Articles | Volume 17, issue 9
Research article
19 Sep 2023
Research article |  | 19 Sep 2023

Deformation lines in Arctic sea ice: intersection angle distribution and mechanical properties

Damien Ringeisen, Nils Hutter, and Luisa von Albedyll

Related authors

Non-normal flow rules affect fracture angles in sea ice viscous–plastic rheologies
Damien Ringeisen, L. Bruno Tremblay, and Martin Losch
The Cryosphere, 15, 2873–2888,,, 2021
Short summary
Simulating intersection angles between conjugate faults in sea ice with different viscous–plastic rheologies
Damien Ringeisen, Martin Losch, L. Bruno Tremblay, and Nils Hutter
The Cryosphere, 13, 1167–1186,,, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Ice Physics
Sea ice thickness from air-coupled flexural waves
Rowan Romeyn, Alfred Hanssen, Bent Ole Ruud, and Tor Arne Johansen
The Cryosphere, 15, 2939–2955,,, 2021
Short summary
Strain response and energy dissipation of floating saline ice under cyclic compressive stress
Mingdong Wei, Arttu Polojärvi, David M. Cole, and Malith Prasanna
The Cryosphere, 14, 2849–2867,,, 2020
Short summary
Laboratory study of the properties of frazil ice particles and flocs in water of different salinities
Christopher C. Schneck, Tadros R. Ghobrial, and Mark R. Loewen
The Cryosphere, 13, 2751–2769,,, 2019
Short summary
The morphology of ice and liquid brine in an environmental scanning electron microscope: a study of the freezing methods
Ľubica Vetráková, Vilém Neděla, Jiří Runštuk, and Dominik Heger
The Cryosphere, 13, 2385–2405,,, 2019
Short summary
Physical and optical characteristics of heavily melted “rotten” Arctic sea ice
Carie M. Frantz, Bonnie Light, Samuel M. Farley, Shelly Carpenter, Ross Lieblappen, Zoe Courville, Mónica V. Orellana, and Karen Junge
The Cryosphere, 13, 775–793,,, 2019
Short summary

Cited articles

Balendran, B. and Nemat-Nasser, S.: Double sliding model for cyclic deformation of granular materials, including dilatancy effects, J. Mech. Phys. Sol., 41, 573–612,, 1993. a
Bouchat, A. and Tremblay, B.: Using sea-ice deformation fields to constrain the mechanical strength parameters of geophysical sea ice, J. Geophys. Res.-Oceans, 122, 5802–5825,, 2017. a
Bouchat, A. and Tremblay, B.: Reassessing the Quality of Sea-Ice Deformation Estimates Derived From the RADARSAT Geophysical Processor System and Its Impact on the Spatiotemporal Scaling Statistics, J. Geophys. Res.-Oceans, 125, e2019JC015944,, 2020. a
Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy, D., Garric, G., Lee, Y. J., Lemieux, J., Lique, C., Losch, M., Maslowski, W., Myers, P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B., and Wang, Q.: Sea Ice Rheology Experiment (SIREx): 1. Scaling and Statistical Properties of Sea‐Ice Deformation Fields, J. Geophys. Res.-Oceans, 127, e2021JC017667,, 2022. a
Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-Law Distributions in Empirical Data, SIAM Rev., 51, 661–703,, 2009. a
Short summary
When sea ice is put into motion by wind and ocean currents, it deforms following narrow lines. Our two datasets at different locations and resolutions show that the intersection angle between these lines is often acute and rarely obtuse. We use the orientation of narrow lines to gain indications about the mechanical properties of sea ice and to constrain how to design sea-ice mechanical models for high-resolution simulation of the Arctic and improve regional predictions of sea-ice motion.