Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-753-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-753-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Combining borehole temperature, borehole piezometer and cross-borehole electrical resistivity tomography measurements to investigate seasonal changes in ice-rich mountain permafrost
Alpine Environment and Natural Hazards, WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse
11, 7260 Davos Dorf, Switzerland
Climate Change, Extremes and Natural Hazards in Alpine Regions
Research Center CERC, Flüelastrasse 11,7260 Davos Dorf, Switzerland
Chasper Buchli
Alpine Environment and Natural Hazards, WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse
11, 7260 Davos Dorf, Switzerland
Samuel Weber
Alpine Environment and Natural Hazards, WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse
11, 7260 Davos Dorf, Switzerland
Climate Change, Extremes and Natural Hazards in Alpine Regions
Research Center CERC, Flüelastrasse 11,7260 Davos Dorf, Switzerland
Jacopo Boaga
Department of Geosciences, University of Padua, Via Gradenigo 6,
35131 Padua, Italy
Mirko Pavoni
Department of Geosciences, University of Padua, Via Gradenigo 6,
35131 Padua, Italy
Alexander Bast
Alpine Environment and Natural Hazards, WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse
11, 7260 Davos Dorf, Switzerland
Climate Change, Extremes and Natural Hazards in Alpine Regions
Research Center CERC, Flüelastrasse 11,7260 Davos Dorf, Switzerland
Related authors
Alexander Bast, Robert Kenner, and Marcia Phillips
The Cryosphere, 18, 3141–3158, https://doi.org/10.5194/tc-18-3141-2024, https://doi.org/10.5194/tc-18-3141-2024, 2024
Short summary
Short summary
We monitor ground temperature, water pressure, and relative ice/water contents in a creeping ice-rich rock glacier in mountain permafrost to study its characteristics during a deceleration period with dry conditions and a summer heat wave. The snowpack has an important role as a provider of water and as a thermal insulator. Snow-poor winters, followed by dry summers, induce cooling and drying of the permafrost, leading to rock glacier deceleration.
Lars Widmer, Marcia Phillips, and Chasper Buchli
The Cryosphere, 17, 4289–4295, https://doi.org/10.5194/tc-17-4289-2023, https://doi.org/10.5194/tc-17-4289-2023, 2023
Short summary
Short summary
Long-term temperature measurements are challenging to carry out in mountain-permafrost boreholes. The widely used resistance thermistors are highly accurate but prone to drift when they are exposed to moisture, or the cable connecting them is stretched. We explore the possibility of supplementing them with digital sensors and analyse the performance of both systems at 15 depths in the same mountain-permafrost borehole.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Robert Kenner, Jeannette Noetzli, Martin Hoelzle, Hugo Raetzo, and Marcia Phillips
The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019, https://doi.org/10.5194/tc-13-1925-2019, 2019
Short summary
Short summary
A new permafrost mapping method distinguishes between ice-poor and ice-rich permafrost. The approach was tested for the entire Swiss Alps and highlights the dominating influence of the factors elevation and solar radiation on the distribution of ice-poor permafrost. Our method enabled the indication of mean annual ground temperatures and the cartographic representation of permafrost-free belts, which are bounded above by ice-poor permafrost and below by permafrost-containing excess ice.
Anna Haberkorn, Nander Wever, Martin Hoelzle, Marcia Phillips, Robert Kenner, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, https://doi.org/10.5194/tc-11-585-2017, 2017
Short summary
Short summary
The effects of permafrost degradation on rock slope stability in the Alps affect people and infrastructure. Modelling the evolution of permafrost is therefore of great importance. However, the snow cover has generally not been taken into account in model studies of steep, rugged rock walls. Thus, we present a distributed model study on the influence of the snow cover on rock temperatures. The promising results are discussed against detailed rock temperature measurements and snow depth data.
Antoine Marmy, Jan Rajczak, Reynald Delaloye, Christin Hilbich, Martin Hoelzle, Sven Kotlarski, Christophe Lambiel, Jeannette Noetzli, Marcia Phillips, Nadine Salzmann, Benno Staub, and Christian Hauck
The Cryosphere, 10, 2693–2719, https://doi.org/10.5194/tc-10-2693-2016, https://doi.org/10.5194/tc-10-2693-2016, 2016
Short summary
Short summary
This paper presents a new semi-automated method to calibrate the 1-D soil model COUP. It is the first time (as far as we know) that this approach is developed for mountain permafrost. It is applied at six test sites in the Swiss Alps. In a second step, the calibrated model is used for RCM-based simulations with specific downscaling of RCM data to the borehole scale. We show projections of the permafrost evolution at the six sites until the end of the century and according to the A1B scenario.
Rachel Luethi and Marcia Phillips
Geogr. Helv., 71, 121–131, https://doi.org/10.5194/gh-71-121-2016, https://doi.org/10.5194/gh-71-121-2016, 2016
Short summary
Short summary
Long-term borehole temperature monitoring in mountain permafrost environments is challenging under the hostile conditions reigning there. On the basis of data measured in the SLF borehole network we show situations where ground temperature data should be interpreted with caution. A selection of recently observed problems are discussed, and advantages and possible drawbacks of various solutions including data correction, measurement redundancy or alternate instrumentation are presented.
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
The Cryosphere, 18, 5713–5733, https://doi.org/10.5194/tc-18-5713-2024, https://doi.org/10.5194/tc-18-5713-2024, 2024
Short summary
Short summary
Pseudo-relict rock glaciers look relict but contain patches of permafrost. They are poorly known in terms of permafrost content, spatial distribution and frequency. Here we use spring-water temperature for a preliminary estimate of the permafrost presence in rock glaciers of a 795 km2 catchment in the Italian Alps. The results show that ~50 % of rock glaciers classified as relict might be pseudo-relict and might contain ~20 % of the ice stored in the rock glaciers in the study area.
Samuel Weber and Alessandro Cicoira
EGUsphere, https://doi.org/10.5194/egusphere-2024-2652, https://doi.org/10.5194/egusphere-2024-2652, 2024
Short summary
Short summary
The properties of the permafrost ground depend on its temperature and composition. We used temperature data from 29 boreholes in Switzerland to study how heat moves through different types of mountain permafrost landforms. We found that it depends on where you are, whether there is water in the ground and what time of year it is. Understanding these changes is important because they can affect how stable mountain slopes are and how easy it is to build things in mountain areas.
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2024-2509, https://doi.org/10.5194/egusphere-2024-2509, 2024
Short summary
Short summary
Our study explores permafrost-glaciers interactions with a foucs on its implication for preparing/triggering high-volume rock slope failures. Using the Bliggspitze rock slide as a case study, we demonstrate a new type of rock slope failure mechanism triggered by the uplift of the cold/warm dividing line in polythermal alpine glaciers, a widespread and currently underexplored phenomenon in alpine environments worldwide.
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024, https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Short summary
Reversal polarity is observed in rock glacier seismic refraction tomography. We collected several datasets observing this phenomenon in Switzerland and Italy. This phase change may be linked to interferences due to the presence of a thin low-velocity layer. Our results are confirmed by the modelling and analysis of synthetic seismograms to demonstrate that the presence of a low-velocity layer produces a polarity reversal on the seismic gather.
Alexander Bast, Robert Kenner, and Marcia Phillips
The Cryosphere, 18, 3141–3158, https://doi.org/10.5194/tc-18-3141-2024, https://doi.org/10.5194/tc-18-3141-2024, 2024
Short summary
Short summary
We monitor ground temperature, water pressure, and relative ice/water contents in a creeping ice-rich rock glacier in mountain permafrost to study its characteristics during a deceleration period with dry conditions and a summer heat wave. The snowpack has an important role as a provider of water and as a thermal insulator. Snow-poor winters, followed by dry summers, induce cooling and drying of the permafrost, leading to rock glacier deceleration.
Riccardo Scandroglio, Samuel Weber, Till Rehm, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2024-1512, https://doi.org/10.5194/egusphere-2024-1512, 2024
Short summary
Short summary
Recent studies confirm that mountain permafrost is reducing, but there is little information on the role of water. This study looks at ten years of weather data and water flow in 50m-deep rock fractures. We precisely quantify the timing and quantities of this flow with a model. For the first time, we estimate pressures generated by water inside rock fractures. Pressures from snowmelt and rain events threaten slope stability; therefore, monitoring water's presence in permafrost areas is crucial.
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024, https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Short summary
Our paper concerns the use of a dense network of low-cost seismic accelerometers in populated areas to achieve rapid and reliable estimation of exposure maps in Trentino (northeast Italy). These additional data, in conjunction with the automatic monitoring procedure, allow us to obtain dense measurements which only rely on actual recorded data, avoiding the use of ground motion prediction equations. This leads to a more reliable picture of the actual ground shaking.
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
EGUsphere, https://doi.org/10.5194/egusphere-2024-893, https://doi.org/10.5194/egusphere-2024-893, 2024
Short summary
Short summary
We present a unique dataset of repeated electrical resistivity tomography and long-term borehole temperature measurements to investigate the complex seasonal water flow in permafrost rockwalls. Our joint analysis shows that permafrost rocks are subject to enhanced pressurised water flow during the melt period. In addition to slow thermal heat conduction, permafrost rocks are subject to push-like warming events, favouring accelerated permafrost degradation and reduced rockwall stability.
Lars Widmer, Marcia Phillips, and Chasper Buchli
The Cryosphere, 17, 4289–4295, https://doi.org/10.5194/tc-17-4289-2023, https://doi.org/10.5194/tc-17-4289-2023, 2023
Short summary
Short summary
Long-term temperature measurements are challenging to carry out in mountain-permafrost boreholes. The widely used resistance thermistors are highly accurate but prone to drift when they are exposed to moisture, or the cable connecting them is stretched. We explore the possibility of supplementing them with digital sensors and analyse the performance of both systems at 15 depths in the same mountain-permafrost borehole.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023, https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
Short summary
In the last decades, geochemical investigations at the springs of rock glaciers have been used to estimate their drainage processes, and the frozen layer is typically considered to act as an aquiclude or aquitard. In this work, we evaluated the hydraulic behavior of a mountain permafrost site by executing a geophysical monitoring experiment. Several hundred liters of salt water have been injected into the subsurface, and geoelectrical measurements have been performed to define the water flow.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Stefano Urbini, Fabrizio de Blasi, and Jacopo Gabrieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-190, https://doi.org/10.5194/tc-2022-190, 2022
Revised manuscript not accepted
Short summary
Short summary
The Ice Memory project aims to extract, analyze, and store ice cores from worldwide retreating glaciers. One of the selected sites is the last remaining ice body in the Apennines, the Calderone Glacier. To assess the most suitable drilling position, geophysical surveys were performed. Reliable ground penetrating radar measurements have been positively combined with a geophysical technique rarely applied in glacier environments, the Frequency Domain Electro-Magnetic prospection.
Philipp Mamot, Samuel Weber, Saskia Eppinger, and Michael Krautblatter
Earth Surf. Dynam., 9, 1125–1151, https://doi.org/10.5194/esurf-9-1125-2021, https://doi.org/10.5194/esurf-9-1125-2021, 2021
Short summary
Short summary
The mechanical response of permafrost degradation on high-mountain rock slope stability has not been calculated in a numerical model yet. We present the first approach for a model with thermal and mechanical input data derived from laboratory and field work, and existing concepts. This is applied to a test site at the Zugspitze, Germany. A numerical sensitivity analysis provides the first critical stability thresholds related to the rock temperature, slope angle and fracture network orientation.
Philipp Mamot, Samuel Weber, Maximilian Lanz, and Michael Krautblatter
The Cryosphere, 14, 1849–1855, https://doi.org/10.5194/tc-14-1849-2020, https://doi.org/10.5194/tc-14-1849-2020, 2020
Short summary
Short summary
A failure criterion for ice-filled rock joints is a prerequisite to accurately assess the stability of permafrost rock slopes. In 2018 a failure criterion was proposed based on limestone. Now, we tested the transferability to other rocks using mica schist and gneiss which provide the maximum expected deviation of lithological effects on the shear strength. We show that even for controversial rocks the failure criterion stays unaltered, suggesting that it is applicable to mostly all rock types.
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Nicola Cenni, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
SOIL, 6, 95–114, https://doi.org/10.5194/soil-6-95-2020, https://doi.org/10.5194/soil-6-95-2020, 2020
Short summary
Short summary
The use of non-invasive geophysical imaging of root system processes is of increasing interest to study soil–plant interactions. The experiment focused on the behaviour of grapevine plants during a controlled infiltration experiment. The combination of the mise-à-la-masse (MALM) method, a variation of the classical electrical tomography map (ERT), for which the current is transmitted directly into the stem, holds the promise of being able to image root distribution.
Nicola Cenni, Jacopo Boaga, Filippo Casarin, Giancarlo De Marchi, Maria Rosa Valluzzi, and Giorgio Cassiani
Adv. Geosci., 51, 1–14, https://doi.org/10.5194/adgeo-51-1-2019, https://doi.org/10.5194/adgeo-51-1-2019, 2019
Samuel Weber, Jan Beutel, Reto Da Forno, Alain Geiger, Stephan Gruber, Tonio Gsell, Andreas Hasler, Matthias Keller, Roman Lim, Philippe Limpach, Matthias Meyer, Igor Talzi, Lothar Thiele, Christian Tschudin, Andreas Vieli, Daniel Vonder Mühll, and Mustafa Yücel
Earth Syst. Sci. Data, 11, 1203–1237, https://doi.org/10.5194/essd-11-1203-2019, https://doi.org/10.5194/essd-11-1203-2019, 2019
Short summary
Short summary
In this paper, we describe a unique 10-year or more data record obtained from in situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt, Switzerland, at 3500 m a.s.l. By documenting and sharing these data in this form, we contribute to facilitating future research based on them, e.g., in the area of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models.
Robert Kenner, Jeannette Noetzli, Martin Hoelzle, Hugo Raetzo, and Marcia Phillips
The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019, https://doi.org/10.5194/tc-13-1925-2019, 2019
Short summary
Short summary
A new permafrost mapping method distinguishes between ice-poor and ice-rich permafrost. The approach was tested for the entire Swiss Alps and highlights the dominating influence of the factors elevation and solar radiation on the distribution of ice-poor permafrost. Our method enabled the indication of mean annual ground temperatures and the cartographic representation of permafrost-free belts, which are bounded above by ice-poor permafrost and below by permafrost-containing excess ice.
Matthias Meyer, Samuel Weber, Jan Beutel, and Lothar Thiele
Earth Surf. Dynam., 7, 171–190, https://doi.org/10.5194/esurf-7-171-2019, https://doi.org/10.5194/esurf-7-171-2019, 2019
Short summary
Short summary
Monitoring rock slopes for a long time helps to understand the impact of climate change on the alpine environment. Measurements of seismic signals are often affected by external influences, e.g., unwanted anthropogenic noise. In the presented work, these influences are automatically identified and removed to enable proper geoscientific analysis. The methods presented are based on machine learning and intentionally kept generic so that they can be equally applied in other (more generic) settings.
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
Hydrol. Earth Syst. Sci., 22, 5427–5444, https://doi.org/10.5194/hess-22-5427-2018, https://doi.org/10.5194/hess-22-5427-2018, 2018
Philipp Mamot, Samuel Weber, Tanja Schröder, and Michael Krautblatter
The Cryosphere, 12, 3333–3353, https://doi.org/10.5194/tc-12-3333-2018, https://doi.org/10.5194/tc-12-3333-2018, 2018
Short summary
Short summary
Most of the observed failures in permafrost-affected alpine rock walls are likely triggered by the mechanical destabilisation of warming bedrock permafrost including ice-filled joints. We present a systematic study of the brittle shear failure of ice and rock–ice contacts along rock joints in a simulated depth ≤ 30 m and at temperatures from −10 to −0.5 °C. Warming and sudden reduction in rock overburden due to the detachment of an upper rock mass lead to a significant drop in shear resistance.
Anna Haberkorn, Nander Wever, Martin Hoelzle, Marcia Phillips, Robert Kenner, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, https://doi.org/10.5194/tc-11-585-2017, 2017
Short summary
Short summary
The effects of permafrost degradation on rock slope stability in the Alps affect people and infrastructure. Modelling the evolution of permafrost is therefore of great importance. However, the snow cover has generally not been taken into account in model studies of steep, rugged rock walls. Thus, we present a distributed model study on the influence of the snow cover on rock temperatures. The promising results are discussed against detailed rock temperature measurements and snow depth data.
Samuel Weber, Jan Beutel, Jérome Faillettaz, Andreas Hasler, Michael Krautblatter, and Andreas Vieli
The Cryosphere, 11, 567–583, https://doi.org/10.5194/tc-11-567-2017, https://doi.org/10.5194/tc-11-567-2017, 2017
Short summary
Short summary
We present a 8-year continuous time series of measured fracture kinematics and thermal conditions on steep permafrost bedrock at Hörnligrat, Matterhorn. Based on this unique dataset and a conceptual model for strong fractured bedrock, we develop a novel quantitative approach that allows to separate reversible from irreversible fracture kinematics and assign the dominant forcing. A new index of irreversibility provides useful indication for the occurrence and timing of irreversible displacements.
Antoine Marmy, Jan Rajczak, Reynald Delaloye, Christin Hilbich, Martin Hoelzle, Sven Kotlarski, Christophe Lambiel, Jeannette Noetzli, Marcia Phillips, Nadine Salzmann, Benno Staub, and Christian Hauck
The Cryosphere, 10, 2693–2719, https://doi.org/10.5194/tc-10-2693-2016, https://doi.org/10.5194/tc-10-2693-2016, 2016
Short summary
Short summary
This paper presents a new semi-automated method to calibrate the 1-D soil model COUP. It is the first time (as far as we know) that this approach is developed for mountain permafrost. It is applied at six test sites in the Swiss Alps. In a second step, the calibrated model is used for RCM-based simulations with specific downscaling of RCM data to the borehole scale. We show projections of the permafrost evolution at the six sites until the end of the century and according to the A1B scenario.
Rachel Luethi and Marcia Phillips
Geogr. Helv., 71, 121–131, https://doi.org/10.5194/gh-71-121-2016, https://doi.org/10.5194/gh-71-121-2016, 2016
Short summary
Short summary
Long-term borehole temperature monitoring in mountain permafrost environments is challenging under the hostile conditions reigning there. On the basis of data measured in the SLF borehole network we show situations where ground temperature data should be interpreted with caution. A selection of recently observed problems are discussed, and advantages and possible drawbacks of various solutions including data correction, measurement redundancy or alternate instrumentation are presented.
G. Cassiani, J. Boaga, D. Vanella, M. T. Perri, and S. Consoli
Hydrol. Earth Syst. Sci., 19, 2213–2225, https://doi.org/10.5194/hess-19-2213-2015, https://doi.org/10.5194/hess-19-2213-2015, 2015
Short summary
Short summary
The paper presents an integrated approach to monitoring root water uptake and link this information to the plant transpiration measured by sap flow and eddy covariance. The monitoring of soil conditions is achieved using 3-D electrical resistivity tomography. This ensemble of data can be used jointly to model the soil-plant interactions and identify the extent and efficiency of the root zone in front of existing irrigation schemes. A case study is presented regarding an orange orchard in Sicily.
N. Ursino, G. Cassiani, R. Deiana, G. Vignoli, and J. Boaga
Hydrol. Earth Syst. Sci., 18, 1105–1118, https://doi.org/10.5194/hess-18-1105-2014, https://doi.org/10.5194/hess-18-1105-2014, 2014
Related subject area
Discipline: Frozen ground | Subject: Field Studies
Spring-water temperature suggests widespread occurrence of Alpine permafrost in pseudo-relict rock glaciers
Spectral induced polarization imaging to monitor seasonal and annual dynamics of frozen ground at a mountain permafrost site in the Italian Alps
Brief communication: Alternation of thaw zones and deep permafrost in the cold climate conditions of the East Siberian Mountains, Suntar-Khayata Range
Spectral induced polarization imaging to investigate an ice-rich mountain permafrost site in Switzerland
Contrasting geophysical signatures of a relict and an intact Andean rock glacier
First investigation of perennial ice in Winter Wonderland Cave, Uinta Mountains, Utah, USA
Soil respiration of alpine meadow is controlled by freeze–thaw processes of active layer in the permafrost region of the Qinghai–Tibet Plateau
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
The Cryosphere, 18, 5713–5733, https://doi.org/10.5194/tc-18-5713-2024, https://doi.org/10.5194/tc-18-5713-2024, 2024
Short summary
Short summary
Pseudo-relict rock glaciers look relict but contain patches of permafrost. They are poorly known in terms of permafrost content, spatial distribution and frequency. Here we use spring-water temperature for a preliminary estimate of the permafrost presence in rock glaciers of a 795 km2 catchment in the Italian Alps. The results show that ~50 % of rock glaciers classified as relict might be pseudo-relict and might contain ~20 % of the ice stored in the rock glaciers in the study area.
Theresa Maierhofer, Adrian Flores Orozco, Nathalie Roser, Jonas K. Limbrock, Christin Hilbich, Clemens Moser, Andreas Kemna, Elisabetta Drigo, Umberto Morra di Cella, and Christian Hauck
The Cryosphere, 18, 3383–3414, https://doi.org/10.5194/tc-18-3383-2024, https://doi.org/10.5194/tc-18-3383-2024, 2024
Short summary
Short summary
In this study, we apply an electrical method in a high-mountain permafrost terrain in the Italian Alps, where long-term borehole temperature data are available for validation. In particular, we investigate the frequency dependence of the electrical properties for seasonal and annual variations along a 3-year monitoring period. We demonstrate that our method is capable of resolving temporal changes in the thermal state and the ice / water ratio associated with seasonal freeze–thaw processes.
Robert Sysolyatin, Sergei Serikov, Anatoly Kirillin, Andrey Litovko, and Maxim Sivtsev
The Cryosphere, 17, 4601–4608, https://doi.org/10.5194/tc-17-4601-2023, https://doi.org/10.5194/tc-17-4601-2023, 2023
Short summary
Short summary
Permafrost conditions of the East Siberian Mountains are poorly known because of the severe climate, extreme terrain, and farness and scarcity of data. The ground temperature regime plays a key role in mountainous regions, influencing the environment, slope stability, geomorphological processes and hydrological processes. We present the results of recent examinations of the permafrost thickness variations, temperature regime of thaw zones (taliks) and permafrost of the Suntar-Khayata Range.
Theresa Maierhofer, Christian Hauck, Christin Hilbich, Andreas Kemna, and Adrián Flores-Orozco
The Cryosphere, 16, 1903–1925, https://doi.org/10.5194/tc-16-1903-2022, https://doi.org/10.5194/tc-16-1903-2022, 2022
Short summary
Short summary
We extend the application of electrical methods to characterize alpine permafrost using the so-called induced polarization (IP) effect associated with the storage of charges at the interface between liquid and solid phases. We investigate different field protocols to enhance data quality and conclude that with appropriate measurement and processing procedures, the characteristic dependence of the IP response of frozen rocks improves the assessment of thermal state and ice content in permafrost.
Giulia de Pasquale, Rémi Valois, Nicole Schaffer, and Shelley MacDonell
The Cryosphere, 16, 1579–1596, https://doi.org/10.5194/tc-16-1579-2022, https://doi.org/10.5194/tc-16-1579-2022, 2022
Short summary
Short summary
We presented a geophysical study of one intact and one relict rock glacier in semi-arid Chile. The interpretation of the collected data through different methods identifies geophysical signature differences between the two rock glaciers and characterizes their subsurface structure and composition. This is of great importance because of rock glaciers' relevant role in freshwater production, transfer and storage, especially in this area of increasing human pressure and high rainfall variability.
Jeffrey S. Munroe
The Cryosphere, 15, 863–881, https://doi.org/10.5194/tc-15-863-2021, https://doi.org/10.5194/tc-15-863-2021, 2021
Short summary
Short summary
This study investigated a cave in Utah (USA) that contains a deposit of perennial ice. Such ice caves are important sources of information about past climate and are currently threatened by rising temperatures. The origin (precipitation), thickness (3 m), and age (several centuries) of the ice were constrained by a variety of methods. Liquid water recently entered the cave for the first time in many years, suggesting a destabilization of the cave environment.
Junfeng Wang, Qingbai Wu, Ziqiang Yuan, and Hojeong Kang
The Cryosphere, 14, 2835–2848, https://doi.org/10.5194/tc-14-2835-2020, https://doi.org/10.5194/tc-14-2835-2020, 2020
Short summary
Short summary
The active layer, a buffer between permafrost and the atmosphere, is more sensitive and responds more quickly to climate change. How the freeze–thaw action at different stages regulates carbon emissions is still unclear. We conducted 2-year continuous in situ measurements in an alpine meadow permafrost ecosystem in the Qinghai–Tibet Plateau and found the freeze–thaw process modified the Rs dynamics differently in different stages. Results suggest great changes in freeze–thaw process patterns.
Cited articles
Arenson, L. U., Harrington, J. S., Koenig, C. E. M., and Wainstein, P. A.:
Mountain Permafrost Hydrology-A Practical Review Following Studies from the
Andes, Geosciences, 12, 48, https://doi.org/10.3390/geosciences12020048, 2022.
Ayachit, U., Geveci, B., and Avila, L. S.: The ParaView Guide: Updated for ParaView Version 4.3. Kitware, New York, 261 p., ISBN 9781930934306, 2015,
Binley, A.: 11.08 – Tools and Techniques: Electrical Methods, in: Treatise
on Geophysics (Second Edition), edited by: Schubert, G., Elsevier, Oxford,
233–259, https://doi.org/10.1016/B978-0-444-53802-4.00192-5,
2015.
Binley, A. and Slater, L.: Resistivity and Induced Polarization, in:
Resistivity and Induced Polarization: Theory and Applications to the
Near-Surface Earth, edited by: Binley, A. and Slater, L., Cambridge
University Press, Cambridge, https://doi.org/10.1017/9781108685955, 2020.
Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., and Binley, A.: ResIPy,
an intuitive open source software for complex geoelectrical
inversion/modeling, Comput. Geosci., 137, 104423,
https://doi.org/10.1016/j.cageo.2020.104423, 2020.
Boaga, J., Phillips, M., Noetzli, J., Haberkorn, A., Kenner, R., and Bast,
A.: A Comparison of Frequency Domain Electro-Magnetometry, Electrical
Resistivity Tomography and Borehole Temperatures to Assess the Presence of
Ice in a Rock Glacier, Front. Earth Sci., 8, 586430, https://doi.org/10.3389/feart.2020.586430, 2020.
Cicoira, A., Beutel, J., Faillettaz, J., and Vieli, A.: Water controls the
seasonal rhythm of rock glacier flow, Earth Planet. Sc. Lett.,
528, 115844, https://doi.org/10.1016/j.epsl.2019.115844, 2019.
Harris, C. and Davies, M. C. R.: Pressures recorded during laboratory
freezing and thawing of a natural silt-rich soil, Proceedings 7th International Conference on Permafrost, Yellowknife, Canada, Collection Nordicana 55, 433–439, 1276, 1998.
Hauck, C.: New Concepts in Geophysical Surveying and Data Interpretation for
Permafrost Terrain, Permafrost Periglac., 24, 131–137,
https://doi.org/10.1002/ppp.1774, 2013.
Kenner, R., Pruessner, L., Beutel, J., Limpach, P., and Phillips, M.: How
rock glacier hydrology, deformation velocities and ground temperatures
interact: Examples from the Swiss Alps, Permafrost Periglac., 31, 3–14, https://doi.org/10.1002/ppp.2023, 2019.
Krainer, K. and Mostler, W.: Hydrology of Active Rock Glaciers: Examples
from the Austrian Alps, Arct. Antarct. Alp. Res., 34, 142–149,
https://doi.org/10.2307/1552465, 2002.
Kummert, M. and Delaloye, R.: Mapping and quantifying sediment transfer
between the front of rapidly moving rock glaciers and torrential gullies,
Geomorphology, 309, 60–76, https://doi.org/10.1016/j.geomorph.2018.02.021, 2018.
Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R., and Hauck, C.: Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites, The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, 2019.
Musil, M., Maurer, H., Hollinger, K., and Green, A. G.: Internal structure
of an alpine rock glacier based on crosshole georadar traveltimes and
amplitudes, Geophys. Prospect., 54, 273–285, https://doi.org/10.1111/j.1365-2478.2006.00534.x, 2006.
PERMOS: Permafrost in Switzerland 2014/2015 to 2017/2018, 104 pp.,
https://doi.org/10.13093/permos-rep-2019-16-19, 2019.
PERMOS: PERMOS Database, Swiss Permafrost Monitoring Network, Fribourg and Davos, Switzerland [data set], https://doi.org/10.13093/permos-2022-01, 2022.
Posit team: RStudio: Integrated Development Environment for R, Posit Software, PBC, Boston, MA [code], http://www.posit.co/ (last access: 5 February 2023), 2022.
Pruessner, L., Huss, M., and Farinotti, D.: Temperature evolution and runoff
contribution of three rock glaciers in Switzerland under future climate
forcing, Permafrost Periglac. Process., 33, 310–322, https://doi.org/10.1002/ppp.2149, 2022.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing [code], Vienna, Austria, https://www.R-project.org (last access: 5 February 2023), 2022.
Rist, A. and Phillips, M.: First results of investigations on hydrothermal
processes within the active layer above alpine permafrost in steep terrain,
Norsk Geogr. Tidsskr., 59, 177–183, 2005.
Vonder Mühll, D. and Holub, P.: Borehole logging in Alpine permafrost,
Upper Engadin, Swiss Alps, Permafrost Periglac. Process., 3, 125–132,
1992.
Wagner, T., Kainz, S., Helfricht, K., Fischer, A., Avian, M., Krainer, K.,
and Winkler, G.: Assessment of liquid and solid water storage in rock
glaciers versus glacier ice in the Austrian Alps, Sci. Total
Environ., 800, 149593, https://doi.org/10.1016/j.scitotenv.2021.149593, 2021.
Wirz, V., Gruber, S., Purves, R. S., Beutel, J., Gärtner-Roer, I., Gubler, S., and Vieli, A.: Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions, Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, 2016.
Zenklusen Mutter, E. and Phillips, M.: Thermal evidence of recent talik
formation in Ritigraben rock glacier: Swiss Alps, in: Resources and risks of permafrost areas in a changing world, edited by: Hinkel, K. M., Proceedings, Vol. 1: international contributions, The Northern Publisher, 479–483, 2012.
Short summary
A new combination of temperature, water pressure and cross-borehole electrical resistivity data is used to investigate ice/water contents in an ice-rich rock glacier. The landform is close to 0°C and has locally heterogeneous characteristics, ice/water contents and temperatures. The techniques presented continuously monitor temporal and spatial phase changes to a depth of 12 m and provide the basis for a better understanding of accelerating rock glacier movements and future water availability.
A new combination of temperature, water pressure and cross-borehole electrical resistivity data...