Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-3063-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/tc-17-3063-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Isotopic diffusion in ice enhanced by vein-water flow
Department of Geography, University of Sheffield, Sheffield, UK
Related authors
Felix S. L. Ng, Rachael H. Rhodes, Tyler J. Fudge, and Eric W. Wolff
EGUsphere, https://doi.org/10.5194/egusphere-2025-1566, https://doi.org/10.5194/egusphere-2025-1566, 2025
Short summary
Short summary
Impurity diffusion in ice causes loss of climate history. We give a new method of finding the diffusion rate from ice-core records. Its use on sulphate data from the EPICA Dome C core reveals rapid diffusion in snow that suggests H2SO4 vapour diffusion in air pores, and much slower diffusion in the ice below that indicates signal relocation between crystal interfaces. We estimate a maximum sulphate diffusion length of 2 cm for ice 1–2 Myr old sought by the ice-coring projects on Little Dome C.
Felix S. L. Ng
The Cryosphere, 18, 4645–4669, https://doi.org/10.5194/tc-18-4645-2024, https://doi.org/10.5194/tc-18-4645-2024, 2024
Short summary
Short summary
Liquid veins and grain boundaries in ice can accelerate the decay of climate signals in δ18O and δD by short-circuiting the slow isotopic diffusion in crystal grains. This theory for "excess diffusion" has not been confirmed experimentally. We show that, if the mechanism occurs, then distinct isotopic patterns must form near grain junctions, offering a testable prediction of the theory. We calculate the patterns and describe an experimental scheme for testing ice-core samples for the mechanism.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Felix S. L. Ng
The Cryosphere, 15, 1787–1810, https://doi.org/10.5194/tc-15-1787-2021, https://doi.org/10.5194/tc-15-1787-2021, 2021
Short summary
Short summary
Current theory predicts climate signals in the vein chemistry of ice cores to migrate, hampering their dating. I show that the Gibbs–Thomson effect, which has been overlooked, causes fast diffusion that prevents signals from surviving into deep ice. Hence the deep climatic peaks in Antarctic and Greenlandic ice must be due to impurities in the ice matrix (outside veins) and safe from migration. These findings reset our understanding of postdepositional changes of ice-core climate signals.
Felix S. L. Ng, Rachael H. Rhodes, Tyler J. Fudge, and Eric W. Wolff
EGUsphere, https://doi.org/10.5194/egusphere-2025-1566, https://doi.org/10.5194/egusphere-2025-1566, 2025
Short summary
Short summary
Impurity diffusion in ice causes loss of climate history. We give a new method of finding the diffusion rate from ice-core records. Its use on sulphate data from the EPICA Dome C core reveals rapid diffusion in snow that suggests H2SO4 vapour diffusion in air pores, and much slower diffusion in the ice below that indicates signal relocation between crystal interfaces. We estimate a maximum sulphate diffusion length of 2 cm for ice 1–2 Myr old sought by the ice-coring projects on Little Dome C.
Felix S. L. Ng
The Cryosphere, 18, 4645–4669, https://doi.org/10.5194/tc-18-4645-2024, https://doi.org/10.5194/tc-18-4645-2024, 2024
Short summary
Short summary
Liquid veins and grain boundaries in ice can accelerate the decay of climate signals in δ18O and δD by short-circuiting the slow isotopic diffusion in crystal grains. This theory for "excess diffusion" has not been confirmed experimentally. We show that, if the mechanism occurs, then distinct isotopic patterns must form near grain junctions, offering a testable prediction of the theory. We calculate the patterns and describe an experimental scheme for testing ice-core samples for the mechanism.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Felix S. L. Ng
The Cryosphere, 15, 1787–1810, https://doi.org/10.5194/tc-15-1787-2021, https://doi.org/10.5194/tc-15-1787-2021, 2021
Short summary
Short summary
Current theory predicts climate signals in the vein chemistry of ice cores to migrate, hampering their dating. I show that the Gibbs–Thomson effect, which has been overlooked, causes fast diffusion that prevents signals from surviving into deep ice. Hence the deep climatic peaks in Antarctic and Greenlandic ice must be due to impurities in the ice matrix (outside veins) and safe from migration. These findings reset our understanding of postdepositional changes of ice-core climate signals.
Cited articles
Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions
with Formulas, Graphs and Mathematical Tables, 10th Edn., National
Bureau of Standards, Washington, DC, ISBN 0471800074, 1972.
Amann-Winkel, K., Böhmer, R., Fujara, F., Gainaru, C., Geil, B., and
Loerting, T.: Colloquium: Water's controversial glass transitions, Rev. Mod.
Phys., 88, 011002, https://doi.org/10.1103/RevModPhys.88.011002, 2016.
Árnason, B.: Equilibrium constant for the fractionation of deuterium
between ice and water, J. Phys. Chem., 73, 3491–3494, 1969.
Augustin, L., Barbante, C., Barnes, P. R. F., et al.: Grain radius from selected samples of the
EPICA Dome C ice core EDC, 110-3100 metres, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.198745, 2004.
Bohleber, P., Roman, M., Šala, M., Delmonte, B., Stenni, B., and Barbante, C.: Two-dimensional impurity imaging in deep Antarctic ice cores: snapshots of three climatic periods and implications for high-resolution signal interpretation, The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021, 2021.
Casado, M., Münch, T., and Laepple, T.: Climatic information archived in ice cores: impact of intermittency and diffusion on the recorded isotopic signal in Antarctica, Clim. Past, 16, 1581–1598, https://doi.org/10.5194/cp-16-1581-2020, 2020.
Cuffey, K. M. and Steig, E. J.: Isotopic diffusion in polar firn:
Implications for interpretation of seasonal climate parameters in ice-core
records, with emphasis on central Greenland, J. Glaciol., 44, 273–284,
https://doi.org/10.3189/S0022143000002616, 1998.
Dani, K. G., Mader, H. M., Wolff, E. W., and Wadham, J. L.: Modelling the
liquid-water vein system within polar ice sheets as a potential microbial
habitat, Earth Planet. Sc. Lett., 333–334, 238–249,
https://doi.org/10.1016/j.epsl.2012.04.009, 2012.
Frenkel, J.: Kinetic Theory of Liquids, The Clarendon Press, Oxford, 1946.
Gillen, K. T., Douglass, D. C., and Hoch, M. J. R.: Self-diffusion in liquid
water to −31 ∘C, J. Chem. Phys., 57, 5117–5119, 1972.
Gkinis, V., Simonsen, S. B., Buchardt, S. L., White, J. W. C., and Vinther,
B. M.: Water isotope diffusion rates from the NorthGRIP ice core for the
last 16,000 years – Glaciological and paleoclimatic implications, Earth
Planet. Sc. Lett., 405, 132–141,
https://doi.org/10.1016/j.epsl.2014.08.022, 2014.
Gkinis, V., Holme, C., Kahle, E. C., Stevens, M. C., Steig, E. J., and
Vinther, B. M.: Numerical experiments on firn isotope diffusion with the
Community Firn Model, J. Glaciol., 67, 450–472,
https://doi.org/10.1017/jog.2021.1, 2021.
Grisart, A., Casado, M., Gkinis, V., Vinther, B., Naveau, P., Vrac, M., Laepple, T., Minster, B., Prié, F., Stenni, B., Fourré, E., Steen-Larsen, H. C., Jouzel, J., Werner, M., Pol, K., Masson-Delmotte, V., Hoerhold, M., Popp, T., and Landais, A.: Sub-millennial climate variability from high-resolution water isotopes in the EPICA Dome C ice core, Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, 2022.
Hammer, C. U., Clausen, H. B., Dansgaard, W., Gundestrup, N., Johnsen, S. J.,
and Reeh, N.: Dating of Greenland ice cores by flow models, isotopes,
volcanic debris, and continental dust, J. Glaciol., 20, 3–26, 1978.
Handle, P. H., Loerting, T., and Sciortino, F.: Supercooled and glassy
water: Metastable liquid(s), amorphous solid(s), and a no-man's land, P. Natl. Acad. Sci. USA,
114, 13336–13344, https://doi.org/10.1073/pnas.1700103114, 2017.
Hestand, N. J. and Skinner J. L.: Perspective: Crossing the Widom line in
no man's land: Experiments, simulations, and the location of the
liquid-liquid critical point in supercooled water, J. Chem. Phys., 149,
140901, https://doi.org/10.1063/1.5046687, 2018.
Holme, C., Gkinis, V., and Vinther, B. M.: Molecular diffusion of stable
water isotopes in polar firn as a proxy for past temperatures, Geochim.
Cosmochim. Ac., 225, 128–145, 2018.
Johnsen, S. J.: Stable isotope homogenization of polar firn and ice,
International Association of Hydrological Sciences Publication 118,
Symposium at Grenoble 1975: Isotopes and Impurities in Snow and Ice,
210–219, 1977.
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Gundestrup, N. S., Hammer, C.
U., Andersen, U., Andersen, K. K., Hvidberg, C. S., Dahl-Jensen, D.,
Steffensen, J. P., Shoji, H., Sveinbjörnsdóttir, Á. E., White,
J., Jouzel, J., and Fisher, D.: The δ18O record along the
Greenland Ice Core Project deep ice core and the problem of possible Eemian
climatic instability, J. Geophys. Res.-Oceans, 102, 26397–26410,
https://doi.org/10.1029/97JC00167, 1997.
Johnsen, S. J., Clausen, H. B., Cuffey, K. M., Hoffmann, G., Schwander, J.,
and Creyts, T.: Diffusion of stable isotopes in polar firn and ice: the
isotope effect in firn diffusion, in: Hondoh, T., Physics of ice core
records. Sapporo, Hokkaido University Press, 121–140, ISBN 4832902822, 2000.
Jones, T. R., Cuffey, K. M., White, J. W. C., Steig, E. J., Buizert, C.,
Markle, B. R., McConnell, J. R., and Sigl, M.: Water isotope diffusion in
the WAIS Divide ice core during the Holocene and last glacial, J. Geophys.
Res.-Earth, 122, 290–309, https://doi.org/10.1002/2016JF003938, 2017.
Kahle, E. C., Holme, C., Jones, T. R., Gkinis, V., and Steig, E. J.: A
generalized approach to estimating diffusion length of stable water isotopes
from ice-core data, J. Geophys. Res.-Earth, 123, 2377–2391,
https://doi.org/10.1029/2018JF004764, 2018.
Kahle, E. C., Steig, E. J., Jones, T. R., Fudge, T. J., Koutnik, M. R.,
Morris, V. A., Vaughn, B. H., Schauer, A. J., Max Stevens, C., Conway, H.,
Waddington, E. D., Buizert, C., Epifanio, J., and White, J. W. C.:
Reconstruction of temperature, accumulation rate, and layer thinning from an
ice core at South Pole, using a statistical inverse method, J. Geophys. Res.-Atmos., 126, e2020JD033300,
https://doi.org/10.1029/2020JD033300, 2021.
Küttel, M., Steig, E. J., Ding, Q., Monaghan, A. J., and Battisti, D.
S.: Seasonal climate information preserved in West Antarctic ice core water
isotopes: relationships to temperature, large-scale circulation, and sea
ice, Clim. Dynam., 39, 1841–1857,
https://doi.org/10.1007/s00382-012-1460-7, 2012.
Laepple, T., Münch, T., Casado, M., Hoerhold, M., Landais, A., and Kipfstuhl, S.: On the similarity and apparent cycles of isotopic variations in East Antarctic snow pits, The Cryosphere, 12, 169–187, https://doi.org/10.5194/tc-12-169-2018, 2018.
Lehman, M. and Siegenthaler, U.: Equilibrium oxygen- and hydrogen-isotope
fractionation between ice and water, J. Glaciol., 37, 23–26, 1991.
Mader, H. M.: Observations of the water-vein system in polycrystalline ice,
J. Glaciol., 38, 333–347, 1992a.
Mader, H. M.: The thermal behaviour of the water-vein system in
polycrystalline ice, J. Glaciol., 38, 359–374, 1992b.
Mulvaney, R., Wolff, E. W., and Oates, K.: Sulphuric acid at grain
boundaries in Antarctic ice, Nature, 331, 247–249, 1988.
Ng, F. S. L.: Pervasive diffusion of climate signals recorded in ice-vein ionic impurities, The Cryosphere, 15, 1787–1810, https://doi.org/10.5194/tc-15-1787-2021, 2021.
Ng, F.: Numerical code of the paper “Isotopic diffusion
in ice enhanced by vein-water flow”, Figshare [data set and code],
https://doi.org/10.15131/shef.data.21806562, 2023a.
Ng, F.: Supplement of the paper “Isotopic diffusion in ice enhanced by vein-water flow”, The University of Sheffield [video], https://doi.org/10.15131/shef.data.21805803.v1, 2023b.
Nye, J. F.: Water flow in glaciers: jökulhlaups, tunnels and veins, J.
Glaciol., 17, 181–207, 1976.
Nye, J. F.: The geometry of water veins and nodes in polycrystalline ice, J.
Glaciol., 35, 17–22, 1989.
Nye, J. F.: Thermal behaviour of glacier and laboratory ice, J. Glaciol.,
37, 401–13, 1991.
Nye, J. F.: Diffusion of isotopes in the annual layers of ice sheets, J.
Glaciol., 44, 467–468, 1998.
Nye, J. F. and Frank, F. C.: Hydrology of the intergranular veins in a
temperate glacier, International Association of Scientific Hydrology
Publication 95, Symposium at Cambridge 1969 – Hydrology of Glaciers,
157–161, 1973.
O'Neill, J. R.: Hydrogen and oxygen isotope fractionation between ice and
water, J. Phys. Chem., 72, 3683–3684, 1968.
Pol, K., Masson-Delmotte, V., Johnsen, S., Bigler, M., Cattani, O., Durand,
G., Falourd, S., Jouzel, J., Minster, B., Parrenin, F., Ritz, C.,
Steen-Larsen, H. C., and Stenni, B.: New MIS 19 EPICA Dome C high resolution
deuterium data: Hints for a problematic preservation of climate variability
at sub-millennial scale in the “oldest ice”, Earth Planet. Sc. Lett., 298,
95–103, https://doi.org/10.1016/j.epsl.2010.07.030, 2010.
Pol, K., Debret, M., Masson-Delmotte, V., Capron, E., Cattani, O., Dreyfus, G., Falourd, S., Johnsen, S., Jouzel, J., Landais, A., Minster, B., and Stenni, B.: Links between MIS 11 millennial to sub-millennial climate variability and long term trends as revealed by new high resolution EPICA Dome C deuterium data – A comparison with the Holocene, Clim. Past, 7, 437–450, https://doi.org/10.5194/cp-7-437-2011, 2011.
Prielmeier, F. X., Lang, E. W., Speedy, R. J., and Lüdemann, H.-D.: The
pressure dependence of self diffusion in supercooled light and heavy water,
Ber. Bunsenges. Phys. Chem., 92, 1111–1117, 1988.
Ramseier, R. O.: Self-diffusion of tritium in natural and synthetic ice
monocrystals, J. Appl. Phys., 38, 2553–2556, 1967.
Rempel, A.: Englacial phase changes and intergranular flow above subglacial
lakes, Ann. Glaciol., 40, 191–194, 2005.
Rempel, A. W. and Wettlaufer, J. S.: Isotopic diffusion in polycrystalline
ice, J. Glaciol., 49, 397–406, 2003.
Simonsen, S. B., Johnsen, S. J., Popp, T. J., Vinther, B. M., Gkinis, V., and Steen-Larsen, H. C.: Past surface temperatures at the NorthGRIP drill site from the difference in firn diffusion of water isotopes, Clim. Past, 7, 1327–1335, https://doi.org/10.5194/cp-7-1327-2011, 2011.
Steig, E. J., Jones, T. R., Schauer, A. J., Kahle, E. C., Morris, V. A.,
Vaughn, B. H., Davidge, L., and White, J. W. C.: Continuous-flow analysis of
δ17O, δ18O, and δD of H2O on an ice core
from the South Pole, Front. Earth Sci., 9, 640292,
https://doi.org/10.3389/feart.2021.640292, 2021.
Thorsteinsson, T., Kipfstuhl, J., and Miller, H.: Textures and fabrics in
the GRIP ice core, J. Geophys. Res., 102, 26583–26599, 1997.
Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen,
K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K.,
Siggaard-Andersen, M.-L., Steffensen, J. P., Svensson, A., Olsen, G.,
and Heinemeier, J.: A synchronized dating of three Greenland ice cores
throughout the Holocene, J. Geophys. Res.-Atmos., 111, D13102,
https://doi.org/10.1029/2005JD006921, 2006.
Whillans, I. M. and Grootes, P. M: Isotopic diffusion in cold snow and firn,
J. Geophys. Res., 90, 3910–3918,
https://doi.org/10.1029/JD090iD02p03910, 1985.
Wilson, H. A.: On the velocity of solidification and viscosity of
supercooled liquids, Lond. Edinb. Dublin Philos. Mag. J. Sci., 50, 238–250,
1900.
Xu, Y., Petrika, N. G., Smith, R. S., Kay, B. D., and Kimmel, G. A.: Growth
rate of crystalline ice and the diffusivity of supercooled water from 126 to
262 K, P. Natl. Acad. Sci. USA, 113, 14921–14925, https://doi.org/10.1073/pnas.1611395114,
2016.
Zheng, M., Sjolte, J., Adolphi, F., Vinther, B. M., Steen-Larsen, H. C., Popp, T. J., and Muscheler, R.: Climate information preserved in seasonal water isotope at NEEM: relationships with temperature, circulation and sea ice, Clim. Past, 14, 1067–1078, https://doi.org/10.5194/cp-14-1067-2018, 2018.
Short summary
The stable isotopes of oxygen and hydrogen in ice cores are routinely analysed for the climate signals which they carry. It has long been known that the system of water veins in ice facilitates isotopic diffusion. Here, mathematical modelling shows that water flow in the veins strongly accelerates the diffusion and the decay of climate signals. The process hampers methods using the variations in signal decay with depth to reconstruct past climatic temperature.
The stable isotopes of oxygen and hydrogen in ice cores are routinely analysed for the climate...