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Abstract. Ice-penetrating radar (IPR) imaging is a valuable
tool for observing the internal structure and bottom of ice
sheets. Subglacial water bodies, also known as subglacial
lakes, generally appear as distinct, bright, flat, and continu-
ous reflections in IPR images. In this study, we use available
IPR images from the Gamburtsev Subglacial Mountains to
extract one-dimensional reflector waveform features of the
ice–bedrock interface. We apply a deep-learning method to
reduce the dimension of the reflector features. An unsuper-
vised clustering method is then used to separate different
types of reflector features, including a reflector type corre-
sponding to subglacial lakes. The derived clustering labels
are then used to detect features of subglacial lakes in IPR im-
ages. Using this method, we compare the new detections with
a known-lakes inventory. The results indicate that this new
method identified additional subglacial lakes that were not
previously detected, and some previously known lakes are
found to correspond to other reflector clusters. This method
can offer automatic detections of subglacial lakes and pro-
vide new insight for subglacial studies.

1 Introduction

Subglacial water, i.e., water between the bedrock and ice
sheet, is formed through a complex interplay of factors such
as subglacial pressure, friction heat, geothermal flux, and sur-
face water injection (Robin, 1955; Siegert, 2000; Cuffey and

Paterson, 2010; Pattyn, 2010). Subglacial lakes play an im-
portant role in subglacial water networks, which can also
impact ice flow and dynamics (Kamb, 1987; Stearns et al.,
2008; Siegfried et al., 2016; Kazmierczak et al., 2022). In-
vestigation of water storage in subglacial lakes can provide
insights into estimating the contribution of ice sheet meltwa-
ter to sea level rise (King et al., 2020; Fettweis et al., 2013)
and the history of former climate change and ice sheet evolu-
tion (Dowdeswell and Siegert, 1999). In addition, subglacial
lake sediments may also contain information that records the
historical evolution of ice sheets (Smith et al., 2018). The ex-
treme conditions of low temperature and absent sunlight cre-
ate unique subglacial lacustrine ecosystems (Christner et al.,
2014; Mikucki et al., 2016).

Ice-penetrating radar (IPR) can be used to detect the sub-
surface features of ice sheets (Bailey, 1964; Robin et al.,
1969, 1970; Carter et al., 2007; Paden et al., 2010; Arnold
et al., 2020). The thickness of the subglacial water layer and
sediment characteristics at the bottom of lakes are also inves-
tigated with active seismic surveys (Peters et al., 2008; Hor-
gan et al., 2012) and gravimetry and electromagnetic meth-
ods (Studinger et al., 2004; Key and Siegfried, 2017). These
observations have been used to construct the first Global Sub-
glacial Lake Inventory (Livingstone et al., 2022).

Subglacial lakes can be identified in radar images due to
their distinct, bright, flat, and specular reflection character-
istics (Oswald and Robin, 1973). Because of the specific
reflection characteristics of subglacial lakes in IPR images
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(Schroeder et al., 2013), the manual extraction of the vi-
sual features was initially applied (Siegert and Ridley, 1998;
Gades et al., 2000; Dowdeswell and Evans, 2004). With
the increase in IPR data, semi-automatic methods based on
ice bottom roughness features and reflected signal power
have been developed to search for lake candidates (Carter
et al., 2007; Bowling et al., 2019). Automatic methods based
on experts’ experience and physical modeling (Lang et al.,
2022; Hao et al., 2023) as well as machine-learning meth-
ods (Gifford and Agah, 2012; Ilisei et al., 2018) have also
been proposed in subglacial lake detection. These methods
have shown that improved selection rules and thresholds can
enhance detection accuracy and efficiency. However, these
methods were based on assumptions of physical modeling or
learning from previous detection experience, which may lead
to potentially inaccurate detections. In the past decades, IPR
surveys have collected large numbers of radar images, which
enable the analysis of basal radar reflectance features even if
the interpretation of basal radar reflectance features is absent.

In recent years, deep learning has been applied as a pow-
erful tool to detect different features in IPR images, includ-
ing bedrock interfaces (Xu et al., 2017; Rahnemoonfar et al.,
2017; Dong et al., 2021; Liu-Schiaffini et al., 2022), internal
ice layers (Yari et al., 2020; Varshney et al., 2020; Dong et al.,
2021), snow accumulation layers (Varshney et al., 2021), and
subglacial waters (Gifford and Agah, 2012; Ilisei and Bruz-
zone, 2015; Ilisei et al., 2018). The Center for Remote Sens-
ing and Integrated Systems (CReSIS, https://data.cresis.ku.
edu/#ACRDU, last access: 29 February 2024) released an
extensive collection of historical radar images recorded in
the Antarctic and Greenland ice sheets (Arnold et al., 2020).
These datasets have driven various investigations of recent
subglacial studies (e.g., Varshney et al., 2021; Zeising et al.,
2022). The ice bottom reflectors extracted from the CReSIS
dataset can construct a comprehensive catalog of basal reflec-
tor characteristics, which can facilitate further data-driven
deep-learning analysis of reflector features.

In this study, we follow known-lakes inventories
(Wolovick et al., 2013; Livingstone et al., 2022) to investi-
gate subglacial lakes in the Gamburtsev Subglacial Moun-
tains region. We select IPR images in the region of the Gam-
burtsev Subglacial Mountains from the CReSIS database. We
crop these images around the ice bottom to obtain a set of
one-dimensional waveforms that capture the ice bottom re-
flectance characteristics. Using these data, we train the Vari-
ational Auto-Encoder (VAE, Kingma and Welling, 2013) to
reconstruct the one-dimensional waveform features of basal
reflectors. We then applyK-means clustering methods (Mac-
Queen, 1967) in the VAE’s latent space to analyze similar re-
flection features and separate them into different clusters. We
identify a cluster of reconstructed reflectors with sharp, steep,
and symmetric waveform characteristics corresponding to
the subglacial lakes observed in field radar images. Further-
more, we apply a conventional method based on the linear
relationship between depth and peak reflected power to filter

the candidate subglacial lakes from latent space clustering.
By using this workflow, we can obtain an automatic approach
in subglacial lake detection. To validate the results, we com-
pare the distributions of subglacial lakes by this method with
the existing inventories. This automated method can improve
the efficiency of the detection of subglacial lakes. By collect-
ing and verifying the waveform characteristics of subglacial
reflectors, the accuracy of subglacial lakes can also be im-
proved. Additionally, this approach can be extended to de-
tect and label other clusters of subglacial features, providing
valuable reference data for further studies of subglacial envi-
ronments.

2 Data and methods

In this section, we introduce the workflow of the ice bot-
tom reflection feature clustering method, as shown in Fig. 1,
which includes the extraction and sampling of ice bottom re-
flector features (Fig. 1a), the feature reconstruction and latent
vector encoding by the variational auto-encoder (Fig. 1b),
the unsupervised clustering of ice bottom reflector features
(Fig. 1c), and the implementation of subglacial lake detec-
tion (Fig. 1d).

2.1 Ice bottom reflectors

The utilized airborne radar images were collected during
the December 2008–January 2009 Antarctica’s GAmburtsev
Province Project (AGAP) (https://data.bas.ac.uk/full-record.
php?id=GB/NERC/BAS/PDC/01544, last access: 29 Febru-
ary 2024) from the CReSIS database. According to the lake
inventories (Wolovick et al., 2013; Livingstone et al., 2022),
multiple known subglacial lakes are located in this study
area. We focus on the dataset from the southern camp of
Dome A (AGAP-S), which comprises 2715 IPR images with
a central frequency of 150 Hz, a bandwidth of 10 MHz, and
a transmitting power of 800 W (Wolovick et al., 2013). We
use the L1B data product (CSAPR_standard), which employs
focused synthetic aperture radar processing on each chan-
nel and motion compensation during data pre-processing
(Arnold et al., 2020). The radar images have an average spa-
tial along-track trace spacing of 14 m and a time sample step
of 10−7 s, equivalent to a sample range of 8.4 m in ice. The
radar images also contain the positions of ice bottom reflec-
tors, which were extracted by a hybrid manual–automatic
method (CReSIS, 2024).

In this study, we perform a series of data processing steps
to extract the ice bottom reflector signals from the radar im-
ages. First, we transfer the echo power to the decibel scale for
each radar image by [X]db = 10 · log10(X), where X is the
pixel value from the images. Second, we use the bed picks
in the dataset to truncate the one-dimensional data within
±200 sampling points near the bed reflector position for ev-
ery single vertical trace. Third, we align the one-dimensional
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Figure 1. Workflow for subglacial lake detection: (a) extract and sample the ice bottom reflector trace by trace in IPR images. (b) The VAE
encodes and reconstructs the sampled ice bottom reflector. (c) Unsupervised clustering on the encoded latent vectors. (d) Trace the ice bottom
reflector corresponding to the subglacial lake cluster. Subglacial lakes are labeled after depth-dependent echo power filtering.

trace data by centering the traces according to their maxi-
mum value (peak echo) to correct minor position misfits of
semi-automatic reflector picking. This step ensures that the
maximum value of bottom reflector signal features always
resided at the center of the one-dimensional trace data. To re-
duce the interference from other englacial radar features such
as the internal ice layers and the potential multiple diffrac-
tions from bedrock, we apply constant time windows for each
trace near the peak signal values. The width of the time win-
dow should contain the main part of the signal waveform.
We truncate −64 to +63 data sampling points around the
peak signal centers, which maintains a fixed length of 128
samples for each ice bottom reflection signal. As the sam-
pling rates of the radar images in this region are identical,
the sample ranges of the ice bottom reflector features are also
consistent.

To enhance the reflector features and minimize the impact
of sampling noise in radar images, a constant Gaussian fil-
ter with a kernel sigma value of 4 is applied to all the ex-
tracted trace reflector data. Last, all dynamic ranges of reflec-
tor features from different radar images are normalized into
0–1 to reduce the influence of the background echo power
in the radar image and accentuate the reflector features. The
normalization in each reflector waveform reduces the com-
plexity of the data samples, which also accelerates the fol-
lowing training process and enables the waveform downsam-
pling to a small 2× 1 vector. By following the steps above,
we generated and collected an ice bottom reflector waveform
feature dataset with 1488600 one-dimensional z-axis radar
echo traces.

2.2 Variational Auto-Encoder

The VAE was first proposed by Kingma and Welling (2013)
and designed for image and signal processing. As an auto-
encoder, the VAE consists of an encoder and a decoder: the
encoder reduces the data sizes and downsamples the input
data to vectors in latent space; the following decoder recon-
structs the latent vectors to approach and match the raw in-
put data. Between the encoder and decoder, the latent space
is characterized as the “bottleneck” of the VAE, in which the
input feature is depressed into the smallest size. After train-
ing, the encoded latent vectors can be considered dimension-
reduced representations of the input data. The VAE now has
various applications in Earth science studies, such as geo-
physical inversion (Cheng and Jiang, 2020; Liu et al., 2022;
Lopez-Alvis et al., 2021), shale petroleum prediction (Li and
Misra, 2017), engineering seismic analysis (Esfahani et al.,
2021), and seismic mechanism analysis (Li, 2022; Ma et al.,
2022).

In this study, we employ the VAE to reduce the dimension
of the reflector waveform features from the ice bottom. The
VAE architecture is shown in Fig. 2a, which consists of fully
connected layers, including an input layer of 128 neurons, an
encoder, and a decoder consisting of two hidden layers with
128 neurons and an output layer with 128 neurons. To per-
form a two-dimensional clustering in the latent vectors, we
design the latent space with a small size of 2× 1 following
Li (2022). The two-dimensional latent space also facilitates
the visualization of spatial distributions among the latent vec-
tors in two-dimensional plots. The loss function used in VAE
training follows Kingma and Welling (2013) and Li (2022):
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Loss =MSE+KL, (1)

where the MSE represents the mean squared error, which
measures the average difference between the predicted and
actual values, while KL represents Kullback–Leibler diver-
gence, which measures the dissimilarity between the proba-
bility distribution of the latent space and a Gaussian distribu-
tion:

MSE= ||X′−X||, (2)

KL=−0.5 ·
n∑
i=1

(
1+ log(σ 2

i )−µ
2
i − σ

2
i

)
, (3)

where X and X′ are raw input reflectors and VAE-
reconstructed reflectors, respectively. The MSE in the loss
function is applied to calculate the reconstruction misfit and
KL divergence for estimating and reducing the difference
between the distribution and the normal distribution in la-
tent space. n represents the dimension of the latent space Z,
which was preset to 2 in this study, and σ and µ are the vari-
ance and mean of the latent space, respectively. The Adam
optimizer (Kingma and Ba, 2014) is employed to accelerate
the training process.

We use the randomly shuffled reflector datasets to train and
validate the VAE; 90 % of the data are used for training the
VAE, while the remaining 10 % served as a validation set.
The VAE is updated by a full training dataset during differ-
ent epochs in training. Due to the similar reflector features
after single-trace normalizations and the large data amount
applied in training, the training loss rapidly descends and no
longer changes after the first epoch. Thus, we stopped the
training at epoch 4 (Fig. S1 in the Supplement).

To illustrate the VAE’s reconstruction performance, we
randomly select different reflectors from the validation set
to demonstrate the reconstruction of ice bottom reflector fea-
tures (Fig. 2b, c). Subfigures in Fig. 2b show a group of sym-
metrical reflectors and their corresponding reconstruction.
The reconstructed reflector features (orange waveforms) re-
main the width and trend of raw input reflector features (blue
waveforms). Due to the low-dimensional latent space with
a 2× 1 size applied in the latent space, the high-frequency
detailed features in the reflector feature are unattainable and
thus discarded by the VAE. Figure 2c demonstrated a group
of asymmetric reflector features and the corresponding VAE
reconstruction. The comparison between inputs and recon-
structions suggests that the asymmetric trends of the reflec-
tor feature are also successfully reconstructed, together with
the width waveform feature. In general, the VAE can recon-
struct the features of both symmetric and asymmetric ice bot-
tom reflectors. Furthermore, we select typical reflectors with
large reconstruction errors to demonstrate the large misfit
conditions (Fig. 2d). Notably, reflectors contained with high-
frequency signals, multiple peaks, and severe oscillations are

challenging to reconstruct, thus resulting in higher errors.
These peculiar signal features deviate significantly from the
majority of the reflector features in the training set, rendering
the features difficult to encode and decode through latent vec-
tors. The reconstructions of multiple peak features are usu-
ally simplified to broader reflection shapes, whose trends are
approximate to the smooth shape and average of the input
features.

As shown in Fig. 2a, the original 128-length reflector
waveform features are transformed into a 2× 1 latent vec-
tor between the encoder and decoder of the VAE. The fea-
tures of ice bottom reflectors are derived by the encoder part
of the VAE to latent vectors consisting of two dimensionless
scalars,Z1 andZ2, which can be regarded as vectors contain-
ing the original signal features. Therefore, the distance be-
tween vectors from two reflector samples in the latent space
can be considered an indicator of statistical feature similarity.

2.3 Clustering analysis in latent space

After VAE training, we randomly select a subset with 2000
reflector samples from the entire dataset for clustering. Be-
cause the selection is uniformly random, the reflector sam-
ples are from different radar images captured in different
regions, and thus the samples reveal different ice bottom
conditions. The reflector samples are first encoded by the
VAE’s encoder to two-dimensional vectors in latent space.
Figure 3a shows the vector distributions of the samples in
the latent space, in which each scattered point corresponds
to an encoded reflector sample. Due to the application of KL
divergence in the VAE’s loss function, the vector distribu-
tion of these samples in the latent space composed of Z1 and
Z2 is approximate to a two-dimensional Gaussian distribu-
tion. According to the character of the VAE (Kingma and
Welling, 2013), the distance between encoded vectors in the
latent space is equivalent to the difference between the in-
put reflector samples. By measuring the distances between
the reflectors’ latent vectors, we can estimate the difference
in waveform features. Furthermore, the distance-based clus-
tering in latent vectors can classify the ice bottom reflector
feature with similar features.

In clustering, a redundant dataset can slow down the clus-
tering calculation. Conversely, over-reduced datasets may
lack essential features and lower the accuracy. As illustrated
in Fig. 3a, latent vectors from 2000 reflectors are randomly
selected from the entire dataset for clustering analysis to bal-
ance the clustering efficiency and accuracy. We employ the
K-means clustering algorithm (MacQueen, 1967), which is
based on the Euclidean distance estimation of the differences
between data samples as well as the characteristics in the
VAE’s latent space. Initially, K-clustering centers are ran-
domly assigned in two-dimensional space. The distance of
each sample vector to the cluster center is computed, and the
sample is assigned to the nearest cluster with the smallest
distance. Then, all the cluster centers are updated to the spa-
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Figure 2. Variational Auto-Encoder (VAE) and demonstrations of ice bottom reflector reconstruction. (a) VAE architecture, with both encoder
and decoder consisting of two fully connected layers with 128 neurons and bottleneck 1× 2 latent space. (b–d) Illustration of data recon-
struction using the VAE: input raw reflectors (blue waveforms) and VAE-reconstructed reflectors (orange waveforms), where the horizontal
axis corresponds to time and the vertical axis corresponds to the normalized reflection power (ranging from 0 to 1). Reconstructed MSEs are
labeled above the waveforms. (b) Symmetrical reflector features. (c) Asymmetrical reflector features. (d) Complex reflector features, which
result in higher reconstruction errors.

tial center of all the samples belonging to the corresponding
cluster. This assign–update process is repeated until the clus-
ter center becomes constant or the clustering result remains
unchanged.

The number of clusters (K) is a preset parameter in theK-
means algorithm, which must balance the tradeoff between
implied feature classes and feature density in the data. On
the one hand, K should be sufficiently large to distinguish
between different ice bottom conditions. On the other hand,
K should not be so large as to create unnecessary subclasses.
To obtain optimal clustering results, we first applied the el-
bow method to determine the appropriate value ofK (Fig. 4).
However, the elbow curve does not show a clear cutoff point,
possibly due to the distribution of vectors in the latent space
(Fig. 3a) not displaying a distinct trend of multiple classes.

Since there is no distinct inflection point in the elbow
curves (Fig. 4), it is necessary to specify the value of K for
clustering the reflector samples. The selection of theK value

inK means directly impacts the area of each cluster in the la-
tent space. A smaller K corresponds to larger clusters in the
latent space, while a larger K allows for more precise iso-
lation of different reflection types. Consequently, different
K values directly impact the detection of subglacial lakes.
To identify an appropriate K value, we conducted multiple
experiments with different K values (Figs. S2 and S3) and
selected K = 15 in the final detection.

To visualize and trace the representative waveform fea-
tures in different clusters as well as the different regions in
latent space, we apply a set of virtual vectors to generate syn-
thetic waveforms by the VAE’s decoder. The virtual vector
set is generated by a grid with the same step length in the
latent space, and then the decoder generates the waveforms
corresponding to the inputted vectors. The two-dimensional
range of the virtual vector grid is assigned based on the stan-
dard deviation (σ ) of Z1 and Z2, as shown in the gray-dashed
rectangle in Fig. 3a. The ranges in Z1 and Z2 are both di-
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Figure 3. (a) Latent space distribution of 2000 randomly selected encoded reflector features, with each point representing an encoded
reflector sample. The color of each point represents different clustering results (classes), and the black cross denotes the clustering center
of each class. The gray-dashed rectangle indicates the range of 2 standard deviations (±σZ1 and ±σZ2 ) of the latent vectors. (b) Synthetic
ice bottom reflectors reconstructed by virtual vectors, where the virtual vectors’ range corresponds to the ranges of standard deviations (σZ1
and σZ2 ). Different colors divide the latent spaces corresponding to different clusters, in which the waveforms demonstrate the synthetic
reflectors in different clusters. The candidate cluster corresponding to subglacial lakes is shown in black color near the upper-right corner.

Figure 4. Elbow curve using different cluster numbers (K) in the K-means algorithm (a) and on log–log axes (b).

vided into 10 intervals each. The synthetic waveforms are
shown in Fig. 3b as well as the corresponding area of clusters.
The VAE’s learning target involves waveform reconstruction.
Consequently, we can equate the synthetic waveforms with
the input reflector waveforms that are encoded as identical
vectors in the latent space. These synthetic waveforms can
serve as a direct reference for the initial cluster selection of
input subglacial water reflections using conventional wave-
form methods, such as Hao et al. (2023).

2.4 Subglacial lake detection

We further investigate the geometry features of synthetic
waveforms in different clusters. We initially identify one of
the clusters corresponding to subglacial lakes (indicated by
black clusters and the region in the upper-right corner in

Fig. 3b). The waveforms within this cluster display symmet-
rical shapes and rapid signal attenuation near the waveform
peak, similar to subglacial lake reflections previously iden-
tified in studies such as Schroeder et al. (2013), Hills et al.
(2020), and Hao et al. (2023). Subsequently, we map the dis-
tribution of these reflectors in radar images. The results show
that these reflectors are spatially continuous in radar images,
and the reflectors generally display flat, bright characteris-
tics (Fig. 5c). These continuous features are similar to the vi-
sual criteria used by glaciologists to identify subglacial lakes
(Wolovick et al., 2013; Schroeder et al., 2013). Therefore,
we further apply the results of the encoder clustering as a
candidate distribution of subglacial lakes.
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Figure 5. The first example of subglacial lake detection includes two larger and two smaller subglacial lakes. (a) The IPR image is shown with
the blue-dashed line, indicating the positions of the ice bottom reflectors. (b) Separated, realigned, smoothed, denoised, and normalized ice
bottom reflector features, which are applied as inputs to the encoder. (c) Results of the unsupervised clustering of the latent vectors obtained
through encoding, where different colors correspond to the classes in Fig. 3. The black cluster corresponds to the candidate subglacial lakes.
(d) The subglacial lake detection based on continuous reflector features, where black blocks represent the raw detected subglacial lakes,
yellow blocks are occasional interruptions that are filled by interpolation, and white blocks correspond to the non-lake clusters.

2.4.1 Spatial threshold and discontinuity interpolation

It has been observed that the signal-to-noise ratio of radar
images from deep ice sheets is low due to the attenuation of
radar signals (Hills et al., 2020). The interference of noise
can occasionally cause odd clusters in the detection of candi-
date subglacial lakes (e.g., Fig. 5c). Occasionally, subglacial
lakes may be mistakenly identified as appearing in non-lake
areas. Additionally, the complex conditions of the ice bottom
can cause interruptions in subglacial lake detection. To elim-
inate noise interference and extract continuous subglacial
lakes, we limit the minimum width of subglacial lakes in ob-
servational detection. Detected subglacial lakes should con-
tain a continuous ice bottom segmentation in subglacial wa-
ter type with a width greater than eight traces (correspond-
ing to an average spatial distance of 112 m). Meanwhile,
interruptions in continuous subglacial lakes, which are nar-
rower than eight traces, are considered noise interference and
will be interpolated and filled into nearby subglacial lakes.
During interpolation, it is ensured that the interpolated non-
subglacial lakes in the continuous subglacial lakes are less

than 25 % to avoid mistaken detection caused by abundant
interpolation.

2.4.2 Depth-dependent echo power filtering

By implementing a threshold on the minimum width of sub-
glacial lakes, we obtain a list of candidate lakes with larger
widths, effectively minimizing noise interference. However,
some of these candidates still exhibit weak and indistinct bot-
tom reflector features that could not be conclusively identi-
fied as subglacial lakes. Therefore, we follow the conven-
tional subglacial lake detection method based on englacial
signal attenuation of bed reflectors (Wolovick et al., 2013;
Hills et al., 2020). In this study, we apply a simplified pro-
cess, using a linear threshold based on the average peak re-
flector echo power at different depths to reduce the reflec-
tor power anomalies. Values of peak echo power and depth
are directly extracted from radar images for each reflector
without ice surface correction, simplifying the approach. We
calculate the best linear fit and standard deviation in the
two-dimensional distribution of ice thickness (depth) and
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Figure 6. Distribution of ice bottom reflection peak power and
ice thickness. The background color map represents the probability
density estimation (PDE) of the data. The orange dashed line rep-
resents the best linear fit. The black dashed line denotes the +1σ
cutoff threshold. Gray dots represent reflector samples, while black
dots represent the detected samples for subglacial lakes.

peak echo power of bottom reflectors from the radar images
(Fig. 6). Considering that the VAE clustering has analyzed
reflector features and the simplified ice thickness is applied,
a lower linear threshold on the average echo power (best fit
+1σ , compared to the previous study: Wolovick et al., 2013)
is applied to preserve potential subglacial lakes. The con-
firmed reflectors are represented as black points in Fig. 6. The
average echo power of the detected subglacial lakes in the
filtered list should surpass the threshold at the correspond-
ing average depth. Consequently, this final refinement ex-
cluded candidate lakes exhibiting weak and blurred reflector
features.

3 Results

We apply the encode–cluster method to the IPR images in
the AGAP-S dataset and trace the spatial distribution of sub-
glacial lakes in the images. In this section, we first demon-
strate subglacial lakes detected at different scales. Next, we
compare the distribution of the detected subglacial lakes with
known lake inventories and discuss the newly detected sub-
glacial lakes as well as the known subglacial lakes missed by
our method.

3.1 Subglacial lakes on different scales

Figure 5 shows two large subglacial lake distributions and
two smaller subglacial lakes located at the bottom of sub-
glacial valleys. The two larger lakes on the right display high
echo power as well as continuous and flat reflection features,
which are relatively easy to detect visually. In contrast, the
two smaller subglacial lakes on the left are easily overlooked
due to their relatively narrow widths containing insufficient
continuous and flat reflection features. This example demon-
strates the detection of two different types of subglacial lakes
of varying widths from within a radar image. The geothermal
and subglacial environments should be similar at the length
scales covered by the radar image, which was continuously
recorded in adjacent areas. Therefore, the detection of the
two smaller subglacial lakes can be considered reliable based
on the reflector encodes and the following clustering results.
In addition to the examples shown in Fig. 5, we provide fur-
ther examples of subglacial lake detection in Figs. 7 and 8,
where the workflows and sequences applied are identical to
those shown in Fig. 5.

Figure 7 shows the detection of a relatively small sub-
glacial lake, which is located at the concave bottom of a sub-
glacial valley. Despite its short length, this lake displays a flat
and continuous reflection interface, with strong echo power
and rapid attenuation characteristics, making it visually sim-
ilar to the larger lakes in Figs. 5 and 8. The continuous re-
flection features of this type of smaller subglacial lake are
narrower and less prominent, which makes them easily over-
looked in visual detection in previous studies.

Figure 8 presents a special example of a large continuous
subglacial lake (at about 40 km along the transect) shown in
a radar image. This subglacial lake has high returned power
and flat reflection features that are visually easy to detect.
However, only part of the lake is detected by the encode–
cluster method based on reflector features, and discontinu-
ities are found within the lake (Fig. 8d). Upon inspecting
the radar image (Fig. 8a), we observe that the left part of
this subglacial lake (indicated by the white arrow in Fig. 8c)
displays different reflector features from the detected part of
the lake. These inconsistent features visually have relatively
thick and uniform reflection layer-like features near the ice
bottom interface, resembling frozen-on ice as described by
Bell et al. (2011). Additionally, another discontinuity inter-
rupts the detected subglacial lake distribution in the center,
which also implies thick reflection layer features. Moreover,
in other areas of the radar image, there are also other contin-
uous clusters of subglacial reflector features (as the yellow
arrow indicates in Fig. 8c). By tracing these clusters, we note
that these different classes of reflectors correspond to dis-
tinct uniform reflection layers with varying thicknesses. Due
to the similar features of ice bottom reflections, we suggest
that these continuous spatial distributions may relate to the
ice flow dynamics and different stages of frozen-on ice (Bell
et al., 2011).
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Figure 7. Second example of subglacial lake detection, which contains a relatively narrow subglacial lake. (a) Input radar image, with the
blue-dashed line indicating the positions of the ice bottom reflectors. (b) Separated, realigned, smoothed, denoised, and normalized ice
bottom reflector features, which are used as inputs to the encoder. (c) Results of the unsupervised clustering of the latent vectors obtained
through encoding, where different colors correspond to the classes in Fig. 3. The black cluster corresponds to the candidate subglacial lakes.
(d) The subglacial lake detection based on continuous reflector features, where black blocks represent the raw detected subglacial lakes,
yellow blocks are occasional interruptions that are filled by interpolation, and white blocks correspond to the non-lake clusters.

3.2 Spatial distribution of detected subglacial lakes

We compile and integrate the identified subglacial lakes and
lakes from the AGAP-S IPR images and locate each detec-
tion within the spatial sampling range of each radar image
provided by the database. Figure 9 presents the spatial distri-
bution of subglacial lakes detected in the Gamburtsev Sub-
glacial Mountains region, where the blue points represent
subglacial lakes that have been confirmed by applying the
peak reflection power filter to subglacial lake candidates de-
tected by the encode–cluster method (light cyan points in
Fig. 9). Overall, the subglacial lakes are distributed in clus-
ters with spatial continuity (e.g., the regional cluster near the
L1 and L3 area), but some isolated lakes are also detected,
such as the L2 survey line. Densely distributed subglacial
lakes in specific regions are usually identified in radar im-
ages by their obvious reflections, as illustrated in Figs. 5 and
7. In these cases, most detections are validated through peak
power filtering. However, certain candidates in densely dis-
tributed regions exhibit lower peak reflector echo power than
the thresholds used here. This discrepancy is primarily at-

tributed to the ambiguous and weak reflections often associ-
ated with spatially extensive flat ice bottom shapes. An ex-
ample of such candidates can be observed in the densely dis-
tributed light cyan points near the lower-left corner in Fig. 9.

In addition to the subglacial lakes detected in this study, we
compare the subglacial lakes detected in this study with the
previously identified subglacial lake distributions, as shown
by the red and yellow points in Fig. 9, which correspond to
the inventories of Wolovick et al. (2013) and Livingstone
et al. (2022), respectively. The two larger subglacial lakes
(shown in Figs. 5 and 8) correspond to the known subglacial
lakes listed in the inventories (labeled L1 and L3 in Fig. 9).
In contrast, the narrow subglacial lake shown in Fig. 7 was
not previously included in the inventories (labeled L2 in
Fig. 9). Overall, the subglacial lake distribution detected in
this study roughly overlaps with the known inventory, but
there are also some mismatches, such as the lines labeled E1–
E5 and N1–N4 in Fig. 9. To further investigate the reasons for
these discrepancies, we select the corresponding radar image
segments from the labeled regions and plot the segments in
Figs. 10 and 11, respectively.
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Figure 8. Third example of subglacial lake detection, which contains a subglacial lake. (a) Input radar image, with the blue-dashed line
indicating the positions of the ice bottom reflectors. (b) Separated, realigned, smoothed, denoised, and normalized ice bottom reflector
features, which are used as inputs to the encoder. (c) Results of the unsupervised clustering of the latent vectors obtained through encoding,
where different colors correspond to the classes in Fig. 3. The black cluster corresponds to the candidate subglacial lakes. (d) The subglacial
lake detection based on continuous reflector features, where black blocks represent the raw detected subglacial lakes, yellow blocks are
occasional interruptions that are filled by interpolation, and white blocks correspond to the non-lake clusters. The yellow arrow indicates
another continuous subglacial reflector class distribution, which may correspond to other symbolic subglacial conditions. The white arrow
indicates a possible subglacial frozen-on ice condition.

Figure 10 displays segments of radar images from the N1–
N4 subregions, revealing multiple new subglacial lakes de-
tected by the new method (indicated as blue lines in Fig. 10).
Figure 10a illustrates two detected subglacial lakes, one on
the left (marked as the orange line below) that was already in-
cluded in previous subglacial lake inventories and one on the
right that is newly detected by the new method. The ice bot-
tom reflectors of both subglacial lakes have a similar visual
appearance, with sharp and narrow reflectors on the z axis.
However, the lake on the right has a narrower width, which
could make it easier to overlook visually, potentially causing
it to be neglected in previous studies.

The radar segment displayed in Fig. 10b is from the N2
subregion near−83° S, 70° E in Fig. 9, where a group of con-
tinuous subglacial lakes has been detected and recorded in
the known inventory (Fig. 9, N2). However, there is no previ-
ous detection in this radar image from the known inventory.
The new method detects subglacial lakes in about 7 km in
Fig. 10b. It is worth noting that multiple reflectors with thick

layer features (marked by red arrows) are displayed in 16 and
29 km simultaneously. Considering the dense distribution of
subglacial lakes nearby, these thicker reflection features are
possibly formed by frozen-on ice that complicates the shape
of the near-basal reflection trace. Figure 10c and d show sev-
eral smaller subglacial lakes, which are similar to the narrow
subglacial lake shown in example 2 in Fig. 7. These small
lakes may have originated from local melting or subglacial
rivers corresponding to the regionally dense distribution of
subglacial lakes near the L2, N3, and N4 regions in Fig. 9.

Figure 11 presents subglacial lakes previously identified in
the inventories but which are not accurately detected by the
encode–cluster method and echo power filtering. The orange
arrows in Fig. 11 indicate the locations of previously iden-
tified subglacial lakes. In Fig. 11a, although there are mul-
tiple candidate lakes in the E1 subregion from the encode
clustering in the radar segment, the average peak power is
insufficient to confirm the subglacial lake in each lake can-
didate. The ice bottom reflectors of this radar segment are
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Figure 9. Distribution of airborne radar observation lines and detected subglacial lakes in the Gamburtsev Subglacial Mountains region.
Blue points indicate the distribution of subglacial lakes detected in this study. Light cyan points mark all the lake candidates from the VAE
cluster method before echo power filtering. Red and yellow points mark the subglacial lake distribution from the subglacial lake inventory
in Wolovick et al. (2013) and Livingstone et al. (2022), respectively. Text labels with gray arrows indicate the positions and directions of
selected survey lines (shown with black arrows), where L1, L2, and L3 correspond to the detection example survey lines (Figs. 5, 7, and 8),
N1–4 correspond to the newly detected lakes in Fig. 10, and E1–5 correspond to the mismatched lakes with the known inventory in Fig. 11.
The inset map shows the location of the study area.

visually different from other known subglacial lake features
(e.g., Figs. 5, 8, and 10). In Fig. 11b, the ice bottom reflec-
tors near known subglacial lakes are classified as correspond-
ing to other reflector classes instead of lake reflectors. By
inspecting the radar image, these reflectors display a thick
layer near the ice bottom reflections, which are similar to the
reflections in Fig. 8c. We hypothesize that the subglacial lake
in this segment may be associated with a frozen-on ice con-
dition, distinguishing it from the thick bottom reflectors ob-
served in Fig. 10b. In the latent space (Fig. 3b), the clusters in
Fig. 10b (purple) and Fig. 8c (yellow) are adjacent. This ad-
jacency suggests the presence of multiple clusters potentially
corresponding to different phases of frozen-on ice.

Similarly, the reflectors from previously identified sub-
glacial lakes in the E4 and E5 subregions in Fig. 11d and
e are also classified as other ice bottom reflection classes
by the encode–cluster method. By observing the radar image
segments corresponding to these two subregions, the ice bot-
tom reflectors that corresponded to previously identified sub-
glacial lakes also display thicker layer reflections, which do
not match other subglacial lake features from other regions.
The undetected subglacial lake in Fig. 11c, near 25 km, is
similar to Fig. 11a, where the average echo power is in-
sufficient to confirm the subglacial lakes. Also, the encoded
classes of ice bottom reflectors near the white arrow change

to other classes, indicating that the potential lakes here may
consist of more complex bottom conditions.

Overall, the new method in this study can capture more
candidate subglacial lakes with similar reflector features to
the previous lake inventories. Compared to the previously
identified lake inventories, most of the newly detected sub-
glacial lakes in this study are smaller subglacial lakes, which
are more possibly overlooked in manual visual inspections
and easily obscured by multi-trace averaging in detection
windows. This automated method can promote updates of
the known lake inventory with further investigation. The re-
flector waveform analysis can also provide additional candi-
date clusters of similar subglacial conditions. Further inves-
tigations, including drilling or modeling, will help to eluci-
date the connection between reflection waveforms and dis-
tinct basal conditions. This exploration may potentially in-
terpret the false positives of subglacial lakes (e.g., Fig. 11) in
known inventories.

3.3 Detection sensitivity with the number of clusters

Since different numbers of clusters (K) influence the area in
the latent space, it becomes essential to assess the detection
sensitivity by testing different values of K . Figure 12 illus-
trates the detected subglacial lake distributions under differ-
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Figure 10. Newly detected subglacial lakes and lakes in the Gamburtsev Subglacial Mountains region, with text labels corresponding to the
location distribution in Fig. 9. Scatter points in different colors mark the encoded classes of the ice bottom reflectors, and the blue and orange
lines indicate the detected range of subglacial lakes. (a) IPR image of the N1 region, containing a known subglacial lake (orange line on the
left) and a newly detected subglacial lake (right). (b) Radar image segment of the N2 region, containing a newly labeled subglacial lake area;
the two relatively flat ice bottom reflection segments indicated by red arrows may record the frozen-on ice. (c–d) Newly detected subglacial
lakes with smaller sizes from radar image segments from the N3 and N4 regions, respectively.

ent K values. Figure 12a exhibits the boundaries between
lake and non-lake clusters in the latent space. The black
points in Fig. 12a represent vectors from the detected lakes
in this study. Notably, some points fall outside the bound-
ary of K = 15 (white dashed curve) due to complementation
through interpolations. When considering K values between
14 and 16 (as indicated by the red, blue, and white dashed
curves), the clustered areas corresponding to lakes exhibit a
relatively stable and lower misfit to the vectors from the fi-
nal lake list. Figure 12b showcases the subglacial lake detec-
tions in a regional area from AGAP-S (from the black box
in Fig. 9). Compared with the known lake inventory (gray
points), smaller K values lead to more erroneous detections
(e.g., sparse yellow points when K = 8), while larger K val-
ues might miss more lakes. When K = 15, the detected lake
distribution aligns well with the known lake inventory. Fig-
ure 12c and e demonstrate subglacial lake detections with
different K values in same radar images. Similarly to the
spatial distribution in Fig. 12b, smallerK values could result
in false detections, such as the mistaken detection indicated
by the yellow line near 30 km in Fig. 12e (when K = 8).
Conversely, larger K values limit the detection range of sub-
glacial lakes and introduce unexpected discontinuities. Over-
all, the subglacial lake range detected withK = 15 correlates

with visual observations. We further expanded the dataset
by incorporating more data (5 % of the waveforms from the
dataset) into clustering and then traced the subglacial lake
detections. The results (black lines in Fig. 12c, e) showed
negligible differences compared to the detections from the
smaller dataset clustering (white lines).

In the latent space, the difference in reflector features
can be measured based on the distance of the correspond-
ing vectors from the reflectors. Hence, the latent space dis-
tance serves as a statistical similarity indicator for reflec-
tor features. Using the newly compiled subglacial lake list,
we can trace vectors corresponding to lake reflectors within
the newly detected lake ranges (depicted as black points in
Fig. 12a). These vectors contribute to a robust dataset, estab-
lishing a capable centroid of lake vectors in the latent space
denoted by the white cross in Fig. 12a. The disparity be-
tween the lake centroid and each reflector can be quantified
using the latent space distance, serving as an index for the
reflector’s similarity to the lake echo feature. Figure 12d and
f demonstrate latent space distances (LSDs) from the lake
centroid, where the y axes are reversed. Reflectors, which
are similar to lake features, exhibit continuous and flat peaks
(close to 0), while other reflectors display larger differences.
Some regional reflectors also show brief high similarity (e.g.,
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Figure 11. IPR image segments from the Gamburtsev Subglacial Mountains area, which mismatch the identified lake inventory (Wolovick
et al., 2013; Livingstone et al., 2022). The text labels correspond to the locations marked in Fig. 8, and the orange arrows mark the locations
of the identified subglacial lakes from the inventories.

∼ 4.5 km in Fig. 12f), possibly corresponding to smaller wa-
ter bodies or water tunnels and overlooked by the minimum
lake width threshold.

4 Discussion

The subglacial analysis method proposed in this study is
based on the shape of the ice bottom reflector features, which
enables the full exploitation of ice bottom echo waveform
information contained in the IPR observation data, provid-
ing a novel observational perspective for the study of the ice
bottom beyond reflection power intensity and roughness. By
contrast with conventional supervised learning methods, this
study acquires no manual labels, thereby minimizing the po-
tential for artificial misfit from training labels and allowing
for the application of this approach in surveying other poten-
tial subglacial conditions.

The unsupervised clustering in the latent vectors relies
on the feature difference in reflection waveforms, allow-
ing analysis of reflectors without precise interpretations of

basal radar reflectances and reducing dependence on model
assumptions. However, subjective elements persist, such as
the experiential selection of the K value and the lattice-like
boundaries observed in Fig. 12. For future studies, with the
detection of more lakes from different regions, a more pre-
cise centroid of lake vectors can be established. Moreover,
an ample sample size will yield a more credible lake bound-
ary in latent space and a reliable threshold for the similarity
index based on latent space distance.

Given the potential flattening effect on the vector distri-
bution in the latent space by the variational module in the
VAE (Fig. 3a), we conduct a comparative analysis using an
auto-encoder lacking the variational module (Fig. S4). We
compute the two-dimensional probability density for both
distributions. In contrast to the VAE distribution (Fig. S4a),
the distribution derived from the auto-encoder without the
variational module (Fig. S4b) displays a more uniform trend
and lacks discernible cluster patterns. Compared to the
auto-encoder without the variational module, the VAE pro-
vides a continuous latent space (Doersch, 2016), facilitat-
ing the direct tracing of waveforms from different clusters
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Figure 12. Differences in lake detections under different K values. (a) Sectional latent space. Curves in different colors indicate the bound-
aries between the lake and non-lake clusters when differentK values are applied in the clustering, with yellow forK = 8, orange forK = 11,
red for K = 14, white dashed line for K = 15, blue for K = 16 (partial overlapping with the white dashed line), cyan for K = 20, and pink
forK = 30. Black points denote the reflector vectors from detected lakes in this study, and the white cross denotes the centroid of all the lake
vectors. (b) Regional spatial distributions of detected subglacial lakes in the map. The map area is truncated from the black box in Fig. 9,
where gray points represent the known-lakes inventory (Livingstone et al., 2022) and black lines indicate the detected ranges of subglacial
lakes whenK = 15. Stacked points in various colors represent the detected lake distributions under differentK values corresponding to panel
(a). (c, e) Difference in subglacial lake detection under different K values in radar image samples from Figs. 5 and 10a, where differently
colored lines represent the detected lake ranges under different K values. Black lines denote the detection ranges when K = 15, with 5 %
of the dataset applied in clustering. (d, f) Latent space distances (LSDs) between bottom reflector vectors to the centroid of detected lake
vectors, derived from panels (c) and (e), respectively.

through synthetic waveforms generated from the latent space
(Fig. 3b).

In this study, the final subglacial lakes are obtained using
radar echo power filtering, which is based on the linear rela-
tionship between reflection power and ice thickness (depth of
the ice bottom). However, this simple linear threshold filter-
ing potentially excludes subglacial lakes with weaker echo
power. To improve the detection of weaker subglacial lake
signals, more precise filtering strategies that take into ac-
count the roughness and slope of the ice bottom may be ben-
eficial.

Although the encode–cluster method provides an abstract
classification for ice bottom reflections, the physical proper-
ties of the ice bottom reflection and the corresponding clus-
ter still require further interpretation. The VAE encoder maps
high-dimensional reflections to a vector that corresponds to
the reflector waveform feature. In the future, physical model-
ing and in situ drilling may provide more direct relationships
between the latent vectors and subglacial conditions, thereby
enhancing the understanding of this subglacial lake detection
method.

In addition to subglacial water bodies, other clusters of ice
bottom reflections also exhibit some consistent patterns, as
illustrated in Figs. 8, 10b, and 11b. These resemblances may
originate from similar subglacial conditions, particularly the
thick layer-like reflections that could correspond to different
stages of frozen-on ice. The encode–cluster method is capa-
ble of isolating these reflection clusters, offering a potential
reference for studying glacier dynamics. Geostatistical mod-
eling based on subglacial topography (MacKie et al., 2020)
may provide additional references for the reflector clusters
under corresponding subglacial conditions. Furthermore, the
novel interpretation of latent encoding and clustering could
enhance conventional geostatistical analysis by directly uti-
lizing the encoded or clustered results as input or reducing
input data dimensions.

The detection method used in this study is based on deep
learning, allowing for a mostly automated analysis of data.
Deep-learning extractors, such as EisNet (Dong et al., 2021),
developed in recent years can efficiently pick up the bed in-
terface in radar images. By combining these two types of
deep-learning methods, an automatic method can be imple-
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mented to first extract the positions of the ice bottom and then
analyze the features of the bottom reflector, which can further
update the subglacial lake inventory by applying this com-
bined deep-learning method in the available IPR database.
The data used in this study are focused on the Gamburt-
sev Subglacial Mountains and can be extended to another
database’s radar image analyses covering, e.g., the Arctic,
Antarctic, and Qinghai–Tibet Plateau. As such, this has po-
tential applications for analyzing and tracing spatiotemporal
changes in global subglacial lakes and other ice bottom re-
flection features. Furthermore, this method based on a ver-
tical radar waveform also enables the single-trace waveform
analysis from A-scope radar data, especially for early obser-
vations (Schroeder et al., 2022).

5 Conclusions

We established a workflow utilizing deep clustering for the
detection of subglacial lakes in the Gamburtsev Subglacial
Mountains region. Based on the IPR data from the CRe-
SIS database, we constructed a comprehensive dataset of ice
bottom reflection signals. With this dataset, we trained the
VAE to reconstruct the reflection features and encode them
into the latent space. With the subsequent K-means cluster-
ing within the encoded features in latent space, we separated
the reflector features potentially corresponding to subglacial
lakes. By considering the relationship between the peak re-
flection power and ice thickness, we filtered subglacial lake
candidates in this region. Compared with existing invento-
ries, our method can effectively detect features of subglacial
lakes and extract more smaller subglacial lakes. This method
has potential applications in expanding the subglacial lake
inventory and interpreting other subglacial conditions.
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