Articles | Volume 18, issue 3
https://doi.org/10.5194/tc-18-1287-2024
https://doi.org/10.5194/tc-18-1287-2024
Research article
 | 
20 Mar 2024
Research article |  | 20 Mar 2024

Understanding snow saltation parameterizations: lessons from theory, experiments and numerical simulations

Daniela Brito Melo, Armin Sigmund, and Michael Lehning

Related authors

Simulating the effect of natural convection in a tundra snow cover
Mahdi Jafari and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2025-3035,https://doi.org/10.5194/egusphere-2025-3035, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Multitemporal analysis of Sentinel-1 backscattering during snow melt using high-resolution field measurements and radiative transfer modeling
Francesca Carletti, Carlo Marin, Chiara Ghielmini, Mathias Bavay, and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2025-974,https://doi.org/10.5194/egusphere-2025-974, 2025
Short summary
Assessment and comparison of thermal stabilisation measures at an Alpine permafrost site, Switzerland
Elizaveta Sharaborova, Michael Lehning, Nander Wever, Marcia Phillips, and Hendrik Huwald
EGUsphere, https://doi.org/10.5194/egusphere-2024-4174,https://doi.org/10.5194/egusphere-2024-4174, 2025
Short summary
Snow Particle Motion in Process of Cornice Formation
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458,https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Identifying airborne snow metamorphism with stable water isotopes
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024,https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary

Related subject area

Discipline: Snow | Subject: Atmospheric Interactions
Identifying airborne snow metamorphism with stable water isotopes
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024,https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary
Seasonal snow–atmosphere modeling: let's do it
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024,https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
On the importance to consider the cloud dependence in parameterizing the albedo of snow on sea ice
Lara Foth, Wolfgang Dorn, Annette Rinke, Evelyn Jäkel, and Hannah Niehaus
The Cryosphere, 18, 4053–4064, https://doi.org/10.5194/tc-18-4053-2024,https://doi.org/10.5194/tc-18-4053-2024, 2024
Short summary
A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations
Annelies Voordendag, Brigitta Goger, Rainer Prinz, Tobias Sauter, Thomas Mölg, Manuel Saigger, and Georg Kaser
The Cryosphere, 18, 849–868, https://doi.org/10.5194/tc-18-849-2024,https://doi.org/10.5194/tc-18-849-2024, 2024
Short summary
From atmospheric water isotopes measurement to firn core interpretation in Adélie Land: a case study for isotope-enabled atmospheric models in Antarctica
Christophe Leroy-Dos Santos, Elise Fourré, Cécile Agosta, Mathieu Casado, Alexandre Cauquoin, Martin Werner, Benedicte Minster, Frédéric Prié, Olivier Jossoud, Leila Petit, and Amaëlle Landais
The Cryosphere, 17, 5241–5254, https://doi.org/10.5194/tc-17-5241-2023,https://doi.org/10.5194/tc-17-5241-2023, 2023
Short summary

Cited articles

Aksamit, N. O. and Pomeroy, J. W.: Near-surface snow particle dynamics from particle tracking velocimetry and turbulence measurements during alpine blowing snow storms, The Cryosphere, 10, 3043–3062, https://doi.org/10.5194/tc-10-3043-2016, 2016. a, b, c, d, e, f, g, h, i, j
Aksamit, N. O. and Pomeroy, J. W.: Scale Interactions in Turbulence for Mountain Blowing Snow, J. Hydrometeorol., 19, 305–320, https://doi.org/10.1175/JHM-D-17-0179.1, 2018. a, b
Albertson, J. D. and Parlange, M. B.: Natural integration of scalar fluxes from complex terrain, Adv. Water Resour., 23, 239–252, https://doi.org/10.1016/S0309-1708(99)00011-1, 1999. a
Amory, C., Trouvilliez, A., Gallée, H., Favier, V., Naaim-Bouvet, F., Genthon, C., Agosta, C., Piard, L., and Bellot, H.: Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica, The Cryosphere, 9, 1373–1383, https://doi.org/10.5194/tc-9-1373-2015, 2015. a
Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V., and Fettweis, X.: Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica, Geosci. Model Dev., 14, 3487–3510, https://doi.org/10.5194/gmd-14-3487-2021, 2021. a, b, c, d, e, f, g, h, i
Download
Short summary
Snow saltation – the transport of snow close to the surface – occurs when the wind blows over a snow-covered surface with sufficient strength. This phenomenon is represented in some climate models; however, with limited accuracy. By performing numerical simulations and a detailed analysis of previous works, we show that snow saltation is characterized by two regimes. This is not represented in climate models in a consistent way, which hinders the quantification of snow transport and sublimation.
Share