Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4535-2023
https://doi.org/10.5194/tc-17-4535-2023
Research article
 | 
30 Oct 2023
Research article |  | 30 Oct 2023

In situ 10Be modeling and terrain analysis constrain subglacial quarrying and abrasion rates at Sermeq Kujalleq (Jakobshavn Isbræ), Greenland

Brandon L. Graham, Jason P. Briner, Nicolás E. Young, Allie Balter-Kennedy, Michele Koppes, Joerg M. Schaefer, Kristin Poinar, and Elizabeth K. Thomas

Related authors

New age constraints reveal moraine stabilization thousands of years after deposition during the last deglaciation of western New York, USA
Karlee K. Prince, Jason P. Briner, Caleb K. Walcott, Brooke M. Chase, Andrew L. Kozlowski, Tammy M. Rittenour, and Erica P. Yang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2655,https://doi.org/10.5194/egusphere-2023-2655, 2024
Short summary
The Laurentide Ice Sheet in southern New England and New York during and at the end of the Last Glacial Maximum – A cosmogenic-nuclide chronology
Allie Balter-Kennedy, Joerg M. Schaefer, Greg Balco, Meredith A. Kelly, Michael R. Kaplan, Roseanne Schwartz, Bryan Oakley, Nicolás E. Young, Jean Hanley, and Arianna M. Varuolo-Clarke
EGUsphere, https://doi.org/10.5194/egusphere-2024-241,https://doi.org/10.5194/egusphere-2024-241, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Scientific history, sampling approach, and physical characterization of the Camp Century sub-glacial sediment core, a rare archive from beneath the Greenland Ice Sheet
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and Francois Fripiat
EGUsphere, https://doi.org/10.5194/egusphere-2023-2922,https://doi.org/10.5194/egusphere-2023-2922, 2024
Short summary
Equilibrium line altitudes of alpine glaciers in Alaska suggest Last Glacial Maximum summer temperature was 2–5 °C lower than during the pre-industrial
Caleb K. Walcott, Jason P. Briner, Joseph P. Tulenko, and Stuart M. Evans
Clim. Past, 20, 91–106, https://doi.org/10.5194/cp-20-91-2024,https://doi.org/10.5194/cp-20-91-2024, 2024
Short summary
Observed and modeled moulin heads in the Pâkitsoq region of Greenland suggest subglacial channel network effects
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023,https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary

Related subject area

Discipline: Glaciers | Subject: Geomorphology
Asynchronous glacial dynamics of Last Glacial Maximum mountain glaciers in the Ikh Bogd Massif, Gobi Altai mountain range, southwestern Mongolia: aspect control on glacier mass balance
Purevmaa Khandsuren, Yeong Bae Seong, Hyun Hee Rhee, Cho-Hee Lee, Mehmet Akif Sarikaya, Jeong-Sik Oh, Khadbaatar Sandag, and Byung Yong Yu
The Cryosphere, 17, 2409–2435, https://doi.org/10.5194/tc-17-2409-2023,https://doi.org/10.5194/tc-17-2409-2023, 2023
Short summary
Comment on “Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina” by Halla et al. (2021)
W. Brian Whalley
The Cryosphere, 17, 699–700, https://doi.org/10.5194/tc-17-699-2023,https://doi.org/10.5194/tc-17-699-2023, 2023
Short summary
Formation of glacier tables caused by differential ice melting: field observation and modelling
Marceau Hénot, Vincent J. Langlois, Jérémy Vessaire, Nicolas Plihon, and Nicolas Taberlet
The Cryosphere, 16, 2617–2628, https://doi.org/10.5194/tc-16-2617-2022,https://doi.org/10.5194/tc-16-2617-2022, 2022
Short summary
High-resolution inventory to capture glacier disintegration in the Austrian Silvretta
Andrea Fischer, Gabriele Schwaizer, Bernd Seiser, Kay Helfricht, and Martin Stocker-Waldhuber
The Cryosphere, 15, 4637–4654, https://doi.org/10.5194/tc-15-4637-2021,https://doi.org/10.5194/tc-15-4637-2021, 2021
Short summary
Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya
Evan S. Miles, C. Scott Watson, Fanny Brun, Etienne Berthier, Michel Esteves, Duncan J. Quincey, Katie E. Miles, Bryn Hubbard, and Patrick Wagnon
The Cryosphere, 12, 3891–3905, https://doi.org/10.5194/tc-12-3891-2018,https://doi.org/10.5194/tc-12-3891-2018, 2018
Short summary

Cited articles

Alley, R. B., Cuffey, K. M., and Zoet, L. K.: Glacial erosion: status and outlook, Ann. Glaciol., 60, 1–13, https://doi.org/10.1017/aog.2019.38, 2019. 
Anderson, R. S.: Evolution of lumpy glacial landscapes, Geology, 42, 679–682, https://doi.org/10.1130/G35537.1, 2014. 
Anderson, R. S., Hallet, B., Walder, J., and Aubry, B. F.: Observations in a cavity beneath Grinnell Glacier, Earth Surf. Process. Landforms, 7, 63–70, https://doi.org/10.1002/esp.3290070108, 1982. 
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M. P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, https://doi.org/10.1038/nature13796, 2014. 
Balco, G.: Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010, Quaternary Sci. Rev., 30, 3–27, https://doi.org/10.1016/j.quascirev.2010.11.003, 2011. 
Download
Short summary
Glacial erosion is a fundamental process operating on Earth's surface. Two processes of glacial erosion, abrasion and plucking, are poorly understood. We reconstructed rates of abrasion and quarrying in Greenland. We derive a total glacial erosion rate of 0.26 ± 0.16 mm per year. We also learned that erosion via these two processes is about equal. Because the site is similar to many other areas covered by continental ice sheets, these results may be applied to many places on Earth.