Articles | Volume 18, issue 7
https://doi.org/10.5194/tc-18-3351-2024
https://doi.org/10.5194/tc-18-3351-2024
Research article
 | 
24 Jul 2024
Research article |  | 24 Jul 2024

Research into mechanical modeling based on characteristics of the fracture mechanics of ice cutting for scientific drilling in polar regions

Xinyu Lv, Zhihao Cui, Ting Wang, Yumin Wen, An Liu, and Rusheng Wang

Related authors

Brief communication: New sonde to unravel the mystery of polar subglacial lakes
Youhong Sun, Bing Li, Xiaopeng Fan, Yuansheng Li, Guopin Li, Haibin Yu, Hongzhi Li, Dongliang Wang, Nan Zhang, Da Gong, Rusheng Wang, Yazhou Li, and Pavel G. Talalay
The Cryosphere, 17, 1089–1095, https://doi.org/10.5194/tc-17-1089-2023,https://doi.org/10.5194/tc-17-1089-2023, 2023
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Cores
Scientific history, sampling approach, and physical characterization of the Camp Century sub-glacial sediment core, a rare archive from beneath the Greenland Ice Sheet
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and Francois Fripiat
EGUsphere, https://doi.org/10.5194/egusphere-2023-2922,https://doi.org/10.5194/egusphere-2023-2922, 2024
Short summary
The potential of in situ cosmogenic 14CO in ice cores as a proxy for galactic cosmic ray flux variations
Vasilii V. Petrenko, Segev BenZvi, Michael Dyonisius, Benjamin Hmiel, Andrew M. Smith, and Christo Buizert
EGUsphere, https://doi.org/10.5194/egusphere-2023-3126,https://doi.org/10.5194/egusphere-2023-3126, 2024
Short summary
Novel approach to estimate the water isotope diffusion length in deep ice cores with an application to MIS 19 in the EPICA Dome C ice core
Fyntan Shaw, Andrew Mark Dolman, Torben Kunz, Vasileios Gkinis, and Thomas Laepple
EGUsphere, https://doi.org/10.5194/egusphere-2023-2549,https://doi.org/10.5194/egusphere-2023-2549, 2023
Short summary
Millennial and orbital-scale variability in a 54 000-year record of total air content from the South Pole ice core
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Erin C. Pettit, Jon S. Edwards, John M. Fegyveresi, Todd A. Sowers, Jeffrey P. Severinghaus, and Emma C. Kahle
The Cryosphere, 17, 4837–4851, https://doi.org/10.5194/tc-17-4837-2023,https://doi.org/10.5194/tc-17-4837-2023, 2023
Short summary
Investigating the spatial representativeness of East Antarctic ice cores: a comparison of ice core and radar-derived surface mass balance over coastal ice rises and Dome Fuji
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023,https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary

Cited articles

Atabey, F., Lazoglu, I., and Altintas, Y.: Mechanics of boring processes – Part I, Int. J. Mach. Tool. Manu., 43, 463–476, https://doi.org/10.1016/S0890-6955(02)00276-6, 2003. 
Azuma, N., Faria, S. H., and Weikusat, I.: The microstructure of polar ice. Part I: Highlights from ice core research, J. Struct. Geol., 6, 2–20, https://doi.org/10.1016/j.jsg.2013.09.010, 2014. 
Cao, P. L., Cao, H. Y., and Cao, J. E., Liu, M. M., and Chen, B. Y.: Studies on pneumatic transport of ice cores in reverse circulation air drilling, Powder Technol., 356, 50–59, https://doi.org/10.1016/j.powtec.2019.08.001, 2019. 
Chiaia, B. M., Cornetti, P., and Frigo, B.: Triggering of dry snow slab avalanches: stress versus fracture mechanical approach, Cold Reg. Sci. Technol., 53, 170–178, https://doi.org/10.1016/j.coldregions.2007.08.003, 2008. 
Correas, A. C., Cornetti, P., Corrado, M., and Sapora, A.: Dynamic crack initiation by Finite Fracture Mechanics, Procedia Structural Integrity, 42, 952–957, https://doi.org/10.1016/j.prostr.2022.12.120, 2022. 
Download
Short summary
In this study, the formation process of ice chips was observed and the fracture mechanics characteristics of the ice during the cutting process were analyzed. Additionally, a mechanical model for the cutting force was established based on the observation and analysis results. Finally, influencing factors and laws of the cutting force were verified by cutting force test results generated under various experimental conditions.