2025, 2025
Short summary
Evaluation of the Snow Climate Change Initiative (Snow CCI) snow-covered area product within a mountain snow water equivalent reanalysis
Haorui Sun, Yiwen Fang, Steven A. Margulis, Colleen Mortimer, Lawrence Mudryk, and Chris Derksen
The Cryosphere, 19, 2017–2036, https://doi.org/10.5194/tc-19-2017-2025,https://doi.org/10.5194/tc-19-2017-2025, 2025
Short summary
UAV LiDAR surveys and machine learning improves snow depth and water equivalent estimates in the boreal landscapes
Maiju Ylönen, Hannu Marttila, Anton Kuzmin, Pasi Korpelainen, Timo Kumpula, and Pertti Ala-Aho
EGUsphere, https://doi.org/10.5194/egusphere-2025-1297,https://doi.org/10.5194/egusphere-2025-1297, 2025
Short summary

Cited articles

Adebisi, N., Marshall, H., O'Neel, S., Vuyovich, C. M., Hiemstra, C., and Elder, K.: SnowEx20-21 QSI Lidar DEM 0.5m UTM Grid, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/YO583L7ZOLOO, 2022. a
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. a
Bauer, M. A., Burgess, M. A., Adams, J. D., Sexstone, G. A., Fulton, J. W., McDermott, W. R., and Brady, L. R.: Lidar point clouds (LPCs), digital elevation models (DEMs), and snow depth raster maps derived from lidar data collected on small, uncrewed aircraft systems in the Upper Colorado River Basin, Colorado, 2020–22, U.S. Geological Survey Data Release [data set], https://doi.org/10.5066/P9LF15AE, 2023. a
Besso, H., Shean, D., and Lundquist, J. D.: Mountain snow depth retrievals from customized processing of ICESat-2 satellite laser altimetry, Remote Sens. Environ., 300, 113843, https://doi.org/10.1016/j.rse.2023.113843, 2024. a
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res.-Atmos., 97, 15787–15801, https://doi.org/10.1029/92JD01517, 1992. a
Download
Short summary
Snow provides water for billions of people, but the amount of snow is difficult to detect remotely. During the 2020 and 2021 winters, a radar was flown over mountains in Colorado, USA, to measure the amount of snow on the ground, while our team collected ground observations to test the radar technique’s capabilities. The technique yielded accurate measurements of the snowpack that had good correlation with ground measurements, making it a promising application for the upcoming NISAR satellite.
Share