Articles | Volume 17, issue 9
https://doi.org/10.5194/tc-17-3955-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3955-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling of surface energy balance for Icelandic glaciers using remote-sensing albedo
Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2–6, Reykjavik 107, Iceland
Department of Research and Development, Landsvirkjun, Reykjavík 107, Iceland
Sigurdur M. Gardarsson
Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2–6, Reykjavik 107, Iceland
Finnur Pálsson
Institute of Earth Sciences, University of Iceland, Sturlugata 7, Reykjavík 101, Iceland
Related authors
Hordur Bragi Helgason, Andri Gunnarsson, Óli Grétar Blöndal Sveinsson, and Bart Nijssen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4186, https://doi.org/10.5194/egusphere-2024-4186, 2025
Short summary
Short summary
This study analyses streamflow variability and trends in Iceland. The results show a large inter-annual variability in streamflow. Positive trends are found for precipitation, which has led to increased streamflow in most gauges for both the last 30 and 50 years of annual and seasonal flows. This marks the first study to report such consistent results for streamflow trends in Iceland. Glaciated rivers show positive melt season trends over the last 50 years, but negative over the last 30 years.
Darri Eythorsson, Sigurdur M. Gardarsson, Andri Gunnarsson, and Oli Gretar Blondal Sveinsson
The Cryosphere, 17, 51–62, https://doi.org/10.5194/tc-17-51-2023, https://doi.org/10.5194/tc-17-51-2023, 2023
Short summary
Short summary
In this study we researched past and predicted snow conditions in Iceland based on manual snow observations recorded in Iceland and compared these with satellite observations. Future snow conditions were predicted through numerical computer modeling based on climate models. The results showed that average snow depth and snow cover frequency have increased over the historical period but are projected to significantly decrease when projected into the future.
Andri Gunnarsson, Sigurdur M. Gardarsson, Finnur Pálsson, Tómas Jóhannesson, and Óli G. B. Sveinsson
The Cryosphere, 15, 547–570, https://doi.org/10.5194/tc-15-547-2021, https://doi.org/10.5194/tc-15-547-2021, 2021
Short summary
Short summary
Surface albedo quantifies the fraction of the sunlight reflected by the surface of the Earth. During the melt season in the Northern Hemisphere solar energy absorbed by snow- and ice-covered surfaces is mainly controlled by surface albedo. For Icelandic glaciers, air temperature and surface albedo are the dominating factors governing annual variability of glacier surface melt. Satellite data from the MODIS sensor are used to create a data set spanning the glacier melt season.
Greta H. Wells, Þorsteinn Sæmundsson, Finnur Pálsson, Guðfinna Aðalgeirsdóttir, Eyjólfur Magnússon, Reginald L. Hermanns, and Snævarr Guðmundsson
Nat. Hazards Earth Syst. Sci., 25, 1913–1936, https://doi.org/10.5194/nhess-25-1913-2025, https://doi.org/10.5194/nhess-25-1913-2025, 2025
Short summary
Short summary
Glacier retreat elevates the risk of landslides released into proglacial lakes, which can trigger glacial lake outburst floods (GLOFs). This study maps proglacial lake evolution and GLOF hazard scenarios at Fjallsjökull glacier, Iceland. Lake volume increased from 1945 to 2021 and is estimated to triple over the next century. Three slopes are prone to landslides that may trigger GLOFs. Results will mitigate flood hazard at this popular tourism site and advance GLOF research in Iceland and globally.
Hordur Bragi Helgason, Andri Gunnarsson, Óli Grétar Blöndal Sveinsson, and Bart Nijssen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4186, https://doi.org/10.5194/egusphere-2024-4186, 2025
Short summary
Short summary
This study analyses streamflow variability and trends in Iceland. The results show a large inter-annual variability in streamflow. Positive trends are found for precipitation, which has led to increased streamflow in most gauges for both the last 30 and 50 years of annual and seasonal flows. This marks the first study to report such consistent results for streamflow trends in Iceland. Glaciated rivers show positive melt season trends over the last 50 years, but negative over the last 30 years.
Aude Vincent, Clémence Daigre, Ophélie Fischer, Guðfinna Aðalgeirsdóttir, Sophie Violette, Jane Hart, Snævarr Guðmundsson, and Finnur Pálsson
Hydrol. Earth Syst. Sci., 28, 3475–3494, https://doi.org/10.5194/hess-28-3475-2024, https://doi.org/10.5194/hess-28-3475-2024, 2024
Short summary
Short summary
We studied groundwater near outlet glaciers of the main Icelandic ice cap. We acquired new data in the field. Two distinct groundwater compartments and their characteristics are identified. We demonstrate the glacial melt recharge impact on the groundwater dynamic. Knowing groundwater systems in a glacial context is crucial to forecast the evolution under climate change of water resources and of potential flood and landslide hazards.
Alexander H. Jarosch, Eyjólfur Magnússon, Krista Hannesdóttir, Joaquín M. C. Belart, and Finnur Pálsson
The Cryosphere, 18, 2443–2454, https://doi.org/10.5194/tc-18-2443-2024, https://doi.org/10.5194/tc-18-2443-2024, 2024
Short summary
Short summary
Geothermally active regions beneath glaciers not only influence local ice flow as well as the mass balance of glaciers but also control changes of subglacial water reservoirs and possible subsequent glacier lake outburst floods. In Iceland, such outburst floods impose danger to people and infrastructure and are therefore monitored. We present a novel computer-simulation-supported method to estimate the activity of such geothermal areas and to monitor its evolution.
Darri Eythorsson, Sigurdur M. Gardarsson, Andri Gunnarsson, and Oli Gretar Blondal Sveinsson
The Cryosphere, 17, 51–62, https://doi.org/10.5194/tc-17-51-2023, https://doi.org/10.5194/tc-17-51-2023, 2023
Short summary
Short summary
In this study we researched past and predicted snow conditions in Iceland based on manual snow observations recorded in Iceland and compared these with satellite observations. Future snow conditions were predicted through numerical computer modeling based on climate models. The results showed that average snow depth and snow cover frequency have increased over the historical period but are projected to significantly decrease when projected into the future.
Eyjólfur Magnússon, Finnur Pálsson, Magnús T. Gudmundsson, Thórdís Högnadóttir, Cristian Rossi, Thorsteinn Thorsteinsson, Benedikt G. Ófeigsson, Erik Sturkell, and Tómas Jóhannesson
The Cryosphere, 15, 3731–3749, https://doi.org/10.5194/tc-15-3731-2021, https://doi.org/10.5194/tc-15-3731-2021, 2021
Short summary
Short summary
We present a unique insight into the shape and development of a subglacial lake over a 7-year period, using repeated radar survey. The lake collects geothermal meltwater, which is released in semi-regular floods, often referred to as jökulhlaups. The applicability of our survey approach to monitor the water stored in the lake for a better assessment of the potential hazard of jökulhlaups is demonstrated by comparison with independent measurements of released water volume during two jökulhlaups.
Andri Gunnarsson, Sigurdur M. Gardarsson, Finnur Pálsson, Tómas Jóhannesson, and Óli G. B. Sveinsson
The Cryosphere, 15, 547–570, https://doi.org/10.5194/tc-15-547-2021, https://doi.org/10.5194/tc-15-547-2021, 2021
Short summary
Short summary
Surface albedo quantifies the fraction of the sunlight reflected by the surface of the Earth. During the melt season in the Northern Hemisphere solar energy absorbed by snow- and ice-covered surfaces is mainly controlled by surface albedo. For Icelandic glaciers, air temperature and surface albedo are the dominating factors governing annual variability of glacier surface melt. Satellite data from the MODIS sensor are used to create a data set spanning the glacier melt season.
Cited articles
Aðalgeirsdóttir, G., Magnússon, E., Pálsson, F., Thorsteinsson, T., Belart,
J. M. C., Jóhannesson, T., Hannesdóttir, H., Sigurðsson, O., Gunnarsson,
A., Einarsson, B., Berthier, E., Schmidt, L. S., Haraldsson, H. H., and
Björnsson, H.: Glacier Changes in Iceland from 1890 to 2019, Front.
Earth Sci., 8, 520, https://doi.org/10.3389/feart.2020.523646, 2020. a, b, c
Adam, J. C., Hamlet, A. F., and Lettenmaier, D. P.: Implications of Global
Climate Change for Snowmelt Hydrology in the Twenty-First Century,
Hydrol. Process., 23, 962–972, https://doi.org/10.1002/hyp.7201, 2008. a
Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A.,
Pershing, A. J., and Thomas, A. C.: Projected sea surface temperatures over
the 21st century: Changes in the mean, variability and extremes for large
marine ecosystem regions of Northern Oceans, Elementa: Science of the
Anthropocene, 6, 9, https://doi.org/10.1525/elementa.191, 2018. a
Arnalds, O., Dagsson-Waldhauserova, P., and Ólafsson, H.: The Icelandic
volcanic aeolian environment: Processes and impacts — A review, Aeolian
Res., 20, 176–195, https://doi.org/10.1016/j.aeolia.2016.01.004, 2016. a
Bair, E. H., Rittger, K., Davis, R. E., Painter, T. H., and Dozier, J.:
Validating reconstruction of snow water equivalent in California's Sierra
Nevada using measurements from the NASA Airborne Snow Observatory, Water
Resour. Res., 52, 8437–8460, https://doi.org/10.1002/2016WR018704, 2016. a
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential Impacts of a
Warming Climate on Water Availability in Snow-Dominated Regions, Nature, 438,
303–309, https://doi.org/10.1038/nature04141, 2005. a
Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, M., Fuentes, M., Kållberg, P., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-Interim
archive Version 2.0, ERA Report Series, p. 23, 2011. a
Björnsson, H. and Pálsson, F.: Radio-echo soundings on Icelandic temperate
glaciers: history of techniques and findings, Ann. Glaciol., 61,
25–34, https://doi.org/10.1017/aog.2020.10, 2020. a
Björnsson, H., Pálsson, F., and Guðmundsson, M. T.: Surface and bedrock
topography of the Mýrdalsjökull ice cap, Iceland: The Katla caldera,
eruption sites and routes of jökulhlaups, Jökull, 49, 29–46,
2000a. a
Björnsson, H., Pálsson, F., and Guðmundsson, M. T.: Surface and bedrock
topography of the Mýrdalsjökull ice cap, Iceland: The Katla caldera,
eruption sites and routes of jökulhlaups, Jökull, 49, 29–46,
2000b. a
Björnsson, H., Pálsson, F., and Guðmundsson, S.: Jökulsárlón at
Breiðamerkursandur, Vatnajökull, Iceland: 20th century changes and future
outlook, Jökull, 50, 1–18, 2001. a
Björnsson, H., Pálsson, F., Gudmundsson, S., Magnússon, E.,
Adalgeirsdóttir, G., Jóhannesson, T., Berthier, E., Sigurdsson, O., and
Thorsteinsson, T.: Contribution of Icelandic ice caps to sea level rise:
Trends and variability since the Little Ice Age, Geophys. Res.
Lett., 40, 1546–1550, https://doi.org/10.1002/grl.50278, 2013. a
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The Concept of Essential Climate Variables in Support of
Climate Research, Applications, and Policy, B. Am.
Meteorol. Soc., 95, 1431–1443, https://doi.org/10.1175/BAMS-D-13-00047.1,
2014. a
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers, The Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012, 2012. a, b
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization
of aerodynamic roughness length variations at Haut Glacier d'Arolla,
Switzerland, J. Glaciol., 52, 281–297,
https://doi.org/10.3189/172756506781828746, 2006. a, b
Charalampidis, C., van As, D., Box, J. E., van den Broeke, M. R., Colgan, W. T., Doyle, S. H., Hubbard, A. L., MacFerrin, M., Machguth, H., and Smeets, C. J. P. P.: Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland, The Cryosphere, 9, 2163–2181, https://doi.org/10.5194/tc-9-2163-2015, 2015. a
Chen, X., Liang, S., and Cao, Y.: Satellite Observed Changes in the Northern
Hemisphere Snow Cover Phenology and the Associated Radiative Forcing and
Feedback between 1982 and 2013, Environ. Res. Lett., 11, 084002,
https://doi.org/10.1088/1748-9326/11/8/084002, 2016. a
Choi, G., Robinson, D. A., and Kang, S.: Changing Northern Hemisphere Snow
Seasons, J. Climate, 23, 5305–5310, https://doi.org/10.1175/2010jcli3644.1,
2010. a
Crochet, P. and Jóhannesson, T.: A data set of gridded daily temperature in
Iceland, 1949–2010, Jökull, 61, 1–17, 2011. a
Dagsson-Waldhauserova, P., Arnalds, O., and Olafsson, H.: Long-term dust
aerosol production from natural sources in Iceland, J. Air
Waste Manage. A., 67, 173–181,
https://doi.org/10.1080/10962247.2013.805703, 2017. a
Denby, B. and Greuell, W.: The use of bulk and profile methods for determining
surface heat fluxes in the presence of glacier winds, J. Glaciol.,
46, 445–452, https://doi.org/10.3189/172756500781833124, 2000. a
Einarsson, M. A.: Climates of the Oceans, H. Van Loon (Ed.): Vol.
15 of World Survey of Climatology, J. Climatol., 5, 673–697,
https://doi.org/10.1002/joc.3370050110, 1984. a
Fausto, R. S., van As, D., Mankoff, K. D., Vandecrux, B., Citterio, M., Ahlstrøm, A. P., Andersen, S. B., Colgan, W., Karlsson, N. B., Kjeldsen, K. K., Korsgaard, N. J., Larsen, S. H., Nielsen, S., Pedersen, A. Ø., Shields, C. L., Solgaard, A. M., and Box, J. E.: Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data, Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, 2021. a
Fernandes, R., Zhao, H. X., Wang, X. J., Key, J., Qu, X., and Hall, A.:
Controls on Northern Hemisphere Snow Albedo Feedback Quantified Using
Satellite Earth Observations, Geophys. Res. Lett., 36, L21702,
https://doi.org/10.1029/2009gl040057, 2009. a
Flanner, M. G., Shell, K. M., Barlage, M., Perovich, D. K., and Tschudi, M. A.:
Radiative Forcing and Albedo Feedback from the Northern Hemisphere
Cryosphere between 1979 and 2008, Nat. Geosci., 4, 151–155,
https://doi.org/10.1038/ngeo1062, 2011. a
Franco, B., Fettweis, X., and Erpicum, M.: Future projections of the Greenland ice sheet energy balance driving the surface melt, The Cryosphere, 7, 1–18, https://doi.org/10.5194/tc-7-1-2013, 2013. a
Gardner, A. S., Sharp, M. J., Koerner, R. M., Labine, C., Boon, S., Marshall,
S. J., Burgess, D. O., and Lewis, D.: Near-Surface Temperature Lapse Rates
over Arctic Glaciers and Their Implications for Temperature Downscaling,
J. Climate, 22, 4281–4298, https://doi.org/10.1175/2009JCLI2845.1, 2009. a
Gascoin, S., Guðmundsson, S., Aðalgeirsdóttir, G., Pálsson, F.,
Schmidt, L., Berthier, E., and Björnsson, H.: Evaluation of MODIS
Albedo Product over Ice Caps in Iceland and Impact of
Volcanic Eruptions on Their Albedo, Remote Sens., 9, 399,
https://doi.org/10.3390/rs9050399, 2017. a, b
Gervais, M., Shaman, J., and Kushnir, Y.: Impacts of the North Atlantic Warming
Hole in Future Climate Projections: Mean Atmospheric Circulation and the
North Atlantic Jet, J. Climate, 32, 2673–2689,
https://doi.org/10.1175/JCLI-D-18-0647.1, 2019. a
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Le clec'h, S., Lee, V., Leguy, G., Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N.-J., Slater, D. A., Smith, R. S., Straneo, F., Tarasov, L., van de Wal, R., and van den Broeke, M.: The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, 2020. a
Gregory, J. M. and Oerlemans, J.: Simulated future sea-level rise due to
glacier melt based on regionally and seasonally resolved temperature changes,
Nature, 391, 474–476, https://doi.org/10.1038/35119, 1998. a
Guðmundsson, S., Björnsson, H., Pálsson, F., and Haraldsson, H. H.: Energy
balance of Brúarjökull and circumstances leading to the August 2004 floods
in the river Jökla, N-Vatnajökull, Jökull, 55, 121–138, 2005. a
Gudmundsson, M. T., Thordarson, T., Höskuldsson, A., Larsen, G., Björnsson,
H., Prata, F. J., Oddsson, B., Magnússon, E., Högnadóttir, T., Petersen,
G. N., Hayward, C. L., Stevenson, J. A., and Jónsdóttir, I.: Ash generation
and distribution from the April-May 2010 eruption of Eyjafjallajökull,
Iceland, Sci. Rep.-UK, 2, 572, 2012. a
Hall, D. K. and Riggs, G. A.: MODIS/Aqua Snow Cover Daily L3 Global 500m SIN Grid, Version 6, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MYD10A1.006, 2016a. a, b
Hall, D. K. and Riggs, G. A.: MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 6, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MOD10A1.006, 2016b. a, b
Hannesdóttir, H., Sigurðsson, O., Þrastarson, R. H., Guðmundsson, S.,
Belart, J. M., Pálsson, F., Magnússon, E., Víkingsson, S., Kaldal, I., and
Jóhannesson, T.: A national glacier inventory and variations in glacier
extent in Iceland from the Little Ice Age maximum to 2019, Jökull, 12,
1–34, 2020. a, b, c
Helgason, G. B.: Varmaleiðing í einvíðu fjöllaga hjarnlíkani; Heat
conduction in a one dimensional multilayer firnmodel, http://hdl.handle.net/1946/35967 (last access: 1 March 2023), Jarðvísindadeild Verkfræðiog náttúruvísindasvið, Háskóli íslands, Reykjavík, 2020. a
Hinkelman, L. M., Lapo, K. E., Cristea, N. C., and Lundquist, J. D.: Using
CERES SYN Surface Irradiance Data as Forcing for Snowmelt Simulation in
Complex Terrain, J. Hydrometeorol., 16, 2133–2152,
https://doi.org/10.1175/JHM-D-14-0179.1, 2015. a
Hjaltason, S., Guðmundsdóttir, M., Haukdal, J. Á., and Guðmundsson,
J. R.: Energy Statistics in Iceland 2019, Annual report, Orkustofnun,
Reykjavík, Iceland, 2020. a
Hock, R.: Glacier melt: a review of processes and their modelling, Prog.
Phys. Geogr.-Earth and Environment, 29, 362–391,
https://doi.org/10.1191/0309133305pp453ra, 2005. a
Hodgkins, R., Carr, S., Pálsson, F., Guðmundsson, S., and Björnsson, H.:
Modelling variable glacier lapse rates using ERA-Interim reanalysis
climatology: an evaluation at Vestari- Hagafellsjökull, Langjökull,
Iceland, International J. Climatol., 33, 410–421,
https://doi.org/10.1002/joc.3440, 2013. a, b
Hofer, S., Lang, C., Amory, C., Kittel, C., Delhasse, A., Tedstone, A., and
Fettweis, X.: Greater Greenland Ice Sheet contribution to global sea level
rise in CMIP6, Nat. Commun., 11, 6289,
https://doi.org/10.1038/s41467-020-20011-8, 2020. a
Holtslag, A. A. M. and Bruin, H. A. R. D.: Applied Modeling of the Nighttime
Surface Energy Balance over Land, J. Appl. Meteorol.
Climatol., 27, 689–704,
https://doi.org/10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2, 1988. a
Hreinsdóttir, S., Sigmundsson, F., Roberts, M. J., Björnsson, H., Grapenthin,
R., Arason, P., Árnadóttir, T., Hólmjárn, J., Geirsson, H., Bennett,
R. A., Gudmundsson, M. T., Oddsson, B., Ófeigsson, B. G., Villemin, T.,
Jónsson, T., Sturkell, E., Höskuldsson, A., Larsen, G., Thordarson, T., and
Óladóttir, B. A.: Volcanic plume height correlated with magma-pressure
change at Grímsvötn Volcano, Iceland, Nat. Geosci., 7, 214–218,
https://doi.org/10.1038/ngeo2044, 2014. a, b
Huai, B., van den Broeke, M. R., and Reijmer, C. H.: Long-term surface energy balance of the western Greenland Ice Sheet and the role of large-scale circulation variability, The Cryosphere, 14, 4181–4199, https://doi.org/10.5194/tc-14-4181-2020, 2020. a, b
Hudson, S. R.: Estimating the Global Radiative Impact of the Sea Ice-Albedo
Feedback in the Arctic, J. Geophys. Res.-Atmos., 116,
D16102, https://doi.org/10.1029/2011jd015804, 2011. a, b
Jennings, K. S., Kittel, T. G. F., and Molotch, N. P.: Observations and simulations of the seasonal evolution of snowpack cold content and its relation to snowmelt and the snowpack energy budget, The Cryosphere, 12, 1595–1614, https://doi.org/10.5194/tc-12-1595-2018, 2018. a
Jóhannesson, T.: The Response Time of Glaciers in Iceland to Changes in
climate, Ann. Glaciol., 8, 100–101, https://doi.org/10.3189/S0260305500001233,
1986. a
Jóhannesson, T., Raymond, C., and Waddington, E.: Time–Scale for Adjustment
of Glaciers to Changes in Mass Balance, J. Glaciol., 35, 355–369,
https://doi.org/10.3189/S002214300000928X, 1989. a
Jóhannesson, T., Aðalgeirsdóttir, G., Björnsson, H., Crochet,
P., Elíasson, E. B., Guðmundsson, S., Jónsdóttir, J.,
Ólafsson, H., Pálsson, F., Rögnvaldsson, Ó., Sigurðsson,
O., Snorrason, Á., Sveinsson, Ó. G. B., and Þorsteinsson, Þ.:
Effect of Climate Change on Hydrology and Hydro-Resources in Iceland.,
Orkustofnun, Reykjavík, Iceland, ISBN 978-9979-68-224-0, 2007. a, b
Jóhannesson, T., Björnsson, H., Magnússon, E., Guðmundsson, S., Pálsson,
F., Sigurðsson, O., Thorsteinsson, T., and Berthier, E.: Ice-volume changes,
bias estimation of mass-balance measurements and changes in subglacial lakes
derived by lidar mapping of the surface of Icelandic glaciers, Ann. Glaciol., 54, 63–74, https://doi.org/10.3189/2013AoG63A422, 2013. a, b
Jóhannesson, T., Pálmason, B.and Hjartarson, A., Jarosch, A. H., Magnússon,
E., Belart, J. M. C., and Gudmundsson, M. T.: Non-surface mass balance of
glaciers in Iceland, J. Glaciol., 66, 685–697,
https://doi.org/10.1017/jog.2020.37, 2020. a
Jude-Eton, T., Thordarson, T., Gudmundsson, M., and Oddsson, B.: Dynamics,
stratigraphy and proximal dispersal of supraglacial tephra during the
ice-confined 2004 eruption at Grímsvötn Volcano, Iceland, B.
Volcanol., 74, 1057–1082, https://doi.org/10.1007/s00445-012-0583-3, 2012. a
Karner, F., Obleitner, F., Krismer, T., Kohler, J., and Greuell, W.: A decade
of energy and mass balance investigations on the glacier Kongsvegen,
Svalbard, J. Geophys. Res.-Atmos., 118, 3986–4000,
https://doi.org/10.1029/2012JD018342, 2013. a
Keil, P., Mauritsen, T., Jungclaus, J., Hedemann, C., Olonscheck, D., and
Ghosh, R.: Multiple drivers of the North Atlantic warming hole, Nat. Clim. Change, 10, 667–671, https://doi.org/10.1038/s41558-020-0819-8, 2020. a, b
Knudsen, K. L., Eiríksson, J., and Bartels-Jónsdóttir, H. B.: Oceanographic
changes through the last millennium off North Iceland: Temperature and
salinity reconstructions based on foraminifera and stable isotopes, Marine Micropaleontol., 84-85, 54 – 73, https://doi.org/10.1016/j.marmicro.2011.11.002,
2012. a
Lozier, M., Owens, W., and Curry, R. G.: The climatology of the North Atlantic,
Prog. Oceanogr., 36, 1–44, https://doi.org/10.1016/0079-6611(95)00013-5,
1995. a
Magnússon, E., Belart, J. M., Pálsson, F., Anderson, L. S., Ágúst
Þ. Gunnlaugsson, Berthier, E., Ágústsson, H., and Áslaug Geirsdóttir:
The subglacial topography of Drangajökull ice cap, NW-Iceland, deduced from
dense RES-profiling, Jökull, 66, 1–26, 2016a. a
Magnússon, E., Belart, J. M. C., Pálsson, F., Anderson, L. S., Gunnlaugsson,
A., Berthier, E., Ágústsson, H., and Geirsdóttir, A.: The subglacial
topography of Drangajökull ice cap, NW-Iceland, deduced from dense
RES-profiling, Jökull, 66, 1–26, 2016b. a
Male, D. H. and Granger, R. J.: Snow surface energy exchange, Water Resour.
Res., 17, 609–627, https://doi.org/10.1029/WR017i003p00609, 1981. a
Marty, C., Philipona, R., Fröhlich, C., and Ohmura, A.: Altitude dependence of
surface radiation fluxes and cloud forcing in the alps: results from the
alpine surface radiation budget network, Theor. Appl. Climatol.,
72, 137–155, https://doi.org/10.1007/s007040200019, 2002. a
MathWorks: MATLAB version: 9.13.0 (R2022b),
https://www.mathworks.com (last access: 12 September 2023), 2022. a
Möller, R., Möller, M., Björnsson, H., Gudmundsson, S., Pálsson, F.,
Oddsson, B., Kukla, P., and Schneider, C.: MODIS-derived albedo changes of
Vatnajökull (Iceland) due to tephra deposition from the 2004 Grimsvötn
eruption, Int. J. Appl. Earth Obs., 26, 256–269, https://doi.org/10.1016/j.jag.2013.08.005, 2014. a
Möller, R., Dagsson-Waldhauserova, P., Möller, M., Kukla, P. A., Schneider,
C., and Gudmundsson, M. T.: Persistent albedo reduction on southern Icelandic
glaciers due to ashfall from the 2010 Eyjafjallajökull eruption, Remote
Sens. Environ., 233, 111396, https://doi.org/10.1016/j.rse.2019.111396, 2019. a
National Centers for Environmental Prediction: NCEP GFS 0.25 Degree Global
Forecast Grids Historical Archive [data set], https://doi.org/10.5065/D65D8PWK, 2015. a
National Land Survey of Iceland: IcelandDEM v.1, National Land Survey of Iceland [data set], https://gatt.lmi.is/geonetwork/srv/metadata/e6712430-a63c-4ae5-9158-c89d16da6361, last access: 1 December 2022. a
Nawri, N., Björnsson, H., Petersen, G. N., and Jónasson, K.: Empirical
Terrain Models for Surface Wind and Air Temperature over Iceland, VÍ,
2012-009, Veðurstofa Íslands, Reykjavík, Iceland, 2012. a
Noël, B., Aðalgeirsdóttir, G., Pálsson, F., Wouters, B., Lhermitte, S.,
Haacker, J. M., and van den Broeke, M. R.: North Atlantic Cooling is Slowing
Down Mass Loss of Icelandic Glaciers, Geophys. Res. Lett., 49,
e2021GL095697, https://doi.org/10.1029/2021GL095697, 2022. a, b, c
Oddsson, B., Gudmundsson, M., Larsen, G., and Karlsdóttir, S.: Monitoring of
the plume from the basaltic phreatomagmatic 2004 Grímsvötn
eruption–application of weather radar and comparison with plume models,
B. Volcanol., 74, 1395–1407, https://doi.org/10.1007/s00445-012-0598-9, 2012. a, b
Oerlemans, J., Giesen, R., and Van Den Broeke, M.: Retreating alpine glaciers:
increased melt rates due to accumulation of dust (Vadret da Morteratsch,
Switzerland), J. Glaciol., 55, 729–736,
https://doi.org/10.3189/002214309789470969, 2009. a
Ohmura, A.: Physical Basis for the Temperature-Based Melt-Index Method, J. Appl. Meteorol., 40, 753–761,
https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2, 2001. a
Ólafsdóttir, S., Jennings, A. E., Áslaug Geirsdóttir, Andrews, J., and
Miller, G. H.: Holocene variability of the North Atlantic Irminger current on
the south- and northwest shelf of Iceland, Marine Micropaleontol., 77, 101–118, https://doi.org/10.1016/j.marmicro.2010.08.002, 2010. a
Pálsson, F. and Gunnarsson, A.: Afkomu- og hraðamælingar á
Langjökli : jökulárið 2012–2013., Tech. Rep.
LV-2015-076, Landsvirkjun, Reykjavík, Iceland, 2015. a
Pálsson, F., Guðmundsson, S., and Björnsson, H.: Afkomu- og
hraðamælingar á Langjökli jökulárið
2011–2012., Tech. Rep. LV-2014-076, Landsvirkjun, Reykjavík, Iceland, 2013. a
Pálsson, F., Gunnarsson, A., Pálsson, H. S., and Steinþórsson, S.: Afkomu-
og hraðamælingar á Langjökli jökulárið 2012–2013, Landsvirkjun,
Reykjavík, Iceland, LV-2015-076, 1–37, 2015. a
Pálsson, F., Gunnarsson, A., Jónsson, G., Pálsson, H. S., and
Steinþórsson, S.: Vatnajökull: Mass balance, meltwater drainage and
surface velocity of the glacial year 2014–15, Tech. Rep. LV-2016-031,
Landsvirkjun, Reykjavík, Iceland, 2016. a
Pálsson, F., Gunnarsson, A., Magnússon, E., Pálsson, H. S., Hannesdóttir,
H., Þórhallsson, R., and Steinþórsson, S.: Vatnajökull: Mass balance,
meltwater drainage and surface velocity of the glacial year 2020–21,
Landsvirkjun, Reykjavík, LV-2022-009, 62, 2022. a
Paulson, C. A.: The Mathematical Representation of Wind Speed and Temperature
Profiles in the Unstable Atmospheric Surface Layer, J. Appl. Meteorol. Climatol., 9, 857–861,
https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2, 1970. a
Perkins, H., Hopkins, T. S., Malmberg, S.-A., Poulain, P.-M., and Warn-Varnas,
A.: Oceanographic conditions east of Iceland, J. Geophys. Res.-Oceans, 103, 21531–21542, https://doi.org/10.1029/98JC00890,
1998. a
Plüss, C. and Ohmura, A.: Longwave Radiation on Snow-Covered Mountainous
Surfaces, J. Appl. Meteorol., 36, 818–824,
https://doi.org/10.1175/1520-0450-36.6.818, 1997. a
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford,
S., and Schaffernicht, E. J.: Exceptional twentieth-century slowdown in
Atlantic Ocean overturning circulation, Nat. Clim. Change, 5, 475–480,
https://doi.org/10.1038/nclimate2554, 2015. a
Renner, A. H. H., Sundfjord, A., Janout, M. A., Ingvaldsen, R. B.,
Beszczynska-Möller, A., Pickart, R. S., and Pérez-Hernández, M. D.:
Variability and Redistribution of Heat in the Atlantic Water Boundary Current
North of Svalbard, J. Geophys. Res.-Oceans, 123, 6373–6391,
https://doi.org/10.1029/2018JC013814, 2018. a
Rittger, K., Bair, E. H., Kahl, A., and Dozier, J.: Spatial estimates of snow
water equivalent from reconstruction, Adv. Water Resour., 94,
345–363, https://doi.org/10.1016/j.advwatres.2016.05.015, 2016. a
Rögnvaldsson, Ó. A.: Technical description of two different dynamical
downscaling time series for Icelandi, Tech. rep., Belgingur – Reiknistofa í
Veðurfræði, Belgingur, Reykjavik, Iceland, 2020. a
Rossby, T.: The North Atlantic Current and surrounding waters: At the
crossroads, Rev. Geophys., 34, 463–481, https://doi.org/10.1029/96RG02214,
1996. a
Salisbury, J. W., D'Aria, D. M., and Wald, A.: Measurements of thermal infrared
spectral reflectance of frost, snow, and ice, J. Geophys.
Res.-Sol. Ea., 99, 24235–24240, https://doi.org/10.1029/94JB00579, 1994. a
Schmidt, L. S., Adalgeirsdóttir, G., Guðmundsson, S., Langen, P. L., Pálsson, F., Mottram, R., Gascoin, S., and Björnsson, H.: The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: evaluating the surface energy budget in a regional climate model with automatic weather station observations, The Cryosphere, 11, 1665–1684, https://doi.org/10.5194/tc-11-1665-2017, 2017. a, b, c, d, e, f
Schmidt, L. S., Adalgeirsdóttir, G., Pálsson, F., Langen, P. L.,
Gudmundsson, S., and Björnsson, H.: Dynamic simulations of Vatnajökull ice
cap from 1980 to 2300, J. Glaciol., 66, 97–112,
https://doi.org/10.1017/jog.2019.90, 2020. a, b, c
Sicart, J. E., Pomeroy, J. W., Essery, R. L. H., and Bewley, D.: Incoming
longwave radiation to melting snow: observations, sensitivity and estimation
in Northern environments, Hydrol. Process., 20, 3697–3708,
https://doi.org/10.1002/hyp.6383, 2006. a
Sicart, J. E., Hock, R., and Six, D.: Glacier melt, air temperature, and energy
balance in different climates: The Bolivian Tropics, the French Alps, and
northern Sweden, J. Geophys. Res.-Atmos., 113, D24113,
https://doi.org/10.1029/2008JD010406, 2008. a
Six, D., Wagnon, P., Sicart, J., and Vincent, C.: Meteorological controls on
snow and ice ablation for two contrasting months on Glacier de Saint-Sorlin,
France, Ann. Glaciol., 50, 66–72, https://doi.org/10.3189/172756409787769537,
2009. a
Slater, T., Lawrence, I. R., Otosaka, I. N., Shepherd, A., Gourmelen, N., Jakob, L., Tepes, P., Gilbert, L., and Nienow, P.: Review article: Earth's ice imbalance, The Cryosphere, 15, 233–246, https://doi.org/10.5194/tc-15-233-2021, 2021. a
Smeets, C. J. P. P. and van den Broeke, M. R.: The Parameterisation of Scalar
Transfer over Rough Ice, Bound.-Lay. Meteorol., 128, 339,
https://doi.org/10.1007/s10546-008-9292-z, 2008a. a
Smeets, C. J. P. P. and van den Broeke, M. R.: Temporal and Spatial Variations
of the Aerodynamic Roughness Length in the Ablation Zone of the Greenland Ice
Sheet, Bound.-Lay. Meteorol., 128, 315–338,
https://doi.org/10.1007/s10546-008-9291-0, 2008b. a
Smeets, C. J. P. P., Duynkerke, P. G., and Vugts, H. F.: Observed Wind Profiles
and Turbulence Fluxes over an ice Surface with Changing Surface Roughness,
Bound.-Lay. Meteorol., 92, 99–121, https://doi.org/10.1023/A:1001899015849, 1999. a
Stone, P. H. and Carlson, J. H.: Atmospheric Lapse Rate Regimes and Their
Parameterization, J. Atmos. Sci., 36, 415–423,
https://doi.org/10.1175/1520-0469(1979)036<0415:ALRRAT>2.0.CO;2, 1979. a
Sveinsson, Ó.: Energy in Iceland: Adaptation to Climate Change,
UNU-FLORES Policy Briefs, United Nations University Institute for
Integrated Management of Material Fluxes and of Resources (UNU-FLORES),
Dresden, 2016. a
Van As, D.: Warming, glacier melt and surface energy budget from weather
station observations in the Melville Bay region of northwest Greenland,
J. Glaciol., 57, 208–220, https://doi.org/10.3189/002214311796405898, 2011. a, b, c
van As, D., Broeke, M. V. D., Reijmer, C., and Wal, R. V. D.: The Summer
Surface Energy Balance of the High Antarctic Plateau, Bound.-Lay. Meteorol., 115, 289–317, https://doi.org/10.1007/s10546-004-4631-1, 2005. a, b
van As, D., Bech Mikkelsen, A., Holtegaard Nielsen, M., Box, J. E., Claesson Liljedahl, L., Lindbäck, K., Pitcher, L., and Hasholt, B.: Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release, The Cryosphere, 11, 1371–1386, https://doi.org/10.5194/tc-11-1371-2017, 2017. a
van den Broeke, M. R., Smeets, C. J. P. P., and van de Wal, R. S. W.: The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet, The Cryosphere, 5, 377–390, https://doi.org/10.5194/tc-5-377-2011, 2011. a
Vandecrux, B., Fausto, R. S., Langen, P. L., van As, D., MacFerrin, M., Colgan,
W. T., Ingeman-Nielsen, T., Steffen, K., Jensen, N. S., Möller, M. T., and
Box, J. E.: Drivers of Firn Density on the Greenland Ice Sheet Revealed by
Weather Station Observations and Modeling, J. Geophys. Res.-Earth Surf., 123, 2563–2576, https://doi.org/10.1029/2017JF004597, 2018. a
Veðurstofa Íslands: Tíðarfar ársins 2021,
https://www.vedur.is/um-vi/frettir/tidarfar-arsins-2021 (last access: 1 September 2022),
2022. a
Warren, S. G. and Wiscombe, W. J.: A Model for the Spectral Albedo of Snow. II:
Snow Containing Atmospheric Aerosols, J. Atmos. Sci.,
37, 2734–2745, https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2, 1980. a
Wittmann, M., Groot Zwaaftink, C. D., Steffensen Schmidt, L., Guðmundsson, S., Pálsson, F., Arnalds, O., Björnsson, H., Thorsteinsson, T., and Stohl, A.: Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland, The Cryosphere, 11, 741–754, https://doi.org/10.5194/tc-11-741-2017, 2017. a, b, c
WMO: Systematic Observation Requirements for Satellite-based Products for
Climate Supplemental details to the satellite-based component of the
Implementation Plan for the Global Observing System for Climate in Support of
the UNFCCC: 2011 update, GCOS- No. 154, p. 138, 2011. a
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun,
M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul,
F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier mass changes
and their contributions to sea-level rise from 1961 to 2016, Nature, 568,
382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019.
a
Zhao, J., Yang, J., Semper, S., Pickart, R. S., Våge, K., Valdimarsson, H.,
and Jónsson, S.: A Numerical Study of Interannual Variability in the North
Icelandic Irminger Current, J. Geophys. Res.-Oceans, 123,
8994–9009, https://doi.org/10.1029/2018JC013800, 2018. a
Short summary
A model was developed with the possibility of utilizing satellite-derived daily surface albedo driven by high-resolution climate data to estimate the surface energy balance (SEB) for all Icelandic glaciers for the period 2000–2021.
A model was developed with the possibility of utilizing satellite-derived daily surface albedo...