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Abstract. Active-layer thickness (ALT) is estimated for a
study area in northern Alaska’s continuous-permafrost zone
using satellite data from Sentinel-1 (radar) and ICESat-2 (li-
dar) for the period 2017 to 2022. Synthetic aperture radar
(SAR) interferograms were generated using the Short Base-
line Subset (SBAS) approach. Displacement time series over
the thaw season (June–September) are fit well with a lin-
ear model (root mean square error (RMSE) scatter is less
than 7 mm) and show maximum seasonal subsidence of 20–
60 mm. ICESat-2 products were used to validate the interfer-
ometric synthetic aperture radar (InSAR) displacement time
series. ALT was estimated from measured subsidence using a
widely used model exploiting the volume difference between
ice and water, reaching a maximum depth in our study area of
1.5 m. Estimated ALT is in good agreement with in situ and
other remotely sensed data but is sensitive to assumed thaw
season onset, indicating the need for reliable surface temper-
ature data. Our results suggest the feasibility of long-term
permafrost monitoring with satellite InSAR. However, the
C-band (∼ 55 mm center wavelength) Sentinel radar is sensi-
tive to vegetation cover and, in our studies, was not success-
ful for similar monitoring in the heavily treed discontinuous-
permafrost zone of central Alaska.

1 Introduction

Permafrost is usually covered with soil or sediment – the ac-
tive layer – which freezes and thaws seasonally. The annual
freeze–thaw cycle causes surface height changes due to the
volume difference between ice and liquid water. Active-layer
thickness (ALT) can be estimated from the magnitude of

surface subsidence during the thaw season using simplified
physical models (Liu et al., 2012, 2014, 2015; Schaefer et al.,
2015; Hu et al., 2018). ALT is expected to increase as Arc-
tic temperatures rise and as permafrost undergoes long-term
thaw, releasing carbon dioxide and methane, both of which
are powerful greenhouse gases. The process thus represents
a potentially powerful positive feedback in the global climate
system (e.g., Schaefer et al., 2009; Turetsky et al., 2020). On
the other hand, the active layer can also moderate the im-
pact of surface temperature changes on deeper permafrost
(Dobinski, 2011), perhaps limiting rapid increases in ALT.
Frequent monitoring of ALT across the Arctic landscape is
clearly important, implying the need for remote sensing ap-
proaches.

In the last 3 decades, satellite-based interferometric syn-
thetic aperture radar (InSAR) has been used to monitor a va-
riety of Earth processes that generate subtle surface displace-
ments, including earthquake and volcano deformation and
reservoir compaction from fluid withdrawal (e.g., Bürgmann
et al., 2000). Recent examples include earthquake after-
slip (e.g., Sadeghi Chorsi et al., 2022b, a), volcano defor-
mation (e.g., Poland and Zebker, 2022; Grapenthin et al.,
2022), groundwater extraction (e.g., Castellazzi et al., 2016),
carbon sequestration (e.g., Yang et al., 2015; Vasco et al.,
2020), seismicity induced by fluid injection (e.g., Deng et al.,
2020), coastal sea ice dynamics (e.g., Dammann et al., 2019),
glacier velocity estimation (e.g., Strozzi et al., 2020), and
coastal flood hazards (e.g., Bekaert et al., 2017; Zhang et al.,
2022). Pioneering work by Liu et al. (2010, 2012) demon-
strated the utility of InSAR to monitor long-term permafrost
thaw and changes in ALT.
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Here, we use InSAR from the Sentinel-1 satellite constel-
lation to investigate permafrost thaw on part of the North
Slope of Alaska for the period 2017 to 2022, focusing on
multi-year changes in ALT and using available ICESat-2 li-
dar data to validate the InSAR result. Our study has the fol-
lowing objectives: (1) to examine the spatial distribution of
seasonal thaw subsidence amplitude using SAR interferom-
etry from 2017 to 2022, (2) to use the annual variation of
InSAR-measured displacements to estimate ALT and to com-
pare this to long-term in situ ALT observations, (3) to assess
the ability of the ICESat-2 ATL08 product to complement
InSAR data in permafrost regions, and (4) to test the influ-
ence of some environmental factors on the yearly variations
in ALT.

2 Previous work

Satellite remote sensing of permafrost has been ongoing for
at least 3 decades (e.g., Peddle and Franklin, 1993), focusing
on landslides and wildfires, thermokarst processes, and soil
moisture dynamics. The synthetic aperture radar (SAR) data
used in many of these studies come from satellites – includ-
ing Radarsat-1, Envisat, JERS-1, ERS-1 and -2, ALOS PAL-
SAR, TanDEM-X, COSMO-Skymed, TerraSAR-X, Envisat,
and Sentinel-1 – and airborne sensors – including UAVSAR
and AirMOSS. GNSS has also been exploited using the GPS-
IR (GPS interferometric reflectometry) technique. These
studies have been conducted in northern and central Alaska,
northern and western Canada, Greenland, Antarctica, Rus-
sia, and Tibet and have contributed to our understanding of
permafrost dynamics, providing insights into seasonal and
long-term changes in permafrost regions. Table 1 summa-
rizes these microwave-based studies, categorizing them into
three main technical applications: (1) seasonal thaw, (2) sea-
sonal and long-term subsidence, and (3) ALT estimation and
other scientific applications. The papers that are most rele-
vant to this study include Liu et al. (2010, 2012, 2015) and
Schaefer et al. (2015).

3 Study area

The Alaskan North Slope is bounded by the Brooks Range
to the south and southeast and the Arctic Ocean to the north.
Our main study site on the North Slope is a 15 km× 30 km
area in the vicinity of the Sag river and Dalton highway
(69.68° N, 148.7° W; Fig. 1). It is ∼ 50 km south of Prud-
hoe Bay and∼ 130 km north of the Brooks Range, located in
the continuous-permafrost region of Alaska, with more than
90 % permafrost coverage (Jorgenson et al., 2008).

Our study site includes the Circumpolar Active-Layer
Monitoring (CALM) site U8. The CALM program is de-
signed to monitor the active layer and permafrost sensitiv-
ity to climate change over extended periods, typically span-
ning multiple decades (Brown et al., 2000). CALM site U8

Figure 1. (a) DEM including the study area (black box) in north-
ern Alaska. The black box is expanded in Fig. 1b; the red boxes
outline focused test area shown in Fig. 5. The black triangle shows
the CALM site (U8) where ground-based measurements of ALT are
available. The blue circle represents the location of the closest mete-
orological station (Sagwon). (b) Line-of-sight (LOS) displacement
of the study area from 10 June 2022 to 2 September 2022 as mea-
sured by InSAR. Negative values mean displacement away from the
satellite, and positive values mean displacement towards the satel-
lite. The DEM relief map is shown in the background. Triangles
show the location of the CALM site and the displacement time se-
ries shown in Fig. 3. The black square represents the reference point
used for InSAR analysis.

has recorded ALT since 1996. The site encompasses a 1 ha
area containing 121 sample square arrays, each measuring
approximately 10 m horizontally. It is located 88 m above
sea level, is relatively flat, and lies within an inner coastal
plain with river terraces. The site has an organic layer that
is ∼ 23 cm thick and that is usually water-saturated dur-
ing thaw season. U8’s vegetation coverage is classified as
graminoid-moss tundra, graminoid prostrate dwarf shrub,
and moss tundra. Its soil texture is classified as predomi-
nantly sand, gravel, and peat. The soil taxonomy is Ruptic–
Histic–Aquorthel (Ping et al., 2015; Staff, 1999), i.e., a
poorly drained, occasionally to frequently water-saturated
soil with a significant amount of organic matter (https://
www2.gwu.edu/~calm/data/webforms/u8_f.htm, last access:
29 August 2023). A 12 km× 12 km test site around U8 (red
box in Fig. 1) is used for focused studies of ALT estimation
based on our InSAR-derived displacement estimates during
thaw season.

The circumpolar Arctic vegetation map (CAVM) at this
location describes graminoid and prostrate-dwarf-shrub veg-
etation 5–10 cm in height. This vegetation structure is favor-
able for shorter-radar-wavelength radars, such as Sentinel-
1’s C band (∼ 5.5 cm wavelength), for purposes of retain-

The Cryosphere, 18, 3723–3740, 2024 https://doi.org/10.5194/tc-18-3723-2024

https://www2.gwu.edu/~calm/data/webforms/u8_f.htm
https://www2.gwu.edu/~calm/data/webforms/u8_f.htm


T. Sadeghi Chorsi: Toward long-term monitoring of regional permafrost thaw with satellite InSAR 3725

Table 1. Microwave-based studies on permafrost monitoring.

Technical application Studies Scientific focus Data Study area

Seasonal thaw

Singhroy et al. (2007) Landslide and wildfire Radarsat-1 Mackenzie Valley, Canada
Rykhus and Lu (2008) – JERS-1 Alaskan Arctic Coastal Plain
Liu et al. (2010) – ERS-1 and ERS-2 North Slope of Alaska
Iwahana et al. (2016) Thermokarst, wildfire ALOS PALSAR, GPS North Slope of Alaska
Strozzi et al. (2018) – Sentinel-1 Multiple sites in Alaska, Green-

land, Russia, and Antarctica
Zwieback et al. (2018) Thermokarst TanDEM-X Tuktoyaktuk Coastlands,

Canada, and Lena River delta,
Russia

Bartsch et al. (2019) – Sentinel-1 and
COSMO-Skymed

Yamal, Russia

Wang et al. (2020) – Sentinel-1, TerraSAR-
X, ALOS PALSAR

Northern Canada

Seasonal and long-term subsidence

Liu et al. (2012) – ERS-1 and ERS-2 North Slope of Alaska
Daout et al. (2017) – Envisat Northwestern Tibet
Chen et al. (2018) – Sentinel-1 Yedoma, Russia
Liu and Larson (2018) – GPS-IR Barrow, Alaska
Hu et al. (2018) – GPS-IR Barrow, Alaska
Michaelides et al. (2019) Wildfire ALOS PALSAR Yukon–Kuskokwim delta,

Alaska
Chen et al. (2020) Soil moisture ALOS PALSAR Toolik, Alaska
Bernhard et al. (2020) Thermokarst TanDEM-X Northern Canada
Honglei et al. (2021) – ALOS PALSAR Qinghai–Tibet Plateau

ALT estimation; other

Liu et al. (2012) – ERS-1 and ERS-2 North Slope of Alaska
Schaefer et al. (2015) Thermokarst ALOS PALSAR Barrow, Alaska
Michaelides et al. (2019) Wildfire ALOS PALSAR Yukon–Kuskokwim delta,

Alaska
Chen et al. (2020) Soil moisture ALOS PALSAR Toolik, Alaska
Michaelides et al. (2021b) Soil moisture L-band UAVSAR and

AirMOSS P-band
Alaska and western Canada

Chen et al. (2023) Soil moisture L-band UAVSAR and
AirMOSS P-band

Alaska and western Canada

ing phase coherence, but it also suggests that accounting for
vegetation height will be important to assess seasonal and
longer-term elevation changes in this area.

4 Methods

4.1 InSAR data processing

4.1.1 Data and material

We used the Alaska Satellite Facility’s Hybrid Pluggable
Processing Pipeline (HyP3) software to form interferograms
from Sentinel-1 SAR data (Hogenson et al., 2020). HyP3
uses the Copernicus GLO-30 digital elevation model (DEM)
for scene co-registration and topographic phase corrections
(ESA, 2021). Interferograms were filtered using the adaptive
phase filter in Goldstein and Werner (1998). Individual inter-
ferograms were unwrapped using a minimum-cost-flow al-
gorithm (Chen and Zebker, 2002) and geocoded to a 30 m
grid spacing. We used the open-source Miami InSAR time
series software in Python (MintPy) to generate line-of-sight
(LOS) displacement time series from the unwrapped and
geocoded interferograms (Fattahi et al., 2016; Yunjun et al.,

2019). Interferograms with high spatial coherence and short
time intervals between scenes were chosen to avoid decor-
relation and phase-unwrapping errors. Phase-unwrapping ar-
tifacts occur in permafrost regions when disconnected wet-
lands and large seasonal deformation preclude smooth un-
wrapping of the phase (e.g., Strozzi et al., 2018). Noisy inter-
ferograms were removed from the time series and seasonal-
amplitude inversion processes (Sect. 4.3.2). Geocoded LOS
displacement data for active-layer thickness estimation were
then extracted for the study area.

Significant changes in scattering characteristics are ex-
pected during the freeze season when the surface is covered
with snow and ice; hence, we focus on the summer thaw sea-
son. Variations in soil moisture can also significantly affect
coherence. To mitigate this possibility, we looked for noisy
interferograms, which could be partly due to such moisture
changes, and excluded these from our analysis. We employed
two criteria to assess noise. First, we manually reviewed the
interferograms and eliminated noisy ones. Second, we as-
sessed the spatial coherence of the chosen interferograms to
ensure they all had high coherence. Note that data were col-
lected at a time where soil moisture was likely to be retained:
the period that begins immediately after snowmelt, when the
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soil column is saturated, and that ends near the end of thaw
season, when the soil column may still be wet due to the
complete thawing of any residual ice in the active layer. We
focused our study on the June to September time frame us-
ing Sentinel-1 SAR images with a 12 d revisit interval and
descending geometry for the years 2017 to 2022 (Table S1 in
the Supplement). Available meteorological data suggest no
anomalous drought periods during these years.

4.1.2 Reference point selection

InSAR measures phase differences between SAR observa-
tions in space and time. To relate these phase difference mea-
surements to surface displacement, a reference location with
assumed or known displacement is required, with high tem-
poral coherence (> 0.8) to avoid introducing noise into the
time series. In most permafrost regions, rock outcrops are a
good reference as they can be assumed to show only min-
imal displacement. However, they may not be available for
all regions. Liu et al. (2010) point out that river floodplains
usually have well-drained sandy soils and, hence, tend not to
experience significant frost heave. They may be used as ref-
erence points if they are not within a river channel, which can
undergo large elevation changes from erosion and/or deposi-
tion events (see Fig. S3 in the Supplement). Figure 1b shows
our reference point, a rock outcrop which remains coherent
(temporal coherence ∼ 0.95) during the 2017 to 2022 thaw
seasons.

4.1.3 Atmospheric-delay correction

Atmospheric effects are one of the main error sources in the
InSAR process (Meyer et al., 2006). While InSAR data can
be affected by both the ionosphere and the troposphere, here,
we focus on tropospheric effects as ionospheric impacts are
less pronounced in C-band data (Meyer, 2011). Tropospheric
phase impacts can be modeled as follows (Ding et al., 2008):

1φ = φ2−φ1 =
4π
λ
[d2− d1] +

4π
λ
[δd2− δd1], (1)

where φ is the phase of a SAR image, d is the range
from satellite to surface, δd is the tropospheric propagation
delay, and λ is the radar wavelength. Tropospheric phase
signals in InSAR data can be caused by two processes:
changes in the atmospheric stratification and turbulent mix-
ing. The stratified component typically correlates with to-
pography (Hanssen, 2001) and may be estimated and then
removed based on delay–elevation correlations (Doin et al.,
2009). The turbulent component is usually much less than the
stratified component but is uncorrelated in time and space
and, hence, is harder to predict or measure. According to
Eq. (1), if the atmospheric propagation conditions at the time
of SAR acquisitions are not the same (δd2− δd1 6= 0) then
tropospheric phase components will be introduced, contam-
inating the true displacement signal. Applying atmospheric

corrections to C-band radar images can improve the signal-
to-noise ratio, especially when there is a considerable height
difference between the study area and reference point. We
applied the atmospheric correction model described in Jo-
livet et al. (2011, 2014) using ECMWF Reanalysis (ERA-5)
datasets (Hersbach et al., 2020). This approach mainly re-
duces the stratification component of the tropospheric delay.

4.2 ICESat-2 data processing

To validate our InSAR measurements of thaw season sub-
sidence, we used independent lidar elevation data from
the ICESat-2 satellite (Martino et al., 2019). The ATLAS
(Advanced Topographic Laser Altimeter System) lidar on
ICESat-2 uses a multi-beam photon-counting laser operating
at 532 nm, i.e., the green portion of the electromagnetic spec-
trum. The surface range is determined by the travel time of
each detected photon. When coupled with the satellite’s po-
sition, the range data provide accurate geolocation of the sur-
face, in this case referenced to the WGS-84 ellipsoid. With
a laser repetition rate of 10 kHz, pulses occur approximately
every 70 cm on Earth’s surface. Each footprint is about 13 m
in diameter. Beam pairs, with different energies to adjust
for surface reflectance, are spaced about 3.3 km apart across
tracks, forming six tracks with beams in each pair separated
by 90 m. The ranging precision for flat surfaces is expected
to have a standard deviation of around 25 cm, primarily influ-
enced by ATLAS timing uncertainty (Neuenschwander et al.,
2019).

The ATL08 product algorithm is designed to extract ter-
rain and canopy heights from vegetated surfaces using the
geolocated photons (Neuenschwander et al., 2019). We used
the “h_te_best_fit” parameter, which estimates terrain height
by fitting a plane to along-track points in each 100 m seg-
ment and reports the height of the middle of the fitted
plane (Neuenschwander and Magruder, 2019; Neuenschwan-
der et al., 2021), reducing the impact of random errors. The
height of the terrain midpoint is calculated by choosing the
best fit among three models: linear, third-order, and fourth-
order polynomials applied to the terrain photons. This al-
lows for interpolation of the elevation at the midpoint of
the 100 m segment (Neuenschwander and Magruder, 2019;
Neuenschwander et al., 2021; Neuenschwander and Pitts,
2019). The standard deviation of terrain points around the
interpolated ground surface within the segment is one mea-
sure of surface roughness. Neuenschwander and Pitts (2019)
provide additional details describing the ATL08 algorithms.
ATL06 is an alternate-product algorithm, optimized for ice
surfaces, and it has been used in some permafrost studies
(e.g., Michaelides et al., 2021a) (see Supplement).

While the nominal temporal resolution of ICESat-2 data is
91 d, cloud cover often limits the amount of usable data in
Alaska (e.g., Neuenschwander and Pitts, 2019). Two repeat
track observations were available in our study area, acquired
on 8 June 2021 and 6 September 2021. Due to pointing-
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related uncertainty, observations are not always repeated in
expected locations, which amplifies the height uncertainty.
To address this issue, we divided the study area into 50 m grid
cells and assigned each observation from the 8 June 2021 and
6 September 2021 repeat tracks to one of those grid cells.
Figure S3 shows the height difference between all reported
terrain observations (ATL08) in the study area from the same
location between 8 June 2021 and 6 September 2021. In the
limited area where both InSAR and ICESat-2 data are avail-
able, we used the ICESat-2 data to compare to our InSAR
results (Fig. 3 and Supplement).

4.3 Active-layer-thickness estimation model

To relate the InSAR observations to ALT, we assume that
the measured LOS displacements are predominantly due to
vertical motion (negligible horizontal motion) and that this
vertical motion is caused by thawing ground ice in the active
layer. The assumption of negligible horizontal motion is jus-
tified because, over the short data time interval, the technique
is not sensitive to long-term tectonic motion. Displacements
from the M 6.4 August 2018 earthquake, ∼ 130 km east of
the study area (USGS hypocenter at 69.576° N, 145.291° W;
depth of 15.8 km) are negligible. Most surface motion in the
thaw season therefore likely reflects thawing ground ice. We
project the LOS displacements into the vertical direction us-
ing the local incidence angle (θ ) for each radar pixel (see
Eq. 3). We follow the simplified Stefan solution to estimate
the depth of thawing in the soil (Nelson et al., 1997) aided by
field-observed air temperature data. We also assume that sub-
sidence can be related to a simple thaw index, for example,
the accumulated degree days of thawing (ADDT). Our pro-
cedures are virtually identical to those described in Liu et al.
(2012) and Schaefer et al. (2015), with the exception that
we do not estimate multi-year subsidence and do not average
ALT across multiple thaw seasons. This enables us to directly
compare our space-based estimates with yearly ground truth
estimates from CALM site U8 and to evaluate inter-annual
changes in ALT.

4.3.1 Accumulated degree days of thawing calculation

To calculate ADDT, we use the NOAA Climate Data Online
(CDO) tool to find nearby meteorological stations. The clos-
est station is ∼ 30 km south of our test area (name: Sagwon,
Fig. 1a). We assume that our test area has the same tempera-
ture trend as this station for the 2017 to 2022 thaw seasons.
We define the first and last days with temperature > 0 °C as
the first and last days of the thaw season. ADDT is defined
by the following equation (Riseborough, 2003):

ADDT=

αs∫
0

(Ts− Tf)dt ≈
αs∑
0
T̄s, (2)

where αs is the duration of the thawing season in days. Ts is
surface temperature (°C), Tf is equal to the freezing point of
0 °C, and T̄s is daily mean surface temperature. Due to the
lack of in situ surface temperature data, we set T̄s using air
temperature observations.

4.3.2 Seasonal-amplitude inversion

The relationship between the seasonal vertical surface dis-
placement magnitude and ADDT can be written as follows
(Liu et al., 2012; Schaefer et al., 2015):

Di =
LOS

cos(θ)
= E(

√
A2,i −

√
A1,i)+ ε, (3)

where Di is the vertical-displacement estimate for a given
pixel in the ith interferogram; θ is the local incidence angle at
that pixel calculated from nadir; andE is the amplitude of the
seasonal vertical-displacement estimate, which reflects phys-
ical parameters such as soil thermal conductivity, latent heat
of fusion, soil density, and relative water content (Nelson
et al., 1997). A1,i and A2,i are normalized accumulated de-
gree days of thawing at the first and second acquisition date.
ε is an error term that captures model deficiencies, noise,
and other unknown error sources. We do not consider secular
(long-term) displacement signals in Eq. (3) because we ana-
lyze the thaw seasons of 2017 to 2022 separately. This is the
major difference between our approach and those described
in Liu et al. (2012), Schaefer et al. (2015), and Michaelides
et al. (2019), where seasonal and inter-annual trends were
estimated simultaneously.

We can rewrite Eq. (3) in matrix form considering the
interferograms listed in Table S1 to estimate E using least
squares for separate thaw seasons:
D1
D2
...

DN

=

√
A2,1−

√
A1,1√

A2,2−
√
A1,2

...√
A2,N −

√
A1,N

 [E]. (4)

4.3.3 Active-layer-thickness inversion

If we assume that the seasonal vertical surface displacement
amplitude E is caused only by thawing ice and correspond-
ing volume reduction, we can write E as a function of phys-
ical properties such as soil porosity, soil moisture fraction,
and density of ice and water through a vertical profile from
the surface to the depth of the active layer (Liu et al., 2012;
Schaefer et al., 2015):

E =
ρw− ρi

ρi

ALT∫
0

P(z)S(z)dz. (5)

The variables ρw and ρi in Eq. (5) are the density of water and
ice (kgm−3), respectively. P(z) is the soil porosity, which is
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a function of depth and depends on soil content, and S(z) is
the soil moisture fraction of saturation. Following Schaefer
et al. (2015), we assume S(z)= 1, which means that the ac-
tive layer is fully saturated, and saturation does not change
with depth.

4.3.4 Porosity model

Following earlier authors, we assume that soil in the active
layer consists of organic matter and mineral soil, with poros-
ity decreasing exponentially with depth due to decreasing or-
ganic matter. There is one active CALM site in our test area:
U8 (Fig. 1b). This site is described as having an organic-layer
of thickness 23 cm, consisting mainly of peat plus sand and
gravel (Sect. 3). We applied the formulation introduced by
Liu et al. (2012) and assume that it is the weighted average
of organic and mineral matter.

P = forgPorg+ (1− forg)Pmin (6)

In the above, P is the porosity, and forg is defined as the
organic soil fraction by Schaefer et al. (2009) as follows:

forg =
Morg

Morg_max
=

ρorg

ρorg_max
. (7)

In Eq. (7), Morg and ρorg are the simulated masses of or-
ganic matter and organic soil density in a given layer of soil,
respectively. Morg_max and ρorg_max are bulk organic matter
mass and bulk density for pure organic soil, respectively. We
set Porg = 0.95 based on the model from Bakian-Dogaheh
et al. (2022). The porosity of mineral soil then depends on the
sand fraction of soil. To estimate Pmin we used the porosity–
sand fraction relation provided in Liu et al. (2012):

Pmin = 0.489− 0.00126 frsand. (8)

We used Global Land Data Assimilation System (GLDAS)
soil parameters with 0.25° spatial resolution to extract the
soil sand fraction (Rodell et al., 2004). We set Pmin = 0.488
and ρorg_max = 130 kgm−3 for the bulk density of peat (Gri-
gal et al., 1989; Hossain et al., 2015). As mentioned earlier,
to formalize with depth, we assume that the organic matter
amount decreases exponentially with depth:

ρorg = B exp(−kz), (9)

where k is an empirical constant (m−1), set to 5.5 (Liu et al.,
2012; Jackson et al., 2003). To retrieve B, we use the simu-
lated mass of organic matter (Morg: total soil carbon content)
from Johnson et al. (2011) and Mishra and Riley (2012) and
ensure that the total carbon mass is conserved:

root∫
0

B exp(−kz)dz=Morg. (10)

Figure 2. Depth–porosity model used in this study assuming a mix-
ture of organic and mineral matter.

We set Morg = 70 kgm−2 (Johnson et al., 2011; Mishra and
Riley, 2012). The spatial divergence of total soil carbon con-
tent for the 0–100 cm depth range is large in Arctic tundra
regions considering the vegetation type. Mishra and Riley
(2012) and Johnson et al. (2011) estimate the total soil carbon
around our study area to be 60–80 kgm−2 and 50–70 kgm−2,
respectively. Root depth is the maximum observed ALT at a
given site since roots cannot penetrate solid ice. Here, we
set the maximum root depth to be 1.1 m because the maxi-
mum observed ALT at site U8 is reported to be ∼ 1.1 m for
2022. Then we solve Eq. (10) for B and replace it in Eq. (9).
Figure 2 shows the relation between porosity and depth in
a mixed soil. We set P = 0.95 for the first ∼ 23 cm depth,
reflecting organic matter thickness. After 23 cm depth, the
porosity decreases exponentially, reaching its minimum near
the top of the frost table. Finally, we put all equations into
Eq. (5) and use a numerical-bisection algorithm to solve for
the upper integral limit, ALT. We set the accuracy of bisec-
tion to be at the millimeter level.

5 Results and discussion

5.1 Estimating seasonal vertical displacement

Figure 3 shows displacement time series for the four test
locations shown in Fig. 1b. All four locations show subsi-
dence during thaw season. The maximum amplitude of sub-
sidence ranges from 20 mm (location 4) to 60 mm (location
1). In 2021, the subsidence amplitude was small and simi-
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lar among the four locations (∼ 20 mm). The subsidence rate
is approximately constant during the thaw season. The root
mean square error (RMSE) of the linear fit to the displace-
ment data is less than 7 mm at all four locations over all 6
years. The maximum subsidence rate observed during the
short (∼ 3–4 months) thaw season is ∼ 18 mm per month.

Note that we do not attempt to connect our displacement
time series across adjacent years. The freezing process, con-
sequent frost heave, and deep snow at these sites during win-
ter make phase connection difficult due to loss of coherence
(e.g., Strozzi et al., 2018). Nevertheless, our approach can
still be used to assess long-term (multi-year) changes in per-
mafrost, as shown in Sect. 5.3.

Figure 4 shows the seasonal subsidence rates at the four lo-
cations over the 6-year test period. No clear long-term trend
is observed. Location (1) has the largest rate variation, from
4 mm per month in 2018 to 18 mm per month in 2020. Loca-
tion (3) has the minimum rate variation at 5 mm per month
in 2017 to ∼ 10 mm per month in 2021. We do not observe
spatial correlation between subsidence rates at the various
locations. For example, location 1 shows the fastest subsi-
dence, with high rates in 2017, 2020, and 2022 but much
smaller rates in 2018, 2019, and 2021. Location 2’s fastest
subsidence occurs in 2019, while the fastest rates for loca-
tion 3 and location 4 occurred in 2019 and 2021.

5.2 Validation of InSAR surface displacement
estimates with ICESat-2 data

We used the ICESat-2 ATL08 data product to compare with
our InSAR time series of relative height change for the 2021
thaw season (Fig. 3). Comparisons using the optical lidar
data are primarily limited by cloud cover; however, all four of
our test locations had suitable ICESat-2 data at the beginning
and end of the 2021 thaw season. To minimize the effect of
systematic errors, we used repeat data from the same refer-
ence ground track (RGT= 1150) and considered only eleva-
tion change during thaw season, referencing the height of the
second acquisition (end of thaw season: 6 September 2021)
to the first (beginning of thaw season: 8 June 2021). The
height of the first date’s lidar data is assigned “zero eleva-
tion” to agree with the InSAR estimate. This is a reasonable
assumption because the two datasets have similar start dates
in 2021, namely 8 June for ICESat-2 and 3 June for SAR.

Figure 3 shows that, with these assumptions, the lidar and
radar approaches agree well. Since the two approaches to ele-
vation change estimation are independent, their agreement is
a strong validation of the InSAR approach despite being lim-
ited to a small number of test cases. The agreement between
the two approaches also suggests that our reference point
for the InSAR data experiences negligible change during the
study period. Reference point selection for InSAR is difficult
in remote permafrost regions as most areas undergo subsi-
dence during the thaw season. ICESat-2 data, when avail-

Table 2. Thaw onset and end and ADDT for 2017 to 2022 based on
Sagwon station (Fig. 1).

Year Thaw onset Thaw end ADDT
(month/day) (month/day) (°C day)

2017 5/24 9/19 980.8
2018 6/12 9.21 713.5
2019 5/20 9/14 1040.2
2020 5/21 9/19 875.7
2021 5/21 9/17 943.5
2022 5/19 9/21 970.8

able, could help in this regard but will be limited by pointing
errors, cloud cover, and density of the vegetation canopy.

We also tested the utility of ICESat-2’s ATL06 data prod-
uct (“h_li”) (Smith et al., 2019), described in the Supple-
ment. For this test, we expanded the comparison to a larger
number of sites and dates but otherwise used the same gen-
eral procedures as for the ATL08 product. For our original
four test sites, the ATL08 product shows better agreement
with the InSAR data (Figs. S4–S5). In our larger study area,
78 cells reported both ATL08 and ATL06 data. For these
cases, the two products are equivalent (within 1 cm height
difference) in 9 % of cases and agree within 10 cm in 61 %
of cases (Fig. S4). Including the four original test sites de-
scribed above, for the 15 cases where InSAR and ICESat-2
products were available, ATL08 shows better agreement with
InSAR in 8 cases, while ATL06 shows better agreement in 7
cases. In relatively flat areas, both data products show simi-
lar performance. The larger footprint of the averaged ATL08
data product (100 m) compared to ATL06 (40 m) may also
be advantageous given the high spatial variability of ALT
(see Sect. 5.3). The Supplement also includes a description
of the formal uncertainties associated with both the ATL06
and ATL08 data products.

5.3 Active-layer thickness estimation and validation

Figure 5 shows the seasonal vertical-displacement amplitude
and its RMSE calculated from Eq. (4) and the estimated ALT
from 2017 to 2022 in our test area (red box in Fig. 1) using
procedures described in Sect. 4.3. The minimum ALT oc-
curred in 2018 and 2021. The maximum ALT occurred in
2019 and 2020. The variation in these estimates may, in part,
reflect uncertainty in the thaw season length. Thaw season
usually starts around 20 May and ends around 20 Septem-
ber, but the accumulated degree days of thawing differ each
year. Sagwon station data for this time period show that max-
imum and minimum ADDT occurred in 2019 and 2018, re-
spectively (Table 2). The overall pattern of ALT remained the
same in 2017, 2018, 2021, and 2022 but differed in 2019 and
2020. Maximum ALT occurred to the west and southwest of
site U8. This was also true in 2019 and 2020, but spatial vari-
ation was higher than other years.
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Figure 3. LOS displacement time series for four test locations (black triangles in Fig. 1b) with respect to the first SAR acquisition in the
thaw season. Dashed black lines are the best-fitting regression lines for InSAR LOS displacement only. The rate and RMSE of fitted lines are
shown in the top left of each sub-figure. Red squares in 2021 show the ICESat-2 ATL08 terrain height product. The latitude and longitude
of each analyzed location are shown in the bottom left of each panel. Note that subsidence only occurs during the thaw season and not
throughout the entire year.

ALT, in some areas, showed a deeper-than-usual pattern in
2019 and 2020 but recovered in 2021 and 2022. For exam-
ple, an area a few kilometers southeast of U8 showed high
variability in 2019 and 2020 but a shallow ALT before (2017
and 2018) and after (2021 and 2022). A deeper ALT in 2019
correlates with ADDT. However, a deeper ALT in 2020 and a
shallower ALT in other years does not clearly correlate with
ADDT – 2020 was the second coolest thaw season in our
study period, with ADDT=∼ 876 °C day (Table 2).

We can compare our results with in situ data. CALM site
U8 is a 1 ha area with 121 samples in a square array. Each
sample area is 10× 10 m. Its ALT has been observed at the
end of the thaw season since 1996. Thaw depth is measured
by pushing a metal rod into the soil to refusal, assumed to
represent the top of the permanently frozen layer. ALT is

not reported if the probe intersects ponded water or rocks.
The mean of all 121 ALT measurements and the correspond-
ing RMSE values are reported. Our approach for reporting
InSAR-derived ALT is similar. The pixel closest to U8 and
adjacent pixels within 50 m in the east–west and north–south
directions are defined. We report the mean of these pixels and
their RMSE values for comparison with in situ data.

Figure 6 shows ALT data around the U8 CALM site for
different years. Our estimated ALT agrees within uncertainty
with the in situ data for all 5 of the years when data are avail-
able. In situ ALT is not reported for 2020. This agreement
suggest that our assumptions about model parameters, based
on available in situ data and the published literature, are rea-
sonable.
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Figure 4. Rate comparison of LOS displacement during the summer thaw season for the locations shown in Fig. 1b. The rate and an error
bar are from the linear fitted line (see Fig. 3).

Chen et al. (2020) estimated ALT and volumetric water
content for large areas in Alaska, including the U8 CALM
site, using L-band UAVSAR and AirMOSS P-band polari-
metric SAR, respectively. Their result is in good agreement
with the in situ data and this study considering joint uncer-
tainties. Data-processing details are provided in Michaelides
et al. (2021b) and Chen et al. (2023).

To assess the agreement between in situ data and estimated
ALT, we follow Liu et al. (2012) and use Eq. (11) to evaluate
whether a given year’s InSAR-based estimate of ALT is con-
sistent with the in situ observation given its data uncertainty:

r2
=

(
ALTMod−ALTObs

σObs

)2

, (11)

where the numerator is the residual between in situ and
InSAR-based ALT, and the denominator is the reported in
situ data uncertainty; r2 values lower than 1 indicate good
agreement. Except for the 2017 estimate, with r2

= 2, all
other years have r2 less than 1. The estimated ALT in 2022
shows the best agreement with r2

= 0.3. Figure S2 gives
more details.

Our results and the in situ data suggest that ALT exhibits
high spatial variability. It is generally assumed that ALT de-
pends on parameters such as ADDT, precipitation, and local
topography, the latter reflecting its influence on soil mois-
ture and aspect. Our results show a moderate correlation with
ADDT but no correlation with precipitation, although the lat-
ter could reflect the limited spatial resolution of the available
data.

The influence of local topography on ALT can be tested
by examining the available high-resolution in situ data. Data
from the U8 CALM site provide an excellent opportunity to
investigate both the spatial and temporal variability of ALT.
Over this small area, we expect that local topography will
show minimal year-to-year variation. Figure 7 shows ALT

variation over an 11×11 square array of sample points, with
each point sampling an area of 10× 10 m. Data are available
for the period between 1996 and 2022, with a gap in 2020.
The location is described in local coordinates. We also show
the RMSE of each grid point based on its average over this
time period and a time series of ALT for three representative
points in the array.

Even over this small area, we see no significant spatial or
temporal pattern in ALT over the quarter-century period of
available data. At least for this example, the influence of lo-
cal topography appears to be minimal, although we cannot
preclude microtopographic (less than 10 m) effects that vary
over time.

The Mann–Kendall test was employed to evaluate this in a
rigorous way. The test determines if a significant monotonic
trend is present for either increasing or decreasing ALT at
each grid point. Data spanning from 1996 to 2019 were an-
alyzed due to the absence of data in 2020. To maintain con-
sistency and account for possibly significant temporal varia-
tions in ALT, data from 2021 and 2022 were excluded. The
null hypothesis was rejected for 31.4 % of the cells; the re-
maining 68.6 % of cells do not show a statistically signifi-
cant trend. In other words, only 38 out of 121 cells had a
significant increasing or decreasing ALT trend. Among these
38 cells, 35 cells showed an increase in active-layer thick-
ness over the sample time period. The maximum RMSE of
the cells is ∼ 20 cm. Variation in the same grid cell over 2
consecutive years reaches as high as ∼ 60 cm. Since air tem-
perature (related to ADDT) and precipitation are unlikely to
vary significantly over this 100× 100 m area and since the
overall morphology is unlikely to vary significantly over this
time period, other factors must explain the variation in ALT.
Given that our estimated ALT aligns well with in situ ALT
(Figs. 6, S2) and that the long-term in situ ALT measure-
ments (2002–2022) show no correlation with ADDT and pre-
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Figure 5.

cipitation (Fig. 8), we suggest that other factors are likely to
be influencing the results. Micro-topographic effects, tempo-
ral changes in sub-surface moisture flow, soil organic con-
tent, and vegetation growth and decay are possible factors.
Nelson et al. (1998), Nelson et al. (1999), and Hinkel and
Nelson (2003) conclude that in situ ALT shows Markovian
behavior with high spatial and temporal variations.

5.4 Relation of meteorological parameters to
active-layer thickness

We investigated correlations between in situ ALT and sev-
eral meteorological parameters, including ADDT and pre-
cipitation, in thaw seasons from 2002 to 2022. ADDT and
precipitation data are from the Sagwon meteorological sta-
tion. Figure 8a shows the relation between ADDT and ALT.
From Stefan’s equation, we expect a positive correlation be-
tween ADDT and ALT. However, the correlation is weak
(R2
= 0.42; Fig. 8b), suggesting the influence of additional
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Figure 5. Estimated seasonal amplitude, its RMSE and ALT for study area (red box Fig. 1a, b) from 2017 to 2022. Black triangle shows
location of CALM site U8. White areas represent low coherence which are masked out in the model calculations. The Sag river runs south
to north in the center of each panel (see Fig. S3).

factors. Precipitation may influence ALT, e.g., by advecting
heat downward to promote permafrost thaw, but there are
additional factors to consider. For example, an increase in
soil moisture leads to a rise in the thermal conductivity of
soil, potentially increasing the depth of the active layer dur-
ing the thaw season. However, an increase in soil moisture
also increases the total amount of heat required for thaw-
ing, promoting a shallower active layer. Clayton et al. (2021)
showed that ALT has a positive correlation with volumetric

water content (VWC) in the upper 12 cm of soil, a negative
correlation with bulk VWC, and no statistically significant
correlation with VWC in the upper 20 cm of soil. We also
do not see a statistically significant correlation between ALT
and precipitation, perhaps reflecting these opposing impacts
(Fig. 8c).

We used simple regression analyses to relate ALT to sev-
eral multi-parameter factors, including ADDT, precipitation,
and accumulated degree days of freezing (ADDF) from the
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Figure 6. ALT comparison at CALM site U8. Blue triangles rep-
resent the average in situ ALT from manual mechanical probing
across all grid cells from 1996 to 2022 (https://www2.gwu.edu/
~calm/data/north.htm, last access: 29 August 2023). The green cir-
cle is the estimated ALT for the closest pixel to U8 using airborne
L- and P-band SAR images (Chen et al., 2022). Red squares (this
study) are the average estimated ALT for pixels within 50 m of U8.
In situ ALT is not reported for 2020.

previous year. However, these did not improve the correla-
tion. Perhaps other factors such as local elevation gradients
(influencing local hydrology), vegetation type, or the previ-
ous year’s snowfall need to be considered. It is also possible
that some of the variability in our ALT estimates reflects vari-
ations in total ice content instead (Zwieback et al., 2024).

5.5 Applicability to other regions

Alaska’s North Slope is an optimum region for InSAR-based
approaches to permafrost monitoring because of limited tree
cover. We also tested our technique in a region with more
extensive tree cover, the beta site of the APEX (Alaska
Peatland EXperiment) project, located approximately 40 km
southwest of Fairbanks (64.696° N, 148.322° W). This site is
located in Alaska’s discontinuous-permafrost zone and has
abundant black spruce up to 5 m in height. The technique
was not successful as phase coherence was not maintained
in successive SAR images, perhaps reflecting the relatively
short wavelength (C band) of the Sentinel-1 SAR instrument
(see next section). Average spatial and temporal coherence
maps for these two sites are compared in Fig. S1.

5.6 Limitations and future research

Four aspects of our approach limit its utility and are an obvi-
ous focus for future research.

1. Decorrelation of InSAR phase is the main limitation
of our technique. Accurate InSAR measurements re-
quire a high degree of coherence, a measure of the
correlation in radar phase between the two SAR im-
ages. Decorrelation occurs due to temporal changes in
surface scattering properties, changes in viewing an-
gles, and noise in the SAR data (e.g., Schaefer et al.,

2015). The C-band InSAR has demonstrated its abil-
ity to monitor deformation over continuous-permafrost
regions at higher latitudes (see the “Previous work”
section of this study). Wang et al. (2020) compared
the efficiency of Sentinel-1 for monitoring permafrost
deformation in discontinuous-permafrost regions. They
concluded that Sentinel-1 InSAR time series perform
effectively over permafrost landscapes mainly beyond
the tree line, such as tundra, tundra wetlands, and less
developed shrub–tundra areas. However, the outcomes
and precision are less favorable in shrub–tundra and
forest–tundra environments. Our results are essentially
the same: temporal and spatial coherence in our main
study area, north of the tree line near CALM site U8
(almost entirely free of trees, (https://www2.gwu.edu/
~calm/data/webforms/u8_f.html, last access: 29 Au-
gust 2023) are significantly better than those obtained
in the discontinuous-permafrost region near Fairbanks,
Alaska (Sect. 5.5). Significant decorrelation also oc-
curred around CALM site U18 (∼ 15 km southwest of
Fairbanks, Alaska) during the 2023 thaw season. Land
cover here is open black-spruce forest (https://www2.
gwu.edu/~calm/data/webforms/u18_f.htm, last access:
29 August 2023). Longer wavelengths, such as L band,
may be more useful in densely vegetated terrains. The
NISAR mission, scheduled for launch in 2024, with
its L-band wavelength and repeat frequency of 6–12 d,
should prove to be useful for more densely vegetated
discontinuous-permafrost regions.

2. The spatial and temporal resolution of models that al-
low estimation of key ancillary parameters may limit
accuracy in some regions, for example, soil parameters
from the GLDAS model and atmospheric parameters
from ERA-5. The spatial resolution of GLDAS’s soil
parameter model is 0.25°, an area that spans our entire
study area in the Alaskan North Slope. The temporal
resolution of ERA-5 is adequate, but its spatial resolu-
tion limits local analysis.

3. Accurate, dense, and widespread porosity–depth pro-
files would improve ALT estimation from remotely
sensed data. In particular, empirical and statistical
models of soil properties calibrated with in situ data
could significantly improve radar-based ALT models
(e.g., O’Connor et al., 2020; Bakian-Dogaheh et al.,
2020, 2022, 2023).

4. Variations in soil ice content and non-linear thaw season
subsidence time series need to be considered (Zwieback
et al., 2024).

6 Conclusions

We used Sentinel-1 interferometric SAR data from 2017 to
2022 around CALM site U8 in northern Alaska to measure
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Figure 7. ALT variation at CALM site U8, RMSE of each cell in relation to the annual average from 1996 to 2022, and ALT trend and ALT
time series for three selected cells (10× 10 m) shown by white stars.

thaw season subsidence and to estimate active-layer thick-
ness with a widely used physical model that exploits the
volume difference between ice and water. Limited ICESat-
2 lidar data are consistent with InSAR estimates of seasonal
subsidence. We do not attempt to estimate long-term (multi-
year) elevation change. Instead we estimate ALT at the end

of each thaw season and compare its yearly evolution, avoid-
ing issues of decorrelation of the radar signal over the winter
season.

ALT estimates in our study area range from ∼ 20 cm to
more than 150 cm, similarly to in situ measurements at the
CALM site and previous remotely sensed estimates. Agree-
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Figure 8. (a) Relation between ADDT and ALT from 2002 to 2022 in CALM site U8 and at Sagwon station. Red circles show ADDT. Blue
triangles show in situ ALT. (b) Scatterplot of ALT vs. ADDT. (c) Scatterplot of ALT vs. precipitation. R2 of relation is shown in top left of
panels. ADDT and precipitation are calculated from 1 June to 1 September of each year to be consistent with ALT measurements.

ment with the later part of the quarter-century-long CALM
time series is notable and suggests that annual ALT estimates
from satellite InSAR can be effective at monitoring longer-
term permafrost health, at least for Alaska’s continuous-
permafrost zone north of the tree line. However, the tech-
nique was not effective in the discontinuous-permafrost re-
gion of central Alaska near Fairbanks, reflecting decorrela-
tion of the C-band radar signal, probably from heavy tree
cover. At the northern study site, ALT shows high spatial
and temporal variability in both the satellite and in situ
datasets, sometimes changing dramatically between adjacent
10 m cells. Subsidence rate also varies significantly between
closely spaced points, ranging from∼ 2 to 18 mm per month
at our northern study site during thaw season. The reasons
for such high spatial and temporal variability in ALT are not
clear and warrant further research.

Code and data availability. Meteorological data from the NOAA
climate data online tool (CDO) are publicly available at
https://doi.org/10.7289/V5D21VHZ (Menne et al., 2012a, b). The
Copernicus GLO-30 digital elevation model is publicly avail-
able through https://doi.org/10.5069/G9BG2M6R (OpenTopogra-

phy, 2016). Sentinel-1 data are publicly available through the
Alaska Satellite Facility (https://search.asf.alaska.edu/, Alaska
Satellite Facility, 2024). Interferograms were formed using the
Alaska Satellite Facility’s Hybrid Pluggable Processing Pipeline
(https://doi.org/10.5281/zenodo.4646138, Hogenson et al., 2020).
Time series analysis is done by using https://github.com/insarlab/
MintPy (Yunjun et al., 2019) in the OpenScienceLab Jupyter-
Hub computing environment (https://opensciencelab.asf.alaska.
edu, OpenScience Lab, 2024). ERA-5 data for tropospheric cor-
rections are available at https://cds.climate.copernicus.eu (Hersbach
et al., 2020). Soil fraction data are available at https://ldas.gsfc.nasa.
gov/gldas/soils (NASA LDAS, 2024). In situ active-layer thickness
data from CALM sites are publicly available at https://www2.gwu.
edu/~calm/ (Brown et al., 2000). The Python code for ALT estima-
tion is archived at Sadeghi Chorsi (2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-18-3723-2024-supplement.
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