Articles | Volume 18, issue 8
https://doi.org/10.5194/tc-18-3723-2024
https://doi.org/10.5194/tc-18-3723-2024
Research article
 | 
20 Aug 2024
Research article |  | 20 Aug 2024

Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar

Taha Sadeghi Chorsi, Franz J. Meyer, and Timothy H. Dixon

Related authors

Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)
Jack Tarricone, Ryan W. Webb, Hans-Peter Marshall, Anne W. Nolin, and Franz J. Meyer
The Cryosphere, 17, 1997–2019, https://doi.org/10.5194/tc-17-1997-2023,https://doi.org/10.5194/tc-17-1997-2023, 2023
Short summary
Top-of-permafrost ground ice indicated by remotely sensed late-season subsidence
Simon Zwieback and Franz J. Meyer
The Cryosphere, 15, 2041–2055, https://doi.org/10.5194/tc-15-2041-2021,https://doi.org/10.5194/tc-15-2041-2021, 2021
Short summary
Iceberg topography and volume classification using TanDEM-X interferometry
Dyre O. Dammann, Leif E. B. Eriksson, Son V. Nghiem, Erin C. Pettit, Nathan T. Kurtz, John G. Sonntag, Thomas E. Busche, Franz J. Meyer, and Andrew R. Mahoney
The Cryosphere, 13, 1861–1875, https://doi.org/10.5194/tc-13-1861-2019,https://doi.org/10.5194/tc-13-1861-2019, 2019
Short summary
Instantaneous sea ice drift speed from TanDEM-X interferometry
Dyre Oliver Dammann, Leif E. B. Eriksson, Joshua M. Jones, Andrew R. Mahoney, Roland Romeiser, Franz J. Meyer, Hajo Eicken, and Yasushi Fukamachi
The Cryosphere, 13, 1395–1408, https://doi.org/10.5194/tc-13-1395-2019,https://doi.org/10.5194/tc-13-1395-2019, 2019
Short summary
Mapping pan-Arctic landfast sea ice stability using Sentinel-1 interferometry
Dyre O. Dammann, Leif E. B. Eriksson, Andrew R. Mahoney, Hajo Eicken, and Franz J. Meyer
The Cryosphere, 13, 557–577, https://doi.org/10.5194/tc-13-557-2019,https://doi.org/10.5194/tc-13-557-2019, 2019
Short summary

Related subject area

Discipline: Frozen ground | Subject: Remote Sensing
Landcover succession for recently drained lakes in permafrost on the Yamal peninsula, Western Siberia
Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Aleksandra Efimova, Barbara Widhalm, Dorothee Ehrich, Timo Kumpula, Alexander Sokolov, and Svetlana Abdulmanova
EGUsphere, https://doi.org/10.5194/egusphere-2024-699,https://doi.org/10.5194/egusphere-2024-699, 2024
Short summary
Allometric scaling of retrogressive thaw slumps
Jurjen van der Sluijs, Steven V. Kokelj, and Jon F. Tunnicliffe
The Cryosphere, 17, 4511–4533, https://doi.org/10.5194/tc-17-4511-2023,https://doi.org/10.5194/tc-17-4511-2023, 2023
Short summary
Brief communication: Identification of tundra topsoil frozen/thawed state from SMAP and GCOM-W1 radiometer measurements using the spectral gradient method
Konstantin Muzalevskiy, Zdenek Ruzicka, Alexandre Roy, Michael Loranty, and Alexander Vasiliev
The Cryosphere, 17, 4155–4164, https://doi.org/10.5194/tc-17-4155-2023,https://doi.org/10.5194/tc-17-4155-2023, 2023
Short summary
Bedfast and floating-ice dynamics of thermokarst lakes using a temporal deep-learning mapping approach: case study of the Old Crow Flats, Yukon, Canada
Maria Shaposhnikova, Claude Duguay, and Pascale Roy-Léveillée
The Cryosphere, 17, 1697–1721, https://doi.org/10.5194/tc-17-1697-2023,https://doi.org/10.5194/tc-17-1697-2023, 2023
Short summary
Contribution of ground ice melting to the expansion of Selin Co (lake) on the Tibetan Plateau
Lingxiao Wang, Lin Zhao, Huayun Zhou, Shibo Liu, Erji Du, Defu Zou, Guangyue Liu, Yao Xiao, Guojie Hu, Chong Wang, Zhe Sun, Zhibin Li, Yongping Qiao, Tonghua Wu, Chengye Li, and Xubing Li
The Cryosphere, 16, 2745–2767, https://doi.org/10.5194/tc-16-2745-2022,https://doi.org/10.5194/tc-16-2745-2022, 2022
Short summary

Cited articles

Alaska Satellite Facility: ASF Data Search, NASA [data set], https://search.asf.alaska.edu/, last access: 10 June 2024. a
Bakian-Dogaheh, K., Chen, R., Moghaddam, M., Yi, Y., and Tabatabaeenejad, A.: ABoVE: Active layer soil characterization of permafrost sites, northern Alaska, 2018, ORNL DAAC [data set], https://doi.org/10.3334/ORNLDAAC/1759, 2020. a
Bakian-Dogaheh, K., Chen, R. H., Yi, Y., Kimball, J. S., Moghaddam, M., and Tabatabaeenejad, A.: A model to characterize soil moisture and organic matter profiles in the permafrost active layer in support of radar remote sensing in Alaskan Arctic tundra, Environ. Res. Lett., 17, 025011, https://doi.org/10.1088/1748-9326/ac4e37, 2022. a, b
Bakian-Dogaheh, K., Chen, R., Yi, Y., Sullivan, T., Michaelides, R., Parsekian, A., Schaefer, K., Tabatabaeenejad, A., Kimball, J., and Moghaddam, M.: Soil Matric Potential, Dielectric, and Physical Properties, Arctic Alaska, 2018, ORNL DAAC [data set], https://doi.org/10.3334/ORNLDAAC/2149, 2023. a
Bartsch, A., Leibman, M., Strozzi, T., Khomutov, A., Widhalm, B., Babkina, E., Mullanurov, D., Ermokhina, K., Kroisleitner, C., and Bergstedt, H.: Seasonal progression of ground displacement identified with satellite radar interferometry and the impact of unusually warm conditions on permafrost at the Yamal Peninsula in 2016, Remote Sens., 11, 1865, https://doi.org/10.3390/rs11161865, 2019. a
Download
Short summary

The active layer thaws and freezes seasonally. The annual freeze–thaw cycle of the active layer causes significant surface height changes due to the volume difference between ice and liquid water. We estimate the subsidence rate and active-layer thickness (ALT) for part of northern Alaska for summer 2017 to 2022 using interferometric synthetic aperture radar and lidar. ALT estimates range from ~20 cm to larger than 150 cm in area. Subsidence rate varies between close points (2–18 mm per month).