Articles | Volume 18, issue 3
https://doi.org/10.5194/tc-18-1287-2024
https://doi.org/10.5194/tc-18-1287-2024
Research article
 | 
20 Mar 2024
Research article |  | 20 Mar 2024

Understanding snow saltation parameterizations: lessons from theory, experiments and numerical simulations

Daniela Brito Melo, Armin Sigmund, and Michael Lehning

Related authors

Simulating the effect of natural convection in a tundra snow cover
Mahdi Jafari and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2025-3035,https://doi.org/10.5194/egusphere-2025-3035, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Multitemporal analysis of Sentinel-1 backscattering during snow melt using high-resolution field measurements and radiative transfer modeling
Francesca Carletti, Carlo Marin, Chiara Ghielmini, Mathias Bavay, and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2025-974,https://doi.org/10.5194/egusphere-2025-974, 2025
Short summary
Assessment and comparison of thermal stabilisation measures at an Alpine permafrost site, Switzerland
Elizaveta Sharaborova, Michael Lehning, Nander Wever, Marcia Phillips, and Hendrik Huwald
EGUsphere, https://doi.org/10.5194/egusphere-2024-4174,https://doi.org/10.5194/egusphere-2024-4174, 2025
Short summary
Snow Particle Motion in Process of Cornice Formation
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458,https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Identifying airborne snow metamorphism with stable water isotopes
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024,https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary

Cited articles

Aksamit, N. O. and Pomeroy, J. W.: Near-surface snow particle dynamics from particle tracking velocimetry and turbulence measurements during alpine blowing snow storms, The Cryosphere, 10, 3043–3062, https://doi.org/10.5194/tc-10-3043-2016, 2016. a, b, c, d, e, f, g, h, i, j
Aksamit, N. O. and Pomeroy, J. W.: Scale Interactions in Turbulence for Mountain Blowing Snow, J. Hydrometeorol., 19, 305–320, https://doi.org/10.1175/JHM-D-17-0179.1, 2018. a, b
Albertson, J. D. and Parlange, M. B.: Natural integration of scalar fluxes from complex terrain, Adv. Water Resour., 23, 239–252, https://doi.org/10.1016/S0309-1708(99)00011-1, 1999. a
Amory, C., Trouvilliez, A., Gallée, H., Favier, V., Naaim-Bouvet, F., Genthon, C., Agosta, C., Piard, L., and Bellot, H.: Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica, The Cryosphere, 9, 1373–1383, https://doi.org/10.5194/tc-9-1373-2015, 2015. a
Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V., and Fettweis, X.: Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica, Geosci. Model Dev., 14, 3487–3510, https://doi.org/10.5194/gmd-14-3487-2021, 2021. a, b, c, d, e, f, g, h, i
Download
Short summary
Snow saltation – the transport of snow close to the surface – occurs when the wind blows over a snow-covered surface with sufficient strength. This phenomenon is represented in some climate models; however, with limited accuracy. By performing numerical simulations and a detailed analysis of previous works, we show that snow saltation is characterized by two regimes. This is not represented in climate models in a consistent way, which hinders the quantification of snow transport and sublimation.
Share