Articles | Volume 18, issue 3
https://doi.org/10.5194/tc-18-1241-2024
https://doi.org/10.5194/tc-18-1241-2024
Research article
 | 
19 Mar 2024
Research article |  | 19 Mar 2024

Deep clustering in subglacial radar reflectance reveals subglacial lakes

Sheng Dong, Lei Fu, Xueyuan Tang, Zefeng Li, and Xiaofei Chen

Related authors

Brief communication: Identification of 140 000-year-old blue ice in the Grove Mountains, East Antarctica, by krypton-81 dating
Zhengyi Hu, Wei Jiang, Yuzhen Yan, Yan Huang, Xueyuan Tang, Lin Li, Florian Ritterbusch, Guo-Min Yang, Zheng-Tian Lu, and Guitao Shi
The Cryosphere, 18, 1647–1652, https://doi.org/10.5194/tc-18-1647-2024,https://doi.org/10.5194/tc-18-1647-2024, 2024
Short summary
FIELD OPERATIONS AND PROGRESS OF CHINESE AIRBORNE SURVEY IN EAST ANTARCTICA THROUGH THE “SNOW EAGLE 601”
X. Cui, J. Guo, L. Li, X. Tang, and B. Sun
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 869–873, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-869-2020,https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-869-2020, 2020
PRELIMINARY LONG-PERIOD MAGNETOTELLURIC INVESTIGATION AT THE EDGE OF ICE SHEET IN EAST ANTARCTICA
J. Guo, K. Wang, Z. Zeng, L. Li, J. Liu, X. Tang, X. Cui, Y. Wang, B. Sun, and J. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 875–880, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-875-2020,https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-875-2020, 2020
RADAR-DERIVED INTERNAL LAYERING AND BASAL ROUGHNESS CHARACTERIZATION ALONG A TRAVERSE FROM ZHONGSHAN STATION TO DOME A, EAST ANTARCTICA
X. Tang, K. Luo, and J. Guo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 905–910, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-905-2020,https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-905-2020, 2020
NOISE REDUCTION AND INTERPRETATION OF ICE-PENETRATING RADAR DATA IN ANTARCTIC ICE SHEET BASED ON VARIATIONAL MODE DECOMPOSITION
X. Tang, S. Cheng, and J. Guo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1787–1791, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1787-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-1787-2019, 2019

Related subject area

Discipline: Ice sheets | Subject: Glacier Hydrology
Partial melting in polycrystalline ice: pathways identified in 3D neutron tomographic images
Christopher J. L. Wilson, Mark Peternell, Filomena Salvemini, Vladimir Luzin, Frieder Enzmann, Olga Moravcova, and Nicholas J. R. Hunter
The Cryosphere, 18, 819–836, https://doi.org/10.5194/tc-18-819-2024,https://doi.org/10.5194/tc-18-819-2024, 2024
Short summary
Evaluation of satellite methods for estimating supraglacial lake depth in southwest Greenland
Laura Melling, Amber Leeson, Malcolm McMillan, Jennifer Maddalena, Jade Bowling, Emily Glen, Louise Sandberg Sørensen, Mai Winstrup, and Rasmus Lørup Arildsen
The Cryosphere, 18, 543–558, https://doi.org/10.5194/tc-18-543-2024,https://doi.org/10.5194/tc-18-543-2024, 2024
Short summary
Observed and modeled moulin heads in the Pâkitsoq region of Greenland suggest subglacial channel network effects
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023,https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary
In situ measurements of meltwater flow through snow and firn in the accumulation zone of the SW Greenland Ice Sheet
Nicole Clerx, Horst Machguth, Andrew Tedstone, Nicolas Jullien, Nander Wever, Rolf Weingartner, and Ole Roessler
The Cryosphere, 16, 4379–4401, https://doi.org/10.5194/tc-16-4379-2022,https://doi.org/10.5194/tc-16-4379-2022, 2022
Short summary
Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Lauren C. Andrews, Kristin Poinar, and Celia Trunz
The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022,https://doi.org/10.5194/tc-16-2421-2022, 2022
Short summary

Cited articles

Arnold, E., Leuschen, C., Rodriguez-Morales, F., Li, J., Paden, J., Hale, R., and Keshmiri, S.: CReSIS airborne radars and platforms for ice and snow sounding, Ann. Glaciol., 61, 58–67, 2020. a, b, c
Bailey, D.: Polar-cap absorption, Planet. Space Sci., 12, 495–541, 1964. a
Bell, R. E., Ferraccioli, F., Creyts, T. T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M., and Wolovick, M.: Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base, Science, 331, 1592–1595, 2011. a, b
Bowling, J., Livingstone, S., Sole, A., and Chu, W.: Distribution and dynamics of Greenland subglacial lakes, Nat. Commun., 10, 1–11, 2019. a
Carter, S. P., Blankenship, D. D., Peters, M. E., Young, D. A., Holt, J. W., and Morse, D. L.: Radar-based subglacial lake classification in Antarctica, Geochem. Geophy. Geosy., 8, Q03016, https://doi.org/10.1029/2006GC001408, 2007. a, b
Download
Short summary
Subglacial lakes are a unique environment at the bottom of ice sheets, and they have distinct features in radar echo images that allow for visual detection. In this study, we use machine learning to analyze radar reflection waveforms and identify candidate subglacial lakes. Our approach detects more lakes than known inventories and can be used to expand the subglacial lake inventory. Additionally, this analysis may also provide insights into interpreting other subglacial conditions.