Articles | Volume 18, issue 3
https://doi.org/10.5194/tc-18-1241-2024
https://doi.org/10.5194/tc-18-1241-2024
Research article
 | 
19 Mar 2024
Research article |  | 19 Mar 2024

Deep clustering in subglacial radar reflectance reveals subglacial lakes

Sheng Dong, Lei Fu, Xueyuan Tang, Zefeng Li, and Xiaofei Chen

Related authors

Review article: AntArchitecture – building an age–depth model from Antarctica's radiostratigraphy to explore ice-sheet evolution
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. MacKie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Vjeran Višnjević, Rodrigo Zamora, and Alexandra Zuhr
The Cryosphere, 19, 4611–4655, https://doi.org/10.5194/tc-19-4611-2025,https://doi.org/10.5194/tc-19-4611-2025, 2025
Short summary
Perturbation Analysis of Travel-Time Accuracy for Core Phases Reconstructed from Seismic Interferometry
Yingjie Xia, Xuping Feng, and Xiaofei Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-4657,https://doi.org/10.5194/egusphere-2025-4657, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Experimental Investigation of the Direct Shear Strength Parameters of Compacted Snow
Haifeng Huo, Hui Xu, Jixiu Wu, Tao Li, Jingjin Liu, Enzhao Xiao, and Xueyuan Tang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4768,https://doi.org/10.5194/egusphere-2025-4768, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Mapping Antarctic Geothermal Heat Flow with Deep Neural Networks optimized by Particle Swarm Optimization Algorithm
Shaoxia Liu, Xueyuan Tang, Shuhu Yang, and Lijuan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3092,https://doi.org/10.5194/egusphere-2025-3092, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
A grid-level fixed-asset model developed for China from 1951 to 2020
Danhua Xin, James Edward Daniell, Zhenguo Zhang, Friedemann Wenzel, Shaun Shuxun Wang, and Xiaofei Chen
Nat. Hazards Earth Syst. Sci., 25, 1597–1620, https://doi.org/10.5194/nhess-25-1597-2025,https://doi.org/10.5194/nhess-25-1597-2025, 2025
Short summary

Cited articles

Arnold, E., Leuschen, C., Rodriguez-Morales, F., Li, J., Paden, J., Hale, R., and Keshmiri, S.: CReSIS airborne radars and platforms for ice and snow sounding, Ann. Glaciol., 61, 58–67, 2020. a, b, c
Bailey, D.: Polar-cap absorption, Planet. Space Sci., 12, 495–541, 1964. a
Bell, R. E., Ferraccioli, F., Creyts, T. T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M., and Wolovick, M.: Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base, Science, 331, 1592–1595, 2011. a, b
Bowling, J., Livingstone, S., Sole, A., and Chu, W.: Distribution and dynamics of Greenland subglacial lakes, Nat. Commun., 10, 1–11, 2019. a
Carter, S. P., Blankenship, D. D., Peters, M. E., Young, D. A., Holt, J. W., and Morse, D. L.: Radar-based subglacial lake classification in Antarctica, Geochem. Geophy. Geosy., 8, Q03016, https://doi.org/10.1029/2006GC001408, 2007. a, b
Download
Short summary
Subglacial lakes are a unique environment at the bottom of ice sheets, and they have distinct features in radar echo images that allow for visual detection. In this study, we use machine learning to analyze radar reflection waveforms and identify candidate subglacial lakes. Our approach detects more lakes than known inventories and can be used to expand the subglacial lake inventory. Additionally, this analysis may also provide insights into interpreting other subglacial conditions.
Share