Articles | Volume 17, issue 12
https://doi.org/10.5194/tc-17-5075-2023
https://doi.org/10.5194/tc-17-5075-2023
Research article
 | 
30 Nov 2023
Research article |  | 30 Nov 2023

Observed and modeled moulin heads in the Pâkitsoq region of Greenland suggest subglacial channel network effects

Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel

Related authors

Greenland supraglacial catchment consolidation by streams breaching drainage divides
Jessica Mejia, Jason Gulley, Celia Trunz, Charles Breithaupt, and Matthew Covington
The Cryosphere, 19, 6445–6460, https://doi.org/10.5194/tc-19-6445-2025,https://doi.org/10.5194/tc-19-6445-2025, 2025
Short summary
Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Lauren C. Andrews, Kristin Poinar, and Celia Trunz
The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022,https://doi.org/10.5194/tc-16-2421-2022, 2022
Short summary

Cited articles

Andrews, L. C.: Spatial and temporal evolution of the glacial hydrologic system of the western Greenland ice sheet: observational and remote sensing results, Thesis, The University of Texas at Austin, https://doi.org/10.15781/T2WM4V, 2015. a, b
Andrews, L. C., Catania, G. A., Hoffman, M., Gulley, J., Lüthi, M. P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, https://doi.org/10.1038/nature13796, 2014. a, b, c, d, e, f
Andrews, L. C., Poinar, K., and Trunz, C.: Controls on Greenland moulin geometry and evolution from the Moulin Shape model, The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022, 2022a. a, b, c, d, e, f, g, h, i, j
Andrews, L. C., Trunz, C., and Poinar, K.: kpoinar/moulin-physical-model: Moulin Shape model for The Cryosphere article, 2022 (MouSh-v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.6585291, 2022b. a
Badino, G. and Piccini, L.: Englacial water fluctuation in moulins: an example from Tyndall Glacier (Patagonia, Chile), Nimus, 23–24, 125–129, 2002. a
Download
Short summary
Models simulating water pressure variations at the bottom of glaciers must use large storage parameters to produce realistic results. Whether that storage occurs englacially (in moulins) or subglacially is a matter of debate. Here, we directly simulate moulin volume to constrain the storage there. We find it is not enough. Instead, subglacial processes, including basal melt and input from upstream moulins, must be responsible for stabilizing these water pressure fluctuations.
Share