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Abstract. Snow provides critical water resources for bil-
lions of people, making the remote sensing of snow wa-
ter equivalent (SWE) a highly prioritized endeavor, particu-
larly given ongoing climate change impacts. Synthetic aper-
ture radar (SAR) is a promising method for remote sensing
of SWE because radar penetrates snow, and SAR interfer-
ometry (InSAR) can be used to estimate changes in SWE
(1SWE) between SAR acquisitions. We calculated 1SWE
retrievals from 10 NASA L-band (1–2 GHz, ∼ 25 cm wave-
length) uninhabited aerial vehicle SAR (UAVSAR) acqui-
sitions covering a ∼ 640 km2 swath in northern Colorado
during the winters of 2020 and 2021. UAVSAR acquisi-
tions coincided with ∼ 117 mm of accumulation in 2020
and ∼ 282 mm of accumulation in 2021. 1SWE retrievals
were evaluated against measurements of SWE from repeat
ground-penetrating radar (GPR) and terrestrial lidar scans
(TLSs) collected during the NASA SnowEx time series cam-
paigns at two field sites (total area=∼ 0.2 km2) as well
as SWE measurements from seven automated stations dis-
tributed throughout the UAVSAR swath. For single InSAR
pairs, UAVSAR 1SWE retrievals yielded an overall r of
0.72–0.79 and an RMSE of 19–22 mm when compared with
TLS and GPR 1SWE retrievals. UAVSAR 1SWE showed

some scatter with1SWE measured at automated stations for
both study years, but cumulative UAVSAR SWE yielded a r
of 0.92 and an RMSE of 42 mm when compared to total SWE
measured by the stations. Further, UAVSAR 1SWE RMSEs
differed by < 10 mm for coherences (i.e., the complex inter-
ferometric coherence) of 0.10 to 0.90, suggesting that coher-
ence has only a small influence on the1SWE retrieval accu-
racy. Given the evaluations presented here and in other recent
studies, the upcoming NASA-ISRO SAR (NISAR) satellite
mission, with a 12 d revisit period, offers an exciting oppor-
tunity to apply this methodology globally.

1 Introduction

In snow-dominated watersheds, melt from seasonal snow
drives streamflow and groundwater recharge (Li et al., 2017;
Lorenzi et al., 2024). Globally, snowmelt supplies water re-
sources for more than one-sixth of the population (Barnett et
al., 2005). However, warming temperatures are decreasing
the probability of snowfall in historically snow-dominated
watersheds (Klos et al., 2014; McCrystall et al., 2021), shift-
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ing snowpacks to higher elevations and more poleward lat-
itudes, effectively decreasing the predictability of stream-
flow in these basins (Siirila-Woodburn et al., 2021). Moun-
tains store a disproportionately large amount of snow de-
spite comprising a small fraction of the global land sur-
face (Wrzesien et al., 2019). Yet, in the mountains of the
western United States, climate change has driven a 15 %–
30 % decline in snow water equivalent (SWE), the defin-
ing snowpack hydrologic variable, and SWE is expected to
decline by an additional 25 % by 2050 (Mote et al., 2018;
Siirila-Woodburn et al., 2021). The projected changes are
acute globally: by 2100, snowmelt is projected to decline
in the European Alps by 50 % (Moraga et al., 2021), while
basins in the Himalayas may see snowfall declines of 30 %–
70 % for the warmest climate scenarios (Viste and Sorte-
berg, 2015). Although snowpack monitoring via automated
stations exists in some countries (e.g., SNOTEL stations in
the United States; Fleming et al., 2023), location bias, lim-
ited elevational range, and large spatial variability in snow
over short length scales result in an incomplete characteriza-
tion of this resource (Dozier et al., 2016). Thus, satellite re-
mote sensing methods for snowpack monitoring at high res-
olution (< 500 m, <weekly) have been set as a high prior-
ity for study and development by the National Academies of
Sciences, Engineering, and Medicine (National Academies
of Sciences, Engineering, and Medicine, 2018).

The remote sensing of SWE is challenged by environmen-
tal factors (i.e., topography, vegetation) and by the spatiotem-
porally varying physical parameters of the snowpack (i.e.,
SWE, density, liquid water content, snow grain size). The
NASA SnowEx campaigns were conducted from 2017–2023
in the western United States to evaluate and develop remote
sensing methods for snowpack monitoring, with the retrieval
of SWE set as a primary goal (Durand et al., 2018). SWE
is calculated as the product of snow depth and snow den-
sity, and there are two primary groups of techniques for re-
mote sensing of SWE at high spatial resolutions (< 500 m):
(i) depth-based optical–infrared methods and (ii) radar-based
methods. Depth-based optical–infrared methods (e.g., stereo
satellite imagery, lidar) require cloud-free conditions and de-
rive snow depths by differencing a snow-off digital elevation
model (DEM) from a snow-on DEM (Currier et al., 2019; Hu
et al., 2023). Snow density model estimates or in situ mea-
surements are required to convert the snow depths to SWE
(e.g., Hedrick et al., 2018), which adds to the uncertainty of
this technique (Raleigh and Small, 2017). Both satellite li-
dar (e.g., Besso et al., 2024) and very-high-resolution stereo
satellite imagery (e.g., Hu et al., 2023) are being explored
as depth-based methods for the remote sensing of SWE.
Radar approaches are distinct from depth-based approaches
because the radar signal penetrates the snowpack. Satellite
radar approaches for snow depth and SWE retrievals are im-
plemented from synthetic aperture radar (SAR) platforms,
and the techniques for snow depth and SWE remote sensing
are primarily grouped into backscatter approaches, which use

the amplitude component of the radar signal to derive snow
depth and/or SWE, and time-of-flight approaches, which de-
rive SWE from the signal path length and include SAR in-
terferometry (InSAR). A third approach, which uses the co-
polar phase difference, has also been tested. Readers inter-
ested in the co-polar phase difference methodology are re-
ferred to Leinss et al. (2014) and Patil et al. (2020).

Unlike optical–infrared methods, SAR approaches for
snow remote sensing are not limited by cloud cover, primar-
ily due to low atmospheric absorption at radar frequencies
(Woodhouse, 2017). For SAR backscatter approaches, the
radar signal is transmitted through the snowpack, and the sig-
nal is backscattered to the sensor via volume scattering from
snow grains and rough scattering from the snow–ground in-
terface (Tsang et al., 2022). Early backscatter work found
that combined X-band (8–12 GHz, ∼ 3 cm wavelength) and
C-band (4–8 GHz, ∼ 5 cm wavelength) SAR acquisitions
were capable of measuring snow depths from 0.5–2.5 m
(RMSE = 0.34 m; Shi and Dozier, 2000). More recent ef-
forts have emphasized combined X-band and Ku-band (12–
18 GHz, ∼ 1.8 cm wavelength) SARs; these backscatter ap-
proaches are promising methods for measuring SWE in shal-
low snowpacks (< 150 mm; Tsang et al., 2022), with the po-
tential for retrieving SWE in deeper conditions (Borah et al.,
2023). C-band backscatter approaches are capable of mea-
suring snow depths in deeper snowpacks (> 1 m), albeit with
higher uncertainty (Lievens et al., 2019, 2022). Backscat-
ter approaches have known uncertainties in wet snow con-
ditions, at large incidence angles, and in forests (Lievens et
al., 2022; Tsang et al., 2022). InSAR is a unique method
for retrieving SWE because the interferometric phase change
has a near-linear relation to SWE change (Guneriussen et
al., 2001). In dry snow, this characteristic can be used to re-
trieve changes in SWE without a priori information on snow-
pack density with an estimated 7 % uncertainty related to
the linear approximation (Leinss et al., 2015). Applying the
InSAR technique at low frequency (e.g., L-band, ∼ 25 cm
wavelength) limits interaction between the radar signal and
snow grains, increases the signal penetration in forests and in
wet snow (Naderpour et al., 2022), and promotes increased
coherence (described below) over longer temporal baselines
(Ruiz et al., 2022). A review of the transmissibility of L-band
radar in snow is provided in Appendix A1. With the upcom-
ing launches of L-band SAR satellites, such as the NASA-
ISRO SAR satellite (NISAR), the Radar Observing System
for Europe satellite (ROSE-L), and the Tandem-L Interfero-
metric Radar Mission, radar products will be publicly avail-
able at high spatial and temporal resolution across the globe
(NISAR: 80 m spatial resolution, 12 d repeat; ISRO Space
Applications Centre, 2023).

InSAR is a change detection method that measures the
phase change between repeat SAR acquisitions and relies
upon a coherent reflection from the snow–ground interface
(Appendix A2; Guneriussen et al., 2001). The InSAR SWE
retrieval technique was first established at the C-band from
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the European Remote-Sensing Satellite (ERS) platform at a
field site in Norway. The study showed that snowfall could
be mistaken as a deformation signal in interferograms (i.e.,
the interferometric phase change data product; Guneriussen
et al., 2001). Deeb et al. (2011) applied this technique to
the ERS using repeat acquisitions over the North Slope of
Alaska, United States, to measure changes in SWE (1SWE),
revealing 1SWE spatial patterns that were correlated with
the prevailing wind direction. Since then, the technique has
been tested for multi-year, season-long 1SWE retrievals
from tower-mounted platforms in Finland at Ku-, X-, C-
, and L-band frequencies (Leinss et al., 2015; Ruiz et al.,
2022), by several studies emphasizing one or two interfero-
metric pairs (Conde et al., 2019; Marshall et al., 2021; Na-
gler et al., 2022; Palomaki and Sproles, 2023; Tarricone et
al., 2023) and by two season-long studies that used a time
series of interferometric pairs (Hoppinen et al., 2024; Oveis-
gharan et al., 2024). In general, these studies have found that
InSAR 1SWE retrievals are highly correlated with in situ
measurements, but accuracy has varied on a case-by-case ba-
sis, and in situ measurements for validation have been limited
to point-based measurements that likely do not capture the
spatial complexity of the snowpack. Additionally, only three
of these studies have considered atmospheric signal delays,
which represent a source of uncertainty because changes in
atmospheric pressure and water content can further affect the
1SWE retrieval accuracy (Gong et al., 2013).

We use the term coherence to refer to the complex inter-
ferometric coherence; it is a measure of the similarity of
the backscattered radar signal properties between two ac-
quisitions (Woodhouse, 2017). Coherence is considered an
index for confidence in phase change measurements. Typi-
cally, phase changes with higher coherences are considered
more accurate, and coherence must be maintained for the ac-
curate unwrapping of interferograms. Coherence is affected
by forest cover, changes in soil conditions (e.g., soil mois-
ture changes or freeze–thaw changes), changes in the dielec-
tric permittivity of the snowpack (e.g., melt–refreeze cycles),
snow metamorphism (Brangers et al., 2024), and significant
snow accumulation or ablation events (Ruiz et al., 2022).
Collectively, these factors indicate that as the temporal base-
line (i.e., time interval) between interferometric pairs is ex-
tended and/or major snowpack changes occur, coherence will
degrade (Deeb et al., 2011), particularly at higher frequencies
(Ruiz et al., 2022). A review of the calculation of coherence
is provided in Appendix A2.

Here, we calculated 1SWE retrievals from 10 L-band
NASA uninhabited aerial vehicle SAR (UAVSAR; Rosen et
al., 2006) InSAR pairs collected during the NASA SnowEx
time series campaigns in 2020 and 2021 over north-central
Colorado. During UAVSAR acquisitions, we collected spa-
tially distributed ground-penetrating radar (GPR) at a very
similar frequency to UAVSAR (UAVSAR = 1.26 GHz, GPR
= 1.0 GHz) for all InSAR pairs, and we performed terres-
trial lidar scans (TLSs) for two InSAR pairs. Our study ex-

amines three components of InSAR 1SWE retrievals. First,
we leveraged our ground observations to evaluate the accu-
racy of the L-band InSAR technique for 1SWE retrievals
for two accumulation seasons in a dry continental subalpine
snowpack. We then evaluated UAVSAR 1SWE retrieval er-
rors against coherence to examine it as a potential metric
for 1SWE retrieval accuracy. Finally, UAVSAR 1SWE re-
trievals are summed across each individual winter season and
compared with total SWE measured at seven automated sta-
tions to evaluate the accuracy of the technique across a time
series.

2 Overview of SnowEx 2020 and 2021 at Cameron
Pass, Colorado

The SnowEx 2020 time series campaign was originally
planned for a single season at 13 field sites (Marshall et
al., 2019), but it was cut short due to the COVID-19 pan-
demic and subsequently restarted in 2021 at seven field sites.
Weekly to biweekly surveys were performed at Cameron
Pass, Colorado (Fig. 1a), coinciding with UAVSAR flights
(Table 1). The flight line was typically ∼ 40 km in length
with a swath width of 16 km, but deviations from the spatial
baseline and poor GNSS accuracy caused data acquisitions
to be shortened for a few dates. The primary flight heading
was southeast (141°), with a secondary northwest heading
(321°) flown when time allowed. For the analysis, we used
the 141° heading for all InSAR pairs except the 27 January
to 3 February 2021 interval, which used the 321° heading.

The region has a continental snow climate (e.g., Trujillo
and Molotch, 2014), with a prairie snowpack at lower eleva-
tion (< 2800 m) within the North Park region and montane
and alpine snowpacks in the higher-elevation Medicine Bow
Mountains and Never Summer Range. Four SNOTEL sta-
tions and three automated stations that measured snow depth
were located within the flight line (Fig. 1a). The Joe Wright
SNOTEL station, which was within 1.5 km of our field sites,
receives a median peak SWE of 632 mm that occurs on a me-
dian date of 5 May (1979–2023). Vegetation within the flight
line primarily consists of evergreen forest (58 %) and shrubs
(32 %; Buchhorn et al., 2020). Englemann spruce (Picea en-
gelmannii), subalpine fir (Abies lasiocarpa), and lodgepole
pine (Pinus contorta) are the primary constituents of the
forest, with interspersed aspen (Populus tremuloides) groves
(Fassnacht et al., 2018). From August to November 2020, the
Cameron Peak fire burned> 80 km2 of the flight line, includ-
ing the Cameron Peak field site region (CP; Fig. 1a; McGrath
et al., 2023), which is not accounted for in these land cover
estimates.

During SnowEx 2020, we surveyed the Michigan River
field site (MR; Fig. 1b), located in mostly open meadows
vegetated by willows and grasses, though spruce–fir forests
with < 70 % canopy cover inhabited portions of the north-
ern and southern extent of the GPR transects. We mea-
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Figure 1. (a) Cameron Pass study area showing the Rocky Mountains, Colorado, UAVSAR flight line overlaid on the Copernicus DEM
(European Space Agency, 2021) with flight headings indicated by arrows. Locations are given for the Michigan River (MR) field site;
Cameron Peak (CP) field site; and the Joe Wright (JW), Willow Park (WP), Lake Irene (LI), and Phantom Valley (PV) SNOTEL stations.
The inset depicts the location of the flight line in Colorado. Middle and right panels show uncrewed aerial vehicle (UAV) imagery collected
during March 2020 at the (b) MR field site and February 2021 at the (c) CP field site. The MR field site was surveyed during 2020 and 2021,
whereas the CP field site was only surveyed during 2021. Key study areas, including snow pit locations, GPR transects, and terrestrial lidar
regions of interest (Lidar ROI) are plotted. Arrows indicate the starting location and travel direction of the GPR transects.

Table 1. UAVSAR flight dates and times, field survey dates, GPR survey times, and ground observations performed for each field survey
date. For instances where both the 141 and 321° flight headings were used, flight times are given for both. Otherwise, only flight times for the
141° heading are listed. For 2021, GPR survey times are given for the Michigan River (MR) and the Cameron Peak (CP) field sites. Ground
observations include GPR, TLSs, snow pits (SPs), and probed depths (PDs).

UAVSAR flight dates UAVSAR flight time (local) Field survey dates GPR survey time (local) Ground observations

12 February 2020 11:10 12 February 2020 12:06 GPR, SP, PD
19 February 2020 11:42 19 February 2020 11:11 GPR, SP, PD
26 February 2020 11:24 26 February 2020 14:55 GPR, TLS, SP, PD
12 March 2020 10:54 11 March 2020 09:51 GPR, TLS, SP, PD
15 January 2021 10:43 15 January 2021 11:12 (MR), 14:49 (CP) GPR, SP, PD
20 January 2021 12:20 20 January 2021 11:18 (MR), 15:33 (CP) GPR, SP, PD
27 January 2021 11:52 (141°), 11:35 (321°) 27 January 2021 11:27 (MR), 15:21 (CP) GPR, SP, PD
3 February 2021 10:51 (141°), 10:34 (321°) 2 February 2021 10:52 (MR), 14:01 (CP) GPR, SP, PD
No flight – 10 February 2021 – TLS, SP
23 February 2021 15:50 24 February 2021 10:59 (MR), 14:34 (CP) GPR, TLS, SP, PD
3 March 2021 09:13 3 March 2021 11:05 (MR), 14:43 (CP) GPR, SP, PD
10 March 2021 08:46 9 March 2021 11:01 (MR), 13:29 (CP) GPR, SP, PD
16 March 2021 09:03 18 March 2021 10:14 (MR), 14:24 (CP) GPR, SP, PD
22 March 2021 08:43 22 March 2021 10:31 (MR), 14:12 (CP) GPR, SP, PD

sured stratigraphy, density, snow depth, and snow tempera-
ture in two snow pits (MR1, MR2; Fig. 1b), following the
SnowEx methodology outlined by Mason et al. (2023). In-
terval boards, which captured snow accumulation between
surveys, were installed within 10 m of MR1 and at the

nearby Joe Wright SNOTEL station. We recorded new snow
depth, SWE, and density at each interval board on each site
visit. Repeat GPR surveys (∼ 1.6 km in length; McGrath
et al., 2021) were performed using a Sensors & Software
pulseEKKO 1.0 GHz GPR coupled to the snow surface via a
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sled and pulled behind and to the side of a snowshoer. Snow
depths were probed every∼ 3 m along the GPR transect. Two
snow-on terrestrial lidar scans were performed on 26 Febru-
ary and 12 March 2020, in addition to a snow-off UAV-borne
lidar scan performed in August 2020 (Williams, 2021).

For SnowEx 2021, we expanded our surveys to include
the Cameron Peak field site (CP; Fig. 1c). At MR, GPR sur-
veys (0.8 km in length; Bonnell et al., 2022) were altered to
form a loop around the primary meadow, with a co-located
snow pit (MR1) and interval board. Snow pits and interval
boards were surveyed following the SnowEx methodology.
Snow depths were manually probed along the eastern por-
tion of the GPR transect at ∼ 5 m intervals. We expanded to
CP to leverage the reduced vegetation due to the Cameron
Peak fire. CP has severely burned spruce–fir forest to the
north and east, with an unburned stand in the central to south-
ern portion (Fig. 1c). A single snow pit and interval board
was surveyed near the GPR transect (1.6 km in length) in the
burned section. Snow depths were probed every ∼ 5 m along
the southeastern GPR transect, with ∼ 200 m in the forest
and ∼ 200 m in the burned area. An automated station was
installed near the CP snow pit, which measured snow depth,
wind speed and direction, radiation, temperature, and soil
moisture. Two snow-on terrestrial lidar scans were performed
at both field sites on 10 February and 24 February 2021, with
a snow-off terrestrial lidar scan performed on 27 May 2021
at CP (Williams, 2021).

3 Methods

3.1 UAVSAR processing

Here, we provide an overview of the key UAVSAR process-
ing steps. For additional and more detailed information, we
direct readers to Appendix A1–A2. During the 2020 and
2021 airborne campaigns, UAVSAR deployed a fully po-
larized L-band (1.26 GHz center frequency, 0.24 m wave-
length), 80 MHz bandwidth, left-looking InSAR. The instru-
ment was flown at an altitude of ∼ 12500 m and acquired
data along a ∼ 40 km stretch with a 16 km swath width (area
=∼ 640 km2; Fig. 1a; NASA UAVSAR, 2023). In 2020,
overpasses were performed with a temporal baseline of 7 d
for the first three acquisitions (12, 19, and 26 February)
and 15 d for the final acquisition (12 March). In 2021, over-
passes had varying temporal baselines (typically 5 to 8 d);
due to other aircraft commitments, one acquisition had a
longer baseline (20 d for 3–23 February). Poor coherence
prevented phase unwrapping at the field sites for one In-
SAR pair (10–16 March 2021). The UAVSAR team at the
NASA Jet Propulsion Laboratory processed the UAVSAR
data and generated geocoded amplitude, interferogram, un-
wrapped interferogram, and coherence products at ∼ 5 m
spatial resolution. We accessed the products from the Alaska
Satellite Facility (ASF; NASA UAVSAR, 2020, 2021) and

Figure 2. Workflow diagrams for deriving 1SWE from UAVSAR,
GPR, and TLS products. For simplification, the UAVSAR workflow
is described in three steps. ENU indicates the east, north, and up
look vectors provided by UAVSAR.

converted the products to GeoTIFFs using uavsar_pytools
(Hoppinen and Tarricone, 2022). InSAR measures phase de-
formation within a single±π rad phase cycle, which equates
to about ±108 mm SWE. Interferograms where 1SWE ex-
ceeded a full phase cycle for some pixels require unwrap-
ping for the accurate estimation of1SWE. Therefore, we fo-
cused on the unwrapped interferogram and coherence prod-
ucts and outline key workflow steps for calculating 1SWE,
rather than total SWE, in Fig. 2. Although we included all
four polarizations, we present the horizontal-transmit and
horizontal-receive polarization (HH) for all intervals except
the 3–23 February 2021 interval, which used the vertical-
transmit and horizontal-receive polarization (VH) due to in-
complete phase unwrapping in the HH data product. De-
tailed radar SWE retrieval methodology is outlined in Ap-
pendix A2.

We tested for atmospheric delays following methods de-
veloped by Tarricone et al. (2023). We identified snow-free
pixels in the unwrapped interferograms using the normalized
difference snow index (NDSI; Dozier, 1989) calculated from
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Sentinel-2 imagery (Fig. S1; European Space Agency, 2022)
and regressed snow-free unwrapped phase pixels against the
corresponding signal path lengths. Importantly, this method
assumes that snow-free pixels are not undergoing any phys-
ical changes that would lead to a phase change. We tested
whether an atmospheric correction was needed using the
three criteria outlined in Appendix A2.2. Importantly, no
unwrapped interferograms met all three criteria (Table S1).
Therefore, we conclude that stratified atmospheric artifacts
are either limited for all interferometric pairs or were more
complicated than what our linear model identified. See Ap-
pendix A2.2 for a more detailed description of the atmo-
spheric correction.

For these flights, UAVSAR had average look angles of
26–70° from the near to far range. We calculated inci-
dence angles in uavsar_pytools (Eq. A4; Hoppinen and Tar-
ricone, 2022) from the Copernicus 30 m DEM (rescaled to
the UAVSAR grid) and the UAVSAR-provided look vector.
The Copernicus DEM was chosen because it is the primary
DEM used within the processing flow of ASF HyP3 and will
be the basis for NISAR interferometric products. We evalu-
ated incidence angles derived from the Copernicus DEM and
the 1SWE retrieval uncertainty caused by these incidence
angles in Appendix A2.5.

UAVSAR acquisitions were collected during the winter
over relatively short temporal baselines (< 21 d). Therefore,
we consider changes at the snowpack surface to be the pri-
mary driver of phase deformation in the unwrapped inter-
ferograms, but we provide a discussion of other potential
sources of phase deformation in Appendix A2.1. Changes
at the snow surface may include new snow accumulation,
sublimation, redistribution, or melt. For both study periods,
we conclude that the snowpack is dry, based on results pre-
sented in Sect. 4.1. Thus, for 1SWE retrievals, we consider
only the density of snow that accumulated between UAVSAR
acquisitions. Surface densities were estimated by averaging
density measurements of the snow that accumulated on the
interval boards between UAVSAR acquisitions (Sect. 3.2).
For instances where snow accumulation had occurred but had
been removed from the interval board by, for example, wind
redistribution, we used an average of the uppermost 10 cm
of the snow pit-measured densities. For each interferometric
pair, we converted surface densities to relative permittivity
(Eq. A5). Relative permittivities, unwrapped phase, and inci-
dence angles were then used to calculate snow depth changes
(Eq. A6), which were subsequently converted to 1SWE us-
ing the surface snow density (Eq. A7). Because the InSAR
phase is relative (Woodhouse, 2017), we estimated the ab-
solute phase as the median difference between a 20 % set of
randomly selected GPR 1SWE retrievals (Sect. 3.2) and co-
incident UAVSAR 1SWE retrievals for each interval. The
median differences were then subtracted from the UAVSAR
1SWE retrievals for each interval, and the 20 % of the GPR
observations used in this step were removed from subsequent
analyses. Finally, we supplemented our analysis by evalu-

ating an InSAR 1SWE retrieval method that approximates
1SWE from the InSAR phase change and the incidence an-
gle (Leinss et al., 2015) and is thus independent of snow
density and relative permittivity measurements. The methods
and results of this analysis are reviewed in Appendix A2.4.

UAVSAR coherence values from corresponding TLS and
GPR pixels were used to evaluate coherence as a measure of
noise for 1SWE retrievals. Coincident GPR and UAVSAR
1SWE retrievals were binned by coherence, and the root
mean square error (RMSE) of the UAVSAR 1SWE re-
trievals was calculated for each bin. The effect of temporal
baseline upon coherence and UAVSAR 1SWE retrieval ac-
curacy was then evaluated by calculating the median coher-
ence and RMSE for UAVSAR 1SWE retrievals across all
temporal baselines used in this analysis.

3.2 Processing ground-based measurements

3.2.1 In situ measurements

Key in situ measurements included snow pit tempera-
tures, pit-measured densities, pit-measured depths, interval
board densities and SWE, and manually probed depths. Pit-
measured temperatures were used to detect the possible pres-
ence of liquid water within the snowpack. Pit-measured den-
sities were averaged to estimate bulk density, which was
used in SWE calculations for the snow pits, GPR, TLSs, and
probed depths. Interval board densities were used for1SWE
calculations in the UAVSAR workflow. However, for some
dates, the interval boards yielded little to no accumulation
due to wind redistribution or a lack of precipitation. For these
dates, the pit-measured densities from the upper 0.10 m of
the snowpack were averaged and used in the UAVSAR work-
flow. Probed depths were not repeated in identical locations
but were geocoded using a Geode GNS2 receiver mounted on
top of the probe and converted to SWE using the bulk snow
densities. Because the probed depths had a sampling of 1–2
measurements per UAVSAR pixel and were not collected in
repeated locations, we used the depth probe dataset to evalu-
ate the GPR and TLS SWE accuracy, rather than evaluating
the UAVSAR 1SWE retrievals directly.

3.2.2 GPR

GPR locations were collected via an Emlid RS2 GNSS re-
ceiver on board the GPR sled and post-processed with an
Emlid base station located at the MR field site to ensure a
spatial accuracy of < 0.25 m. High accuracy is important,
given that these transects were repeated and the product of
interest is 1SWE, which is sensitive to geolocation errors.
Radargrams were processed in ReflexW (Sandmeier, 2019)
in four general steps: (1) application of a time-varying time-
zero correction, (2) one-dimensional de-wow filter to remove
low-frequency noise, (3) trace interpolation to∼ 0.10 m, and
(4) two-dimensional filter to remove instrument noise. After
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processing the radargrams, the ground reflector, identified as
the highest-magnitude positive-amplitude reflector at depth,
was picked; its corresponding two-way travel time (twt), rep-
resenting the time-of-flight through the snowpack, was ex-
ported. Further GPR collection and radargram processing de-
tails are presented in McGrath et al. (2021) and Bonnell et al.
(2022). Bulk snow density was then estimated as the average
bulk density between available snow pits and used to estimate
bulk relative permittivity (Eq. A5) and, thereby, the velocity
of the radar signal (Eq. A9). Using the estimated velocity, we
converted twt to SWE (Eqs. A10, A7). A detailed summary
of the GPR theory and methods is provided in Appendix A3.
We evaluated the accuracy of GPR SWE retrievals through
a comparison with SWE from probed depths by calculating
the median GPR SWE retrieval within a 1.5 m radius around
each probed depth. GPR SWE retrievals were then binned at
the spatial resolution of the UAVSAR grid by taking the me-
dian value of all points within each grid cell. SWE retrievals
from corresponding dates were then differenced to generate
GPR 1SWE. The GPR workflow is summarized in Fig. 2.

3.2.3 Lidar scans

Repeat snow-on terrestrial lidar scans were performed in
2020 on 26 February and 12 March at the MR site and in
2021 on 10 and 24 February at the MR and CP sites. Snow-
off lidar scans include a UAV-borne lidar scan that was per-
formed for the MR site in August 2020 and a terrestrial lidar
scan performed for the CP site on 27 May 2021. Terrestrial
lidar scans were aligned and georeferenced by UNAVCO,
Inc. (Williams, 2021). The USGS processed a bare-earth dig-
ital elevation model (DEM) from the UAV-borne lidar scan
(Bauer et al., 2023). Lidar point clouds were reprojected,
and surface or bare ground returns were classified. These
points were then converted to rasters, gridded, and aligned
to the UAVSAR grid, using the average elevation value per
pixel. We derived snow depths for each snow-on scan date
by subtracting snow-free rasters from snow-on rasters. Snow
depth rasters were converted to SWE using the bulk density
from the snow pits.1SWE was calculated for 26 February to
12 March 2020 and for 10–24 February 2021 by differencing
the corresponding SWE rasters. To align TLS datasets with
the 3–23 February 2021 InSAR pair, we subtracted the SWE
measured on the interval board between 2–10 February 2021
from the UAVSAR 1SWE retrievals. TLS 1SWE was then
directly compared with the UAVSAR 1SWE retrievals. The
terrestrial lidar workflow is summarized in Fig. 2.

3.3 Comparison between UAVSAR and automated
stations

We obtained daily observations of snow depth, SWE, and air
temperature from the Joe Wright SNOTEL station (ID 551)
and daily observations of SWE from an additional three
SNOTEL stations within the UAVSAR swath for the 2020

and 2021 seasons (Fig. 1a; Table S2). Daily snow depths
were obtained from three automated stations (two with sonic
sensors and one with a snow stake paired with a time-lapse
camera) within 4.5 km of the Joe Wright SNOTEL station
(Table S2). We converted the snow depths to SWE by cal-
culating density from Joe Wright SNOTEL station measure-
ments of SWE and snow depth. SWE estimates were then
smoothed with a 5 d moving median filter to reduce the ef-
fects of new snow settlement.

We expanded our UAVSAR analysis beyond our rela-
tively small field sites (∼ 0.2 km2 total area) to include mea-
surements from the four SNOTEL stations and three au-
tomated stations within the swath (Table S2). We calcu-
lated the median UAVSAR 1SWE within a 3× 3 pixel grid
(∼ 15 m×∼ 15 m) around each station, added the1SWE re-
trievals for each interval, and matched the1SWE time series
to the station time series by adding the station’s SWE at the
start of the UAVSAR flights to the UAVSAR 1SWE time
series. Because of spatially extensive missing data within
the 10–16 March 2021 interferometric pair, we adjusted the
UAVSAR1SWE time series at each station with the1SWE
measured by the station. Median coherence was calculated
within each 3× 3 grid for the SNOTEL stations to evaluate
the effects of coherence on the 1SWE retrieval time series.
Lastly, station-measured SWE was compared with cumula-
tive InSAR SWE for the final dates of the 2020 and 2021
UAVSAR acquisitions.

4 Results

4.1 Field observations of SWE and snow density

UAVSAR flights coincided with 117 mm of SWE accumu-
lation (18 % of peak SWE; Fig. 3a) during the 2020 cam-
paign (4 weeks) and 282 mm of accumulation (48 % of
peak SWE; Fig. 3b) during the 2021 campaign (9 weeks).
SWE at the in situ interval boards increased on average by
34± 12 mm and 31± 29 mm per flight interval during the
2020 and 2021 campaigns, indicating that1SWE at the field
sites was likely within a full phase cycle (±108 mm; Ap-
pendix A2.3) for most UAVSAR acquisitions. New snow
density, used for UAVSAR 1SWE calculations, ranged be-
tween 106 and 145 kg m−3 across all study dates in 2020
(Fig. 3c) and over a larger range, 118–219 kg m−3, in 2021
(Fig. 3d). Bulk density, used for GPR and TLS SWE cal-
culations, increased minimally between most flights (mean
=+20 kg m−3; Fig. 3c–d), with a notable exception being
the 12–19 February 2020 pair (mean =+72 kg m−3).

Surface melting can lead to significant decorrelation of the
radar signal and cause increased uncertainty in the1SWE re-
trievals. There were three notable warm periods during the
campaigns (7–9 March 2020, 2–10 March 2021, and 21–
22 March 2021), but median snow pit temperatures during
our survey dates remained<−1.1 °C (Fig. 3e–f). We did ob-
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Figure 3. Joe Wright SNOTEL SWE and snow depth, bulk SWE, and interval board SWE (1SWE) recorded at snow pits MR1, MR2, and
CP1 for (a) water year (WY) 2020 and (b) WY 2021. SNOTEL density, bulk density, and interval board density (ρnew) recorded at snow
pits for (c) WY 2020 and (d) WY 2021. SNOTEL air temperature (Ta) and error bar plots of snow pit temperatures for (e) WY 2020 and
(f) WY 2021. UAVSAR acquisition dates are represented as vertical dashed gray lines for plots (a)–(d). Bar graphs and error bar plots are
paired and centered on the field survey date. Error bar plots show the median and the 25 % and 75 % quantiles.

serve near-surface melt–freeze crusts in the snow pits during
certain surveys, but our observations suggest that liquid water
content was absent or minimal during UAVSAR flight times
(Table 1) at our study sites throughout the campaigns.

GPR SWE retrievals from the 2020 MR field site showed
that median SWE increased by 127 mm between 12 February
and 11 March (Fig. 4a), with the largest median 1SWE oc-
curring during the 12–19 February interval (+99 mm). The
2021 MR (Fig. 4b) and CP (Fig. 4c) field sites showed sim-
ilar dynamic ranges, with GPR SWE retrievals increasing
by 249 mm at the MR site and 233 mm at the CP site be-
tween 15 January and 22 March. For both sites, the largest
median 1SWE occurred during the 2–24 February interval
(MR=+97 mm, CP=+110 mm). GPR SWE retrievals and
SWE converted from depth probe measurements are highly
correlated, with an overall Pearson’s correlation coefficient
(r) of 0.97 and an overall RMSE of 35 mm (Fig. S2).

4.2 UAVSAR 1SWE retrievals at the field sites

UAVSAR 1SWE retrievals along the GPR transect at the
2020 MR field site saw a mean cumulative increase of 40 mm
for the three intervals (Fig. 5c–e; Table S3). The largest
median 1SWE occurred during the 12–19 February inter-
val (median =+97 mm), with modest SWE increases ob-
served for both the 19–26 February (median =+16 mm)
and 26 February to 12 March (median =+8 mm) inter-
vals. The largest 1SWE retrieval range was observed for the
12–19 February interval (minimum =+60 mm, maximum
=+149 mm). The expanded 2.7 km× 3.6 km region around
the MR site reveals a somewhat different pattern than1SWE

retrievals along the transect, with less accumulation for 12–
19 February (+67 mm) and negligible SWE changes for 19–
26 February (0 mm) and 26 February to 12 March (+1 mm;
Fig. 5c–e).

UAVSAR 1SWE retrievals along the GPR transects at
the 2021 MR field site saw a median cumulative increase of
104 mm for six of the seven 2021 intervals (no data for 3–
23 February 2021), whereas the median cumulative increase
for the expanded 2.7 km× 3.6 km region was +143 mm
(Fig. 5f–l). At the CP site, the median cumulative SWE
across the seven surveys was 203 mm along the GPR transect
and 171 mm from the 2.2 km× 3 km expanded region around
the CP field site (Fig. 6c–i). The largest median 1SWE for
the expanded regions occurred during the 3–23 February in-
terval (MR median =+103 mm, CP median =+107 mm).
Minimum UAVSAR 1SWE retrieval medians from the ex-
panded regions were observed from 27 January to 3 Febru-
ary at CP (median1SWE=−2 mm) and 3–10 March at MR
(median 1SWE =−6 mm).

UAVSAR1SWE retrievals appear to capture detailed spa-
tial distributions of 1SWE across all dates at each field site.
In particular, larger SWE accumulation is observed in the
open meadows and avalanche paths in the MR study area
than in the surrounding forests (mean difference = 66 %,
range of mean differences =−2 to +29 mm; Fig. 5). These
patterns are particularly noticeable at the MR site for the 12–
19 February 2020 interval (Fig. 5c), which recorded a median
1SWE increase of+98 mm in open meadows and avalanche
paths, whereas 1SWE in the surrounding forests increased
by a median of +69 mm. A similar spatial pattern exists at
the CP site, as the burned area consistently recorded a larger
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Figure 4. GPR SWE retrievals from the (a) 2020 and (b) 2021 MR field site and (c) the 2021 CP field site. For (a), the transect begins at 0 m
at the southern transect terminus and progresses northward (Fig. 1b). For (b), the transect starts at 0 m at the northeast corner and progresses
clockwise (Fig. 1b). For (c), the transect starts at 0 m at the southeast corner and progresses counterclockwise (Fig. 1c). GPR SWE retrievals
in (a)–(c) have been smoothed with a 5 m moving median filter.

1SWE than adjacent unburned forests. This is best observed
in the 20–27 January 2021 interval (Fig. 6d). During this
interval, we calculated an average of 31 mm 1SWE in the
burned area and 15 mm 1SWE in the unburned forests. Me-
dian coherence across the time series is somewhat higher for
unforested areas in both the MR and CP field sites (+0.05;
Figs. 5b, 6b). This subtle difference is further illustrated
within the CP field site, where median coherence of the 7 d
baseline InSAR pairs increased from 0.56 in 2020 pre-burned
forests to 0.60 in 2021 post-burned areas (p =< 0.0001).

4.3 Evaluating UAVSAR 1SWE retrievals with GPR

UAVSAR 1SWE retrievals have a relatively low pixelwise
correlation with GPR1SWE retrievals for any single InSAR
pair (r =−0.24 to 0.20; Table S4). However, compiling the
measurements across all surveys increases the 1SWE dy-
namic range and correlation substantially (r = 0.79; Fig. 7a).
Here, we present a time series that includes only InSAR
pairs from the HH polarization for all dates except the 3–
23 February 2021 pair, which is represented by the VH po-
larization. For this time series, we observe RMSEs from 16–
34 mm (Table S4) for single InSAR pairs, with an overall

RMSE = 22 mm (Fig. 7a). Although pixelwise comparisons
between UAVSAR and GPR 1SWE retrievals exhibit scat-
ter, the box plot distributions for 1SWE at co-located GPR–
UAVSAR pixels are nearly identical, yielding absolute me-
dian differences between median GPR 1SWE and median
UAVSAR1SWE of 0–4 mm (Fig. 7b, c; Table S2). Although
we primarily present analyses based on the HH polarization,
we find that UAVSAR 1SWE retrievals have nearly equiva-
lent RMSE values across all four polarizations (RMSE= 19–
22 mm; Table S4).

We explored the possibility of coherence as an error metric
for UAVSAR 1SWE retrievals and found that RMSE exhib-
ited a narrow range (21–25 mm) for coherence bins between
0.1 and 0.7 (Fig. 8a). However, the RMSE at very low co-
herence (0.0–0.1) is double the RMSE at very high coher-
ence (0.9–1.0). Average coherence was highest for ∼weekly
baselines, but average coherence for the 15 d baseline (0.51)
was within the range of average coherence for the 5-to-8 d
temporal baselines (Fig. 8b). Of note, the 20 d baseline had
average coherence > 0.40 (Fig. 7d) but yielded the highest
RMSE (33 mm; Fig. 8b).
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Figure 5. (a) National Agriculture Imagery Program (NAIP) imagery from summer 2023 at the MR site. (b) Median coherence across
all dates. (c–l) UAVSAR 1SWE retrievals for each 2020 and 2021 date interval at the MR field site. GPR 1SWE retrievals are overlain
but reduced to 5 % of the total sample size for visual clarity. 1SWE colors are minimized/maximized at approximately one phase cycle
(±108 mm). All dates used the 141° flight heading and HH polarization, except for the 27 January to 3 February 2021 interval, which used
the 321° heading, and the 3–23 February 2021 interval, which used the VH polarization. No GPR points are visible for the 3–23 February 2021
interval because no coincident InSAR 1SWE retrievals were successfully unwrapped.

Figure 6. (a) Summer 2023 NAIP imagery of the CP study site. (b) Median coherence across all dates. (c–i) UAVSAR 1SWE retrievals for
each 2021 date interval at the CP field site. GPR 1SWE retrievals are overlain but reduced to 5 % of the total sample size. 1SWE colors are
minimized/maximized at approximately one phase cycle (±108 mm). All dates used the 141° flight direction and HH polarization, except for
the 27 January to 3 February interval, which used the 321° direction, and the 3–23 February interval, which used the VH polarization.
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Figure 7. (a) UAVSAR 1SWE retrievals compared with coincident GPR 1SWE retrievals, with reported Pearson’s correlation coefficient
(r) and RMSE (n= 2833). Points in (a) are colored by point density. (b) The 2020 box plot distributions of GPR and UAVSAR 1SWE
retrievals paired by date. (c) The 2021 box plot distributions of GPR and UAVSAR 1SWE retrievals paired by date. Box plots show the
median, 25th and 75th quantiles, and the maximum and minimum, with outliers (> 1.5 times the interquartile range) shown as points.

Figure 8. Histograms of (a) UAVSAR coherence values and (b) temporal baseline from co-located GPR and UAVSAR pixels. RMSE is
shown for each bin. In (b), RMSE points are colored by mean coherence per temporal baseline bin.

4.4 Evaluating UAVSAR 1SWE retrievals with TLSs

TLS 1SWE retrievals had median values of +9 mm for the
MR field site during the 26 February to 12 March 2020 in-
terval and +55 and +39 mm at the MR and CP field sites
during the 10–24 February 2021 surveys (Fig. 9a, d, g).
TLS SWE retrievals have a high correlation with SWE con-
verted from depth probes, with an r of 0.83 and an RMSE
of 66 mm (n= 189; Fig. S3). For each set of TLS acquisi-
tions, UAVSAR 1SWE retrievals had median values of +6,
+60, and +45 mm, respectively (Fig. 9b, e, h). Spatial pat-
terns were similar between the two methods of 1SWE re-
trievals. Large portions of data are missing in Fig. 9e due
to coherence-related phase unwrapping errors. RMSEs were
comparable between the 2020 survey (MR = 20 mm) and
the 2021 surveys (MR = 15 mm, CP = 20 mm). UAVSAR
1SWE retrievals have an overall RMSE of 19 mm and an r

of 0.72 when compared with TLSs. Coherence was used to
color points on the UAVSAR–TLS comparison plots (Fig. 9c,
f, i) and shows that scatter is approximately equal throughout
the range of observed coherences.

4.5 Evaluation of UAVSAR time series at automated
stations

UAVSAR SWE retrievals overestimated SWE accumulation
for the 12–19 February 2020 InSAR pair by an average of
163 % at the automated stations but underestimated SWE
accumulation by an average of 88 % between 19 February
and 12 March (Fig. 10a–e). The 2021 cumulative UAVSAR
SWE retrievals record net increases at all seven sites (+109
to +219 mm), which is similar to the net increases recorded
by the stations (+101 to +242 mm; Fig. 10a–g). Median co-
herence for the 2020 season was lowest at the Lake Irene
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Figure 9. Results of the 1SWE comparison between TLS and UAVSAR. Rows are organized by date and field site. Columns include TLS
1SWE (a, d, g), UAVSAR 1SWE (b, e, h), and the comparison between TLS and UAVSAR (c, f, i). SWE measured at the interval board
on 10 February 2021 was subtracted from UAVSAR 1SWE for 3–23 February 2021 to align with the TLS survey dates. Comparison plots
are colored by coherence. The number of pixels (n) and Pearson’s correlation coefficient (r) are reported for each comparison.

SNOTEL station (median coherence = 0.30) and highest
at the Phantom Valley SNOTEL station (median coherence
= 0.63), whereas median coherence for the 2021 season was
lowest at the Montgomery Snow Stake (median coherence=
0.49) and highest at the Lake Irene SNOTEL station (median
coherence= 0.60). The lowest median coherence for all sites
was observed for the 26 February to 12 March 2020 interval
(median coherence = 0.31), an interval that yielded negative
SWE retrievals for three of the five operating stations (−17 to
−3 mm). At the end of the UAVSAR campaigns, cumulative
UAVSAR SWE retrievals from the seven stations (n= 12)
yielded an RMSE = 42 mm and an r = 0.92 (Fig. 10h).

5 Discussion

5.1 Accuracy of L-band InSAR 1SWE retrievals

From our evaluation with GPR and TLSs, we established the
RMSE for L-band InSAR 1SWE retrievals as 19–22 mm
for single InSAR pairs (Figs. 7, 9). For cumulative InSAR

SWE, we estimated an RMSE of 42 mm at seven automated
stations (Fig. 10). Previous studies have established that
UAVSAR 1SWE retrievals resemble the spatial patterns of
lidar-derived 1SWE retrievals, but differences between the
two datasets were not systematic (Marshall et al., 2021; Palo-
maki and Sproles, 2023). Marshall et al. (2021) evaluated
UAVSAR 1SWE retrievals over a 4 km2 relatively flat and
non-forested region of Grand Mesa, Colorado, using airborne
lidar and found very low error for the technique (RMSE
= 9 mm). UAVSAR 1SWE retrievals have been evaluated
using GPR and automated station measurements in Valles
Caldera, New Mexico (Tarricone et al., 2023), and from in
situ and SNOTEL measurements of1SWE in the mountains
of Idaho (Hoppinen et al., 2024). Both studies identified and
corrected significant atmospheric artifacts and contained at
least one InSAR pair that was collected when liquid water
content was present in the snowpack but estimated study-
wide errors of similar magnitude found by our study (RMSE
= 15–40 mm; Table S4).

UAVSAR 1SWE retrievals had higher RMSE in 2020
than in 2021 (Table S4), and the agreement between the
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Figure 10. Time series of 2020 and 2021 UAVSAR 1SWE retrievals compared with SWE from (a) the Joe Wright SNOTEL station
(JW), (b) the Phantom Valley SNOTEL station (PV), (c) the Lake Irene SNOTEL station (LI), (d) the Willow Park SNOTEL station (WP),
(e) the Colorado Avalanche Information Center weather station (CAIC), (f) the Cameron Peak field site weather station (CPWS), and (g) the
Montgomery Snow Stake site (MSS). Mean 9-pixel coherence is shown for each UAVSAR point. (h) Comparison between SNOTEL SWE
and cumulative UAVSAR SWE for the last UAVSAR flight for each year. For sites (e–g), only snow depth was observed, and SWE was
estimated using density recorded at the closest SNOTEL station (Joe Wright SNOTEL). Methods describing the alignment of the UAVSAR
time series to the automated stations are described in Sect. 3.3.

InSAR time series and the automated stations was poorer
in 2020 than in 2021 (Fig. 10). One potential explanation
for the lower agreement in 2020 was the significant devi-
ation (> 10 m) from the cross-track and vertical baselines
of the aircraft during the 2020 flights (Jones et al., 2016;
NASA UAVSAR, 2023). UAVSAR 1SWE spatial patterns
are similar to those of TLS 1SWE (Fig. 9), and the compar-
ison of UAVSAR and GPR 1SWE site-wide distributions
reveals nearly identical medians (absolute median difference
= 2 mm; Fig. 7b–c). We found that low coherence did not
substantially increase the RMSE of UAVSAR 1SWE re-
trievals as the RMSE was less than 35 mm for > 10 d tem-
poral baselines (Fig. 8). However, lower coherence for In-
SAR pairs with > 10 d temporal baselines exhibited issues
with phase unwrapping. Collectively, these findings suggest a
high degree of accuracy and reliability for InSAR1SWE re-
trievals, particularly in relatively simpler environments (i.e.,
dry snow conditions, non-forested areas, slopes < 20°) and
when atmospheric delays are limited.

5.2 Considerations for future evaluations of InSAR
1SWE retrievals

The NISAR satellite mission holds promise for global repeat
12 d 1SWE retrievals, providing the opportunity to evalu-
ate the L-band InSAR technique in a range of environments
and to better assess its uncertainties. In our evaluation, we
used two ground-based methods that many snow commu-
nity researchers have access to and showed that both meth-
ods are capable of assessing InSAR 1SWE retrieval accu-
racy. Both methods can be used to derive spatially continu-
ous SWE measurements over large areas and are therefore
advantageous over standard in situ SWE measurement meth-
ods (Holbrook et al., 2016; McGrath et al., 2019). Below we

outline advantages, considerations, and challenges of GPR
and TLSs for InSAR evaluation.

Few methods match the sophistication of InSAR for
change detection. Of the two techniques we employed in
our evaluation, lidar is the most applicable for change de-
tection (Deems et al., 2013), but its methodology for 1SWE
retrievals is not straightforward. There are two conceptual
paths for 1SWE retrievals from lidar: (1) subtraction of two
repeat snow-on lidar elevation surveys or (2) subtraction of
two bulk SWE datasets derived from lidar. The first option
is complicated by snow compaction, while the second op-
tion requires accurate bulk snow densities and a snow-off
bare-earth digital terrain model, which may be difficult to ac-
quire in densely vegetated areas. We chose the second option
because bulk density variability is less of a concern for the
relatively small areas surveyed by the TLSs (Bonnell et al.,
2023). We found the best agreement between UAVSAR and
TLS 1SWE retrievals for surveys that were aligned on the
same date, as differential SWE accumulation/redistribution
increased uncertainty (Fig. 9). Note that if the TLS platform
is set up on top of the snowpack, accurate TLS 1SWE re-
trievals may be hindered by small shifts in the TLS platform
as it settles in the snow (Currier et al., 2019).

Repeat GPR transects also have several challenges. Our
survey methodology involved marking our transects and
post-processing the onboard GPS sensor (±0.25 m accu-
racy), but it is likely that our tracks were offset by ±1–
2 m from the transect for some surveys. Further, as SWE
increases throughout a season, the twt to the ground reflec-
tor increases, effectively increasing both the GPR horizon-
tal footprint and the potential for clutter in the radargram
(Daniels, 2004). Surface-coupled GPR has the potential to
both compact the snow below the sled and remove snow from
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the surface (e.g., McGrath et al., 2019), which may further in-
crease the uncertainty of GPR 1SWE retrievals, particularly
in low-density snow on the surface of the snowpack. These
complications may explain the low Pearson’s correlation co-
efficients observed between UAVSAR and GPR 1SWE re-
trievals for single InSAR pairs (r =−0.24 to +0.2; Ta-
ble S4), as well as the low GPR–UAVSAR 1SWE retrieval
relation (r2 < 0.1) described by Tarricone et al. (2023). How-
ever, as our analysis shows, repeat GPR transects are effec-
tive at evaluating the InSAR technique if there are enough
data collected across a range of SWE accumulation magni-
tudes (Fig. 7).

A major difference between UAVSAR and planned
NISAR interferograms is the spatial resolution (∼ 5
vs. 80 m), which may complicate future NISAR 1SWE re-
trieval ground-based evaluations. GPR surveyed along tran-
sects scaled well to the resolution of UAVSAR, but a dif-
ferent survey design (i.e., spiral or grid) may be required to
provide sufficient coverage of the NISAR pixels. Thus, GPR
may have increased uncertainty in its scalability due to a dif-
ficulty of repeating complicated survey designs. Lidar is scal-
able to coarser resolutions (e.g., 50 m; Painter et al., 2016),
and TLS and drone-mounted lidar (e.g., Feng et al., 2023)
may be valuable tools for evaluating InSAR1SWE retrievals
at small field sites. However, at larger scales, comprehen-
sive airborne lidar surveys will be required to fully evaluate
NISAR 1SWE retrievals.

5.3 Remaining questions for the L-band InSAR 1SWE
retrieval technique

L-band InSAR has been seen as a promising technique for
high-resolution snow monitoring for over a decade (Deeb
et al., 2011), yet insufficient opportunities existed for robust
evaluations. In the last few years, airborne InSAR campaigns
over seasonal snowpacks have created opportunities for a
more thorough evaluation of this technique. Our study and
others show that this technique can have a high accuracy, but
there are several areas of uncertainty that need to be consid-
ered, including forested environments, wet snowpacks, com-
plex topography that results in steep incidence angles, spa-
tially varying atmospheric delays, and the integration of In-
SAR 1SWE retrievals with other remote sensing methods
and models.

Recent UAVSAR studies (Hoppinen et al., 2024; Marshall
et al., 2021; Palomaki and Sproles, 2023; Tarricone et al.,
2023), including this study, have largely focused on 1SWE
retrievals in open environments. We found that 1SWE re-
trievals were 66 % higher on average in the open areas around
the MR field site than below forest cover. Forest canopy in-
terception and sublimation may play a role in this signal, be-
cause this process is known to drive a 20 %–30 % reduction
of total snowfall at the nearby Fraser Experimental Forest
(Montesi et al., 2004). On the other hand, a contrast between
lower snow surface densities in the forest compared with the

potentially higher densities we measured in the open could
explain a similar magnitude of the signal. Unfortunately, we
are unable to validate the forest 1SWE retrievals as only
20 % of GPR observations in 2020 and 10 % of GPR observa-
tions in 2021 were collected below spruce–fir canopy (15 %–
70 % canopy cover). Forests interfere with the radar signal,
reducing coherence and potentially biasing retrievals, partic-
ularly for longer temporal baselines (Li et al., 2022; Ruiz
et al., 2022). However, coherence only improved by +0.05
from forests to open areas at our field sites, and even the
removal of canopy due to the Cameron Peak wildfire only
increased coherence by +0.04. Thus, because of its canopy
penetrative capabilities, the L-band InSAR 1SWE retrieval
technique may be the first satellite-based technique viable for
SWE monitoring in forests.

At our site, UAVSAR flights occurred during the accumu-
lation season when the snowpack was likely dry (Fig. 3e–
f). However, SWE monitoring is needed for snowpacks that
accumulate at or near 0 °C and for the melt season, mak-
ing1SWE retrieval evaluation prioritized in wet snowpacks.
Liquid water in the snowpack raises both the real and imag-
inary components of relative permittivity, which decreases
the snowpack radar velocity and increases absorption of the
radar signal, causing decreased signal penetration (Tsai et al.,
2019). Even if the backscattering interface is unchanged, re-
duced radar velocity causes 1SWE retrieval overestimation
if the liquid water content is not considered (Bonnell et al.,
2021; Tarricone et al., 2023). Tarricone et al. (2023) eval-
uated 1SWE retrievals with the Landsat fractional snow-
covered area product and found reasonable snowpack abla-
tion over a 14 d period in Valles Caldera, New Mexico, but
Hoppinen et al. (2024) found reduced 1SWE retrieval ac-
curacy in wet snowpacks. Wet snow detection techniques
have been developed and implemented at the C-band (e.g.,
Gagliano et al., 2023; Nagler and Rott, 2000; Nagler et al.,
2016), and similar techniques should be evaluated at L-band
frequencies (e.g., Park et al., 2014).

6 Conclusions

During the winters of 2020 and 2021, UAVSAR collected
L-band InSAR datasets over 12 mountainous regions of the
western United States, including continental snowpacks of
Colorado, intermountain snowpacks of Idaho and Montana,
maritime snowpacks of California, and shallow mountain
snowpacks in New Mexico. At the Cameron Pass field site,
we used extensive GPR and TLSs to evaluate UAVSAR
1SWE retrievals over a three-pair time series (4 weeks) that
saw 121 mm SWE accumulation in 2020 and a seven-pair
time series (9 weeks) that saw 206 mm SWE accumulation in
2021. Our analysis was not complicated by the presence of
liquid water within the snowpack, and we emphasized GPR
and TLS collection in open areas at our field sites. Our results
indicate accurate statistical distributions for the L-band In-
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SAR method for areas without forest cover (absolute median
difference = 2 mm compared to GPR), but low correlation
coefficients (r =−0.24 to +0.2) for individual InSAR pairs
warrant caution for 1SWE interpretation at the single-pixel
scale. UAVSAR 1SWE retrievals exhibited distinct and re-
peated spatial patterns relating to the land cover, as forests
averaged 66 % less 1SWE per InSAR pair than open mead-
ows, burned forests, and avalanche alleyways in forests. We
expanded our in situ SWE observations to include seven au-
tomated weather stations distributed throughout the swath
and highlighted the utility of the InSAR method for measur-
ing cumulative SWE (RMSE = 42 mm), a requirement for
any SWE remote sensing method. We found that the range in
RMSE from coherences of 0.10–0.90 was < 10 mm, indicat-
ing that low coherence does not necessarily inhibit the accu-
rate retrieval of 1SWE. Although our ground observations
did not target forested areas, we found the median coherence
in the forests averaged 0.05 less than in the open meadows,
suggesting 1SWE retrievals may be viable in these envi-
ronments, but the location of the amplitude center as forest
cover increases remains an active question. Collectively, our
study supports the use of L-band InSAR for measuring SWE
in mountain snowpacks, further highlighting the potential of
NISAR and other upcoming L-band SAR satellites to con-
tribute substantially to global SWE monitoring.

Appendix A

A1 L-band transmissibility

At L-band frequencies (1–2 GHz,∼ 0.25 m wavelength), dry
snow is fully transmissible because of limited interactions
between snow grains and the radar signal (Tsai et al., 2019).
The bulk of reflected energy is returned from the snow–
ground interface for areas without dense vegetation (Nagler
et al., 2022), but uncertainty regarding the source of the pri-
mary backscattering surface increases with increased vege-
tation density because the L-band signal interacts with tree
trunks, large branches, and dense vegetation (Ottinger and
Kuenzer, 2020).

A2 The InSAR technique for 1SWE retrievals

A2.1 Introduction to the InSAR technique

SAR emits polarized radar signals at a given frequency and
narrow bandwidth and records the amplitude and phase of
backscattered signal (Woodhouse, 2017). InSAR is a change
detection technique that calculates the phase change between
two radar signals operating at identical wavelengths and po-
larizations. Guneriussen et al. (2001) proposed a method for
removing the snow accumulation signal from interferomet-
ric pairs where at least one of the acquisitions occurred dur-
ing the snow season. Their proposed method forms the ba-
sis for most published InSAR 1SWE retrieval techniques

and is the one we implement. We applied this technique to
repeat airborne acquisitions and assume the phase deforma-
tion is primarily due to the accumulation or redistribution of
snow. We accessed unwrapped interferograms from the ASF
Distributed Active Archive Center (DAAC). Interferograms
were unwrapped by the UAVSAR team, following the inte-
grated and correlation unwrapping method (Goldstein and
Werner, 1998). This technique relies on the interferometric
coherence (γ ), which is calculated as

γ =
E[u1u

∗

2]√
E[|u1|2]

√
E[|u2|2]

, (A1)

where E is the expected value of a given variable, and u1 and
u2 are the amplitudes for the two image pairs (Woodhouse,
2017).

In the case of snow, the amplitude center is assumed to be
the snow–ground interface, and any deformation in phase is
expressed as

φ = φflat+φtopo+φatm+φs+φerr, (A2)

where the total interferometric phase change (φ) is expressed
as the sum of the phase changes that arise from changes
in the relative distance between the radar platform and the
ground target for flat Earth (φflat) and topography (φtopo),
changes in the atmospheric conditions that cause signal de-
lays (φatm), the changes in phase caused by the change in
snow depth or SWE (φs), and phase changes caused by in-
strument noise (φerr; Deeb et al., 2011). Instrument noise
can manifest as random error or systematic error, which can
result from a non-constant flight track (Jones et al., 2016).
Topographic corrections are minimized by the UAVSAR in-
strument, as it performs acquisitions within a repeated 10 m
tube, but both the topographic and flat-Earth contributions to-
wards total phase change are accounted for in the UAVSAR
unwrapped interferograms. However, atmospheric delays,
caused by changes in atmospheric pressure and water vapor
mass that occur between acquisitions, may influence the in-
terferometric phase change (Bevis et al., 1992).

A2.2 Atmospheric correction for UAVSAR

Atmospheric delays are generally described as stratified or
turbulent, where stratified delays are manifested as phase
ramps or are correlated with topography and occur due to
relatively homogeneous differences in atmospheric condi-
tions, whereas turbulent delays are more difficult to iden-
tify and are caused by heterogeneous differences in atmo-
spheric conditions (Hu and Mallorquí, 2019). Modeling at-
mospheric delays from airborne platforms is complicated,
primarily due to the relatively coarse vertical resolution of
most atmospheric reanalysis/forecast products that extends
higher than the UAVSAR flight altitude (∼ 12.5 km). Three
recently developed methods may be applicable for our study:
(1) a statistical approach that models delays assuming a strat-
ified atmosphere (Tarricone et al., 2023), (2) an approach that
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integrates phase delays along the signal path using ERA5 at-
mospheric data (Hoppinen et al., 2024), and (3) modeling
the turbulent delay from atmospheric pressure and precip-
itable water using the High-Resolution Rapid Refresh Model
(HRRR; Gong et al., 2013). We chose the Tarricone et al.
(2023) approach, which has higher spatial resolution than ei-
ther the ERA5 or HRRR methods, and developed a workflow
to evaluate the need for a stratified atmospheric correction.

The workflow estimates an atmospheric correction as a
best-fit plane across the UAVSAR scene, by regressing the
unwrapped phase at snow-free pixels with the radar signal
path length. Before the analysis, we defined requirements
that the atmospheric correction had to meet in order to be im-
plemented: (1) regression slope estimators needed to be iden-
tical across all four polarizations, and the estimator’s p value
needed to be < 0.05; (2) coefficients of determination (r2)
were required to be > 0.20; and (3) the root mean square
error (RMSE) of atmospherically corrected 1SWE had to
improve the RMSE of uncorrected 1SWE by > 20 %.

Sentinel-2 Level 2A (surface reflectance) 2020 and 2021
products were accessed in Google Earth Engine at 10 m res-
olution. Clouds were removed for each image, and an av-
erage image was composited for all Sentinel-2 acquisitions
between UAVSAR flights. The normalized difference snow
index (NDSI; Dozier, 1989) between green and shortwave
infrared (SWIR) bands was calculated as

NDSI=
Bandgreen−BandSWIR

Bandgreen+BandSWIR
. (A3)

We then masked out forests from the scene using the Coper-
nicus Global Land Cover 100 m dataset (Figure S1). Snow-
free pixels were identified as NDSI < 0.2, based on visual
inspection of the optical imagery. We then regressed the un-
wrapped phase at snow-free pixels against the radar signal
path length to estimate a phase ramp for each InSAR pair.
We calculated RMSE for both atmospherically corrected and
uncorrected datasets using SNOTEL1SWE calculated from
the four SNOTEL stations (Table S2) where we took the me-
dian of the nearest nine UAVSAR1SWE pixels but removed
stations that had coherence < 0.5. No single interferogram
met our listed requirements (Table S1). We conclude that
stratified atmospheric delays may be present but do not sub-
stantially affect the accuracy of 1SWE retrievals.

A2.3 Calculating InSAR 1SWE retrievals

Assuming all other phase terms are accounted for (Eq. A2),
1SWE can be calculated from the snow phase term, the radar
wavelength (λ; ∼ 0.238 m), the local incidence angle (θinc),
and the relative permittivity (εs). Because the radar signal in-
tersects the snowpack obliquely, the unwrapped phase must
be projected to the surface normal using the local incidence
angle. We calculated incidence angles in uavsar_pytools
(Hoppinen and Tarricone, 2022) as

θinc =−n̂· ‖ lkv ‖, (A4)

where n̂· ‖ lkv ‖ is the dot product of the surface normal cal-
culated from a DEM and the magnitude of the UAVSAR-
provided look vector (containing the east, north, and up com-
ponents).

Relative permittivity describes the ratio of the dielectric
permittivity of a material to the dielectric permittivity of
free space (Daniels, 2004). In dry snow, relative permittiv-
ity is determined primarily by the snow density, whereas
liquid water content becomes the defining variable in wet
snow (Bonnell et al., 2021; Koch et al., 2014). We concluded
that the snowpack was dry throughout our field campaigns
(Sect. 4.1). We calculated relative permittivity from the Ko-
vacs et al. (1995) equation, which was found to have an
RMSE = 54 kg m−3 for densities derived in Colorado (Bon-
nell et al., 2023). The equation

εs =
(

1+ 0.845
ρs

1000

)2
(A5)

calculates the relative permittivity of snow from the snow
density (ρs) in kg m−3 and represents the median of pub-
lished dry snow relative permittivity equations (Di Paolo et
al., 2020). We estimated the relative permittivity of the snow-
pack surface using an estimate of the snowpack surface den-
sity. The change in snow depth (1ds) is given as

1ds =
λφs

4π
×

1

cosθinc−
√
εs− sin2θinc

. (A6)

At the UAVSAR wavelength and for a given θinc = 1.2 rad
and a snow surface εs = 1.270 (ρs = 150 kg m−3), phase
wrapping occurs at 1ds = 0.72 m or 1SWE= 108 mm. Fi-
nally, 1SWE is calculated by multiplying the snow depth by
the surface density:

SWE= ds× ρs. (A7)

A2.4 Evaluation of the Leinss et al. (2015) linear
approximation for InSAR 1SWE retrievals

For dry snow, InSAR phase change has a near-linear depen-
dence upon the change in SWE (Guneriussen et al., 2001;
Leinss et al., 2015; Oveisgharan et al., 2024), and such a rela-
tion can be leveraged to derive InSAR1SWE independent of
density or relative permittivity measurements. In our study,
we calculated 1SWE using the density-dependent method
(Eqs. A6–A7) because surface density was a target variable
during the surveys (Fig. 3), and several previous studies have
opted to use the density-dependent method because airborne
platforms yield a much larger range of incidence angles than
satellite platforms (e.g., Hoppinen et al., 2024; Marshall et
al., 2021; Nagler et al., 2022; Tarricone et al., 2023). We eval-
uated the utility of the Leinss et al. (2015) approximation for
1SWE using the 16–22 March 2021 HH InSAR pair. The
equation

1SWE=
φsλ

2πα
(1.59+ θ

5
2

inc)
−1 (A8)
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modifies Eq. (A6) using the Matzler (1996) permittivity
model such that 1SWE is calculated from the phase change,
the radar wavelength, the incidence angle, and an optimiza-
tion parameter (α). Readers are referred to Leinss et al.
(2015) for a review of the optimization parameter. Given the
range of incidence angles and snow densities at our field
sites, we chose α = 1.02. The linear approximation results
in nearly identical 1SWE retrievals (r = 0.99; Fig. S4a–c),
and the comparison with GPR1SWE retrievals yields nearly
identical statistical distributions and performance statistics
(Fig. S4d–f). We conclude that the Leinss et al. (2015) ap-
proximation may be an appropriate alternative for1SWE re-
trievals from airborne platforms.

A2.5 Incidence angle analysis

The incidence angles used to calculate 1SWE from the
UAVSAR unwrapped phase datasets were derived by down-
sampling from the Copernicus 30 m DEM. The Coperni-
cus 30 m DEM was derived from TanDEM-X acquisitions,
which operates at 9.6 GHz center frequency, and the DEM
has increased uncertainty over forested landscapes. Here, we
evaluated the uncertainty for 1SWE retrievals caused by er-
rors in the Copernicus-derived incidence angles by calculat-
ing incidence angles from a 0.5 m lidar digital terrain model
collected in September 2021 (Adebisi et al., 2022) over a
subset of the UAVSAR swath that includes our field sites.
Although the Copernicus-derived incidence angles display
similar trends compared to the lidar-derived incidence an-
gles, a comparison between the two products reveals high
variability between the two products (r = 0.08, RMSE =
20°; Fig. S5a–c). 1SWE retrieval uncertainty was estimated
through a Monte Carlo simulation with 100 000 realizations
around a mean incidence angle of 52.8° and a 20° standard
deviation, approximated from the RMSE of the Copernicus-
derived incidence angles (Fig. S5d). A density of 150 kg m−3

and phase change of 0.5π were used for the1SWE inversion
(Fig. S5e). From the standard deviation of simulated1SWE,
we estimate a1SWE retrieval uncertainty of±7 mm that can
be attributed to the use of the Copernicus-derived incidence
angles in this region.

A3 GPR for SWE retrievals

GPR is a geophysical method for subsurface imaging that,
when set up in the common-offset configuration, can mea-
sure the twt from the antennas to a reflector of interest. We
used an L-band GPR with a 1.0 GHz center frequency and
a 1.0 GHz bandwidth. GPR is a well-validated tool for esti-
mating spatially distributed snow depth and SWE (Koh et al.,
1996; Lundberg et al., 2006; McGrath et al., 2019). GPR sur-
veys aggregate signal traces to form radargrams, which map
reflection amplitudes with corresponding twt. For SWE re-
trievals, the reflector of interest is the snow–ground interface,
which manifests as the highest magnitude reflector at depth,

due to the high contrast between snow and soil permittiv-
ity. The radar velocity (vs) of the snowpack can be estimated
from the snowpack relative permittivity (Eq. A5):

vs =
c
√
εs
, (A9)

where c is the velocity of electromagnetic waves in free space
(Daniels, 2004). Then, the twt of the ground reflector can be
converted to snow depth:

ds = vs
twt
2
, (A10)

which is subsequently converted to SWE (Eq. A7).

Data availability. UAVSAR 1SWE products are archived with
Dryad (https://doi.org/10.5061/dryad.mkkwh7189, Bonnell et al.,
2024). GPR datasets used in this analysis are archived with
the NSIDC (https://doi.org/10.5067/SRWGLYCB6ZC4, Bonnell
et al., 2022; McGrath et al., 2021). Snow pits are archived
at the NSIDC (https://doi.org/10.5067/POT9E0FFUUD1, Ma-
son et al., 2023; https://doi.org/10.5067/QIANJYJGRWOV, Ma-
son et al., 2024), while probed snow depths from both sea-
sons are under review at the NSIDC. SNOTEL station data
are publicly available from the NRCS and were used for
the following stations: Joe Wright (https://wcc.sc.egov.usda.gov/
nwcc/site?sitenum=551, USDA, 2024a), Lake Irene (https://wcc.
sc.egov.usda.gov/nwcc/site?sitenum=565, USDA, 2024b), Willow
Park (https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=870, USDA,
2024c), and Phantom Valley (https://wcc.sc.egov.usda.gov/nwcc/
site?sitenum=688, USDA, 2024d). CPWS weather station data
are archived at HydroShare (https://www.hydroshare.org/resource/
a15f503ab00b4980a4bfbe7e8552f9a3, Kampf et al., 2022). TLS
point clouds are available at UNAVCO Inc. (https://tls.unavco.org/
projects/U-077/, Williams, 2021). NASA UAVSAR datasets are
available from UAVSAR or the ASF DAAC, including InSAR
pair products (i.e., unwrapped phase, coherence) and SLC prod-
ucts (i.e., look vectors; https://doi.org/10.5067/7PEQV8SVR4DM,
NASA UAVSAR, 2020, 2021). The Copernicus 30 m DEM, the
Copernicus Global 100 m Land Cover Dataset, and the Sentinel-2
Level 2A imagery were accessed via Google Earth Engine (Gore-
lick et al., 2017).
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