Supplement of

Isotopic diffusion in ice enhanced by vein-water flow

Felix S. L. Ng

Correspondence to: Felix S. L. Ng (f.ng@sheffield.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.
Movie S1. Influence of the vein-water flow velocity w on the pattern of δ in the ice–vein system and on the amount of excess diffusion at $T = -32$ °C, for a signal with wavelength $\lambda = 0.02$ m. These simulations show how the isotopic “shear layer” described in Sect. 3 evolves and transitions between the sheet regime and tail regime as w changes in small steps from -50 m yr$^{-1}$ to 50 m yr$^{-1}$ and back, for the model parameters $a = 1$ μm, $b = 1$ mm and $\alpha = 1$. (a) δ-variations at the vein (red curve) and in the grain interior at $r = b$ (black curve). (b) Colour map of the pattern of δ in the ice. (c) The corresponding decay-rate enhancement factor f (white dot), located on the surface of $f(\lambda, w)$ in Fig. 7a.

Movie S2. Influence of vein-water flow velocity w on the pattern of δ in the ice–vein system and on the amount of excess diffusion at $T = -32$ °C, for a signal with wavelength $\lambda = 0.08$ m. The simulation scheme and layout of panels are the same as in Movie S1.

Movie S3. Compressional scaling of the surfaces of (a) signal decay-rate enhancement factor f, (b) $\log_{10} f$ and (c) signal migration velocity v, over the λ–w parameter space, as temperature decreases from -20 °C to -60 °C. Some axis ranges are updated at -35 °C and -47 °C to focus on relevant variations.
Figure S1. Computed curves of signal decay-rate enhancement factor \(f \), \(\log_{10} f \) and signal migration velocity \(v \) versus signal wavelength \(\lambda \), at (a–c) \(T = -32 \, ^\circ C \) and (d–f) \(T = -52 \, ^\circ C \), for different vein-water flow velocities \(w \) (curve labels in m yr\(^{-1}\)) and assuming the deuterium–hydrogen fractionation coefficient, \(\alpha = 1.021 \). These curves differ negligibly from those in Fig. 6, where \(\alpha = 1 \) is assumed. Results based on the \(^{18}\text{O}–^{16}\text{O} \) fractionation coefficient, \(\alpha = 1.0029 \), are still closer to those in Fig. 6.
Figure S2. Surfaces of the signal decay-rate enhancement factor f, $\log_{10} f$ and signal migration velocity v over the λ–w parameter space, computed for (a–c) $T = -32 \, ^\circ$C and (d–f) $T = -52 \, ^\circ$C and assuming the deuterium–hydrogen fractionation coefficient, $\alpha = 1.021$. These surfaces differ negligibly from those in Fig. 7, where $\alpha = 1$ is assumed. Results based on the 18O–16O fractionation coefficient, $\alpha = 1.0029$, are still closer to those in Fig. 7.
Figure S3. A study of the ice contribution to the differential diffusion length at the (a–c) GRIP and (d–f) EPICA ice-core sites, in model runs using constant grain radius $b = 2$ mm and different vein-water flow velocities w (curve labels in m yr$^{-1}$). Depth profiles of (a, d) the ice diffusion lengths $\sigma_{\text{ice}}(O)$ and $\sigma_{\text{ice}}(D)$, (b, e) the square differential $\Delta \sigma_{\text{ice}}^2 = \sigma_{\text{ice}}^2(O) - \sigma_{\text{ice}}^2(D)$, and (c, f) the differential $\Delta \sigma_{\text{ice}}$.