Articles | Volume 18, issue 5
https://doi.org/10.5194/tc-18-2603-2024
https://doi.org/10.5194/tc-18-2603-2024
Brief communication
 | 
29 May 2024
Brief communication |  | 29 May 2024

Brief communication: Testing a portable Bullard-type temperature lance confirms highly spatially heterogeneous sediment temperatures under shallow bodies of water in the Arctic

Frederieke Miesner, William Lambert Cable, Pier Paul Overduin, and Julia Boike

Related authors

The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023,https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Strong increase in thawing of subsea permafrost in the 22nd century caused by anthropogenic climate change
Stiig Wilkenskjeld, Frederieke Miesner, Paul P. Overduin, Matteo Puglini, and Victor Brovkin
The Cryosphere, 16, 1057–1069, https://doi.org/10.5194/tc-16-1057-2022,https://doi.org/10.5194/tc-16-1057-2022, 2022
Short summary
Reconstructing bottom water temperatures from measurements of temperature and thermal diffusivity in marine sediments
F. Miesner, A. Lechleiter, and C. Müller
Ocean Sci., 11, 559–571, https://doi.org/10.5194/os-11-559-2015,https://doi.org/10.5194/os-11-559-2015, 2015
Short summary

Related subject area

Discipline: Snow | Subject: Instrumentation
A random forest approach to quality-checking automatic snow-depth sensor measurements
Giulia Blandini, Francesco Avanzi, Simone Gabellani, Denise Ponziani, Hervé Stevenin, Sara Ratto, Luca Ferraris, and Alberto Viglione
The Cryosphere, 17, 5317–5333, https://doi.org/10.5194/tc-17-5317-2023,https://doi.org/10.5194/tc-17-5317-2023, 2023
Short summary
Measuring prairie snow water equivalent with combined UAV-borne gamma spectrometry and lidar
Phillip Harder, Warren Helgason, and John Pomeroy
EGUsphere, https://doi.org/10.5194/egusphere-2023-2586,https://doi.org/10.5194/egusphere-2023-2586, 2023
Short summary
Brief communication: Comparison of in situ ephemeral snow depth measurements over a mixed-use temperate forest landscape
Holly Proulx, Jennifer M. Jacobs, Elizabeth A. Burakowski, Eunsang Cho, Adam G. Hunsaker, Franklin B. Sullivan, Michael Palace, and Cameron Wagner
The Cryosphere, 17, 3435–3442, https://doi.org/10.5194/tc-17-3435-2023,https://doi.org/10.5194/tc-17-3435-2023, 2023
Short summary
Monitoring snow water equivalent using the phase of RFID signals
Mathieu Le Breton, Éric Larose, Laurent Baillet, Yves Lejeune, and Alec van Herwijnen
The Cryosphere, 17, 3137–3156, https://doi.org/10.5194/tc-17-3137-2023,https://doi.org/10.5194/tc-17-3137-2023, 2023
Short summary
Mapping snow depth on Canadian sub-arctic lakes using ground-penetrating radar
Alicia F. Pouw, Homa Kheyrollah Pour, and Alex MacLean
The Cryosphere, 17, 2367–2385, https://doi.org/10.5194/tc-17-2367-2023,https://doi.org/10.5194/tc-17-2367-2023, 2023
Short summary

Cited articles

Abnizova, A., Siemens, J., Langer, M., and Boike, J.: Small ponds with major impact: The relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions, Global Biogeochem. Cy., 26, GB2041, https://doi.org/10.1029/2011GB004237, 2012. a
Arp, C. D., Jones, B. M., Grosse, G., Bondurant, A. C., Romanovsky, V. E., Hinkel, K. M., and Parsekian, A. D.: Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate, Geophys. Res. Lett., 43, 6358–6365, https://doi.org/10.1002/2016GL068506, 2016. a, b, c
Boike, J., Georgi, C., Kirilin, G., Muster, S., Abramova, K., Fedorova, I., Chetverova, A., Grigoriev, M., Bornemann, N., and Langer, M.: Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia – observations and modeling (Lena River Delta, Siberia), Biogeosciences, 12, 5941–5965, https://doi.org/10.5194/bg-12-5941-2015, 2015. a, b
Brown, W. G., Johnston, G. H., and Brown, R. J. E.: Comparison of observed and calculated ground temperatures with permafrost distribution under a northern lake, Can. Geotech. J., 1, 147–154, https://publications-cnrc.canada.ca/eng/view/object/?id=0b9d85f6-dfa9-499c-b29d-6dfe5bcd34c8 (last access: 8 May 2024), 1964. a
Bullard, E.: The Flow of Heat through the Floor of the Atlantic Ocean, in: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 222, 408–429, https://doi.org/10.1098/rspa.1954.0085, 1954. a, b
Download
Short summary
The temperature in the sediment below Arctic lakes determines the stability of the permafrost and microbial activity. However, measurements are scarce because of the remoteness. We present a robust and portable device to fill this gap. Test campaigns have demonstrated its utility in a range of environments during winter and summer. The measured temperatures show a great variability within and across locations. The data can be used to validate models and estimate potential emissions.