Articles | Volume 18, issue 8
https://doi.org/10.5194/tc-18-3723-2024
https://doi.org/10.5194/tc-18-3723-2024
Research article
 | 
20 Aug 2024
Research article |  | 20 Aug 2024

Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar

Taha Sadeghi Chorsi, Franz J. Meyer, and Timothy H. Dixon

Related authors

Evaluating the Feasibility of Scaling the FIER Framework for Large-Scale Flood Inundation Prediction
Kel N. Markert, Hyongki Lee, Gustavious P. Williams, E. James Nelson, Daniel P. Ames, Robert E. Griffin, and Franz J. Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3491,https://doi.org/10.5194/egusphere-2024-3491, 2024
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)
Jack Tarricone, Ryan W. Webb, Hans-Peter Marshall, Anne W. Nolin, and Franz J. Meyer
The Cryosphere, 17, 1997–2019, https://doi.org/10.5194/tc-17-1997-2023,https://doi.org/10.5194/tc-17-1997-2023, 2023
Short summary
Top-of-permafrost ground ice indicated by remotely sensed late-season subsidence
Simon Zwieback and Franz J. Meyer
The Cryosphere, 15, 2041–2055, https://doi.org/10.5194/tc-15-2041-2021,https://doi.org/10.5194/tc-15-2041-2021, 2021
Short summary
Iceberg topography and volume classification using TanDEM-X interferometry
Dyre O. Dammann, Leif E. B. Eriksson, Son V. Nghiem, Erin C. Pettit, Nathan T. Kurtz, John G. Sonntag, Thomas E. Busche, Franz J. Meyer, and Andrew R. Mahoney
The Cryosphere, 13, 1861–1875, https://doi.org/10.5194/tc-13-1861-2019,https://doi.org/10.5194/tc-13-1861-2019, 2019
Short summary
Instantaneous sea ice drift speed from TanDEM-X interferometry
Dyre Oliver Dammann, Leif E. B. Eriksson, Joshua M. Jones, Andrew R. Mahoney, Roland Romeiser, Franz J. Meyer, Hajo Eicken, and Yasushi Fukamachi
The Cryosphere, 13, 1395–1408, https://doi.org/10.5194/tc-13-1395-2019,https://doi.org/10.5194/tc-13-1395-2019, 2019
Short summary

Related subject area

Discipline: Frozen ground | Subject: Remote Sensing
InSAR-derived seasonal subsidence reflects spatial soil moisture patterns in Arctic lowland permafrost regions
Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri
The Cryosphere, 19, 1103–1133, https://doi.org/10.5194/tc-19-1103-2025,https://doi.org/10.5194/tc-19-1103-2025, 2025
Short summary
Benchmarking passive-microwave-satellite-derived freeze–thaw datasets
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
The Cryosphere, 19, 459–483, https://doi.org/10.5194/tc-19-459-2025,https://doi.org/10.5194/tc-19-459-2025, 2025
Short summary
Multitemporal UAV lidar detects seasonal heave and subsidence on palsas
Cas Renette, Mats Olvmo, Sofia Thorsson, Björn Holmer, and Heather Reese
The Cryosphere, 18, 5465–5480, https://doi.org/10.5194/tc-18-5465-2024,https://doi.org/10.5194/tc-18-5465-2024, 2024
Short summary
Land cover succession for recently drained lakes in permafrost on the Yamal Peninsula, Western Siberia
Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Aleksandra Efimova, Barbara Widhalm, Dorothee Ehrich, Timo Kumpula, Alexander Sokolov, and Svetlana Abdulmanova
The Cryosphere, 18, 4703–4722, https://doi.org/10.5194/tc-18-4703-2024,https://doi.org/10.5194/tc-18-4703-2024, 2024
Short summary
Multiple modes of shoreline change along the Alaskan Beaufort Sea observed using ICESat-2 altimetry and satellite imagery
Marnie B. Bryant, Adrian A. Borsa, Claire C. Masteller, Roger J. Michaelides, Matthew R. Siegfried, Adam P. Young, and Eric J. Anderson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1656,https://doi.org/10.5194/egusphere-2024-1656, 2024
Short summary

Cited articles

Alaska Satellite Facility: ASF Data Search, NASA [data set], https://search.asf.alaska.edu/, last access: 10 June 2024. a
Bakian-Dogaheh, K., Chen, R., Moghaddam, M., Yi, Y., and Tabatabaeenejad, A.: ABoVE: Active layer soil characterization of permafrost sites, northern Alaska, 2018, ORNL DAAC [data set], https://doi.org/10.3334/ORNLDAAC/1759, 2020. a
Bakian-Dogaheh, K., Chen, R. H., Yi, Y., Kimball, J. S., Moghaddam, M., and Tabatabaeenejad, A.: A model to characterize soil moisture and organic matter profiles in the permafrost active layer in support of radar remote sensing in Alaskan Arctic tundra, Environ. Res. Lett., 17, 025011, https://doi.org/10.1088/1748-9326/ac4e37, 2022. a, b
Bakian-Dogaheh, K., Chen, R., Yi, Y., Sullivan, T., Michaelides, R., Parsekian, A., Schaefer, K., Tabatabaeenejad, A., Kimball, J., and Moghaddam, M.: Soil Matric Potential, Dielectric, and Physical Properties, Arctic Alaska, 2018, ORNL DAAC [data set], https://doi.org/10.3334/ORNLDAAC/2149, 2023. a
Bartsch, A., Leibman, M., Strozzi, T., Khomutov, A., Widhalm, B., Babkina, E., Mullanurov, D., Ermokhina, K., Kroisleitner, C., and Bergstedt, H.: Seasonal progression of ground displacement identified with satellite radar interferometry and the impact of unusually warm conditions on permafrost at the Yamal Peninsula in 2016, Remote Sens., 11, 1865, https://doi.org/10.3390/rs11161865, 2019. a
Download
Short summary

The active layer thaws and freezes seasonally. The annual freeze–thaw cycle of the active layer causes significant surface height changes due to the volume difference between ice and liquid water. We estimate the subsidence rate and active-layer thickness (ALT) for part of northern Alaska for summer 2017 to 2022 using interferometric synthetic aperture radar and lidar. ALT estimates range from ~20 cm to larger than 150 cm in area. Subsidence rate varies between close points (2–18 mm per month).

Share