Articles | Volume 17, issue 4
https://doi.org/10.5194/tc-17-1697-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1697-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bedfast and floating-ice dynamics of thermokarst lakes using a temporal deep-learning mapping approach: case study of the Old Crow Flats, Yukon, Canada
Maria Shaposhnikova
CORRESPONDING AUTHOR
Department of Geography and Environmental Management, University of
Waterloo, Waterloo, Ontario, Canada
Claude Duguay
Department of Geography and Environmental Management, University of
Waterloo, Waterloo, Ontario, Canada
H2O Geomatics Inc., Waterloo, Ontario, Canada
Pascale Roy-Léveillée
Département de géographie et Centre d'études nordiques,
Université Laval, Québec, Quebec, Canada
Related authors
No articles found.
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024, https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Short summary
This research focuses on the interaction between microwave signals and lake ice under wet conditions. Field data collected for Lake Oulujärvi in Finland were used to model backscatter under different conditions. The results of the modelling likely indicate that a combination of increased water content and roughness of different interfaces caused backscatter to increase. These results could help to identify areas where lake ice is unsafe for winter transportation.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Yu Cai, Claude R. Duguay, and Chang-Qing Ke
Earth Syst. Sci. Data, 14, 3329–3347, https://doi.org/10.5194/essd-14-3329-2022, https://doi.org/10.5194/essd-14-3329-2022, 2022
Short summary
Short summary
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. This study used passive microwave brightness temperature measurements to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. A threshold algorithm was applied according to the differences in brightness temperature between lake ice and open water. The dataset will provide valuable information about the changing ice cover of lakes over the last 4 decades.
Elena Zakharova, Svetlana Agafonova, Claude Duguay, Natalia Frolova, and Alexei Kouraev
The Cryosphere, 15, 5387–5407, https://doi.org/10.5194/tc-15-5387-2021, https://doi.org/10.5194/tc-15-5387-2021, 2021
Short summary
Short summary
The paper investigates the performance of altimetric satellite instruments to detect river ice onset and melting dates and to retrieve ice thickness of the Ob River. This is a first attempt to use satellite altimetry for monitoring ice in the challenging conditions restrained by the object size. A novel approach permitted elaboration of the spatiotemporal ice thickness product for the 400 km river reach. The potential of the product for prediction of ice road operation was demonstrated.
Cited articles
Antonova, S., Duguay, C. R., Kääb, A., Heim, B., Langer, M.,
Westermann, S., and Boike, J.: Monitoring bedfast ice and ice phenology in
lakes of the Lena river delta using TerraSAR-X backscatter and coherence
time series, Remote. Sens., 8, 1–23, 2016.
Arp, C. D., Jones, B. M., Urban, F. E., and Grosse, G.: Hydrogeomorphic
processes of thermokarst lakes with grounded-ice and floating-ice regimes on
the Arctic coastal plain, Alaska, Hydrol. Process., 25, 2422–2438, 2011.
Arp, C. D., Jones, B. M., Lu, Z., and Whitman, M. S.: Shifting balance of
thermokarst lake ice regimes across the Arctic Coastal Plain of northern
Alaska, Geophys. Res. Lett., 39, 1–5, 2012.
Atwood, D., Gunn, G., Roussi, C., Wu, J., Duguay, C., and Sarabandi, K.:
Microwave backscatter from Arctic lake ice and polarimetric implications,
IEEE Trans. Geosci. Remote Sens., 53, 5972–5982, https://doi.org/10.1109/TGRS.2015.2429917, 2015.
Bartsch, A., Pointner, G., Leibman, M. O., Dvornikov, Y. A., Khomutov, A.
V., and Trofaier, A. M.: Circumpolar mapping of ground-fast lake ice, Front.
Earth Sci., 5, 1–16, 2017.
Bouchard, F., MacDonald, L. A., Turner, K. W., Thienpont, J. R., Medeiros,
A. S., Biskaborn, B. K., Korosi, J., Hall, R. I., Pienitz, R., and Wolfe, B.
B.: Paleolimnology of thermokarst lakes: a window into permafrost landscape
evolution, Arct. Sci., 3, 91–117, 2017.
Brown, L. C. and Duguay, C. R.: A comparison of simulated and measured lake
ice thickness using a Shallow Water Ice Profiler, Hydrol. Process., 25,
2932–2941, 2011.
Brown, R. S., Duguay, C. R., Mueller, R. P., Moulton, L. L., Doucette, P. J.,
and Tagestad, J. D.: Use of synthetic aperture radar to identify and
characterize overwintering areas of fish in ice-covered arctic rivers: a
demonstration with broad whitefish and their habitats in the Sagavanirktok
River, Alaska, Trans. Am. Fish. Soc., 139, 1711–1722, https://doi.org/10.1577/T09-176.1, 2010.
Dammann, D. O., Eriksson, L. E. B., Mahoney, A. R., Stevens, C. W., Van der
Sanden, J., Eicken, H., Meyer, F. J., and Tweedie, C. E.: Mapping Arctic
Bottomfast Sea Ice Using SAR Interferometry, Remote Sens., 10, 1–17,
https://doi.org/10.3390/rs10050720, 2018.
Duguay, C. R. and Lafleur, P. M.: Determining depth and ice thickness of
shallow sub-Arctic lakes using space-borne optical and SAR data, Int. J.
Remote Sens., 24, 475–489, 2003.
Duguay, C. R. and Wang, J.: Advancement in bedfast lake ice mapping from
Sentinel-1 SAR data, in: IGARSS 2019–2019 IEEE International Geoscience and
Remote Sensing Symposium, 6922–6925, 28 July 2019, Yokohama, Japan, IEEE, 19154399, https://doi.org/10.1109/IGARSS.2019.8900650, 2019a.
Duguay, C. R. and Wang, J.: Arctic-wide ground-fast lake ice mapping
with Sentinel-1, ESA Living Planet Symposium, Milan, Italy, 13–17 May, 2019b.
Duguay, C. R., Pultz, T. J., Lafleur, P. M., and Drai, D.: RADARSAT
backscatter characteristics of ice growing on shallow sub-Arctic lakes,
Churchill, Manitoba, Canada, Hydrol. Process., 16, 1631–1644, 2002.
Duguay, C. R., Flato, G. M., Jeffries, M. O., Ménard, P., Morris, K.,
and Rouse, W. R.: Ice-cover variability on shallow lakes at high latitudes:
model simulations and observations, Hydrol. Process., 17, 3465–3483, 2003.
Duguay, C. R., Prowse, T. D., Bonsal, B. R., Brown, R. D., Lacroix, M. P.,
and Ménard, P.: Recent trends in Canadian lake ice cover, Hydrol.
Process., 20, 781–801, 2006.
Engram, M., Anthony, K. W., Meyer, F. J., and Grosse, G.: Characterization
of L-band synthetic aperture radar (SAR) backscatter from floating and
grounded thermokarst lake ice in Arctic Alaska, The Cryosphere, 7,
1741–1752, https://doi.org/10.5194/tc-7-1741-2013, 2013.
Engram, M., Arp, C. D., Jones, B. M., Ajadi, O. A., and Meyer, F. J.:
Analyzing floating and bedfast lake ice regimes across Arctic Alaska using
25 years of space-borne SAR imagery, Remote Sens. Environ., 209, 660–676,
2018.
Engram, M., Anthony, K. M. W., Sachs, T., Kohnert, K., Serafimovich, A.,
Grosse, G., and Meyer, F.: Remote sensing northern lake methane ebullition,
Nat. Clim. Change, 10, 511–517, 2020.
Grunblatt, J. and Atwood, D.: Mapping lakes for winter liquid water
availability using SAR on the North Slope of Alaska, J. Appl. Earth Obs.
Geoinf., 27, 63–69, 2014.
Gunn, G. E., Brogioni, M., Duguay, C., Macelloni, G., Kasurak, A., and King,
J.: Observation and modeling of X- and Ku-band backscatter of snow-covered
freshwater lake ice, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8,
3629–3642, 2015a.
Gunn, G. E., Duguay, C. R., Brown, L. C., King, J., Atwood, D., and Kasurak,
A.: Freshwater lake ice thickness derived using surface-based X- and Ku-band
FMCW scatterometers, Cold Reg. Sci. Technol., 120, 115–126, 2015b.
Gunn, G. E., Duguay, C. R., Atwood, D., King, J., and Toose, P.:
Observing scattering mechanisms of bubbled freshwater lake ice using
polarimetric RADARSAT-2 (C-band) and UWScat (X-, Ku-band), IEEE Trans. Geosci. Remote Sens., 56, 2887–2903, https://doi.org/10.1109/TGRS.2017.2786158, 2018.
Heslop, J. K., Walter Anthony, K. M., Sepulveda-Jauregui, A., Martinez-Cruz, K., Bondurant, A., Grosse, G., and Jones, M. C.: Thermokarst lake methanogenesis along a complete talik profile, Biogeosciences, 12, 4317–4331, https://doi.org/10.5194/bg-12-4317-2015, 2015.
Hirose, T., Kapfer, M., Bennett, J., Cott, P., Manson, G., and Solomon, S.:
Bottomfast ice mapping and the measurement of ice thickness on tundra lakes
using C-band synthetic aperture radar remote sensing, JAWRA J. Am. Water
Resour. Assoc., 44, 285–292, 2008.
Huang, W., DeVries, B., Huang, C., Lang, M. W., Jones, J. W., Creed, I. F.,
and Carroll, M. L.: Automated extraction of surface water extent from
Sentinel-1 data, Remote Sens., 10, 1–18, https://doi.org/10.3390/rs10050797, 2018.
Hussain, M. M. and Mahmud, I.: pyMannKendall: a python package for non
parametric Mann Kendall family of trend tests, J. Open Source Softw., 4,
1556, https://doi.org/10.21105/joss.01556, 2019.
Irving, W. N. and Cinq-Mars, J.: A tentative archaeological sequence for Old
Crow Flats, Yukon territory, Arctic Anthropol., 11, 65–81, 1974.
Jeffries, M. O., Morris, K., and Liston, G. E.: A method to determine lake
depth and water availability on the North Slope of Alaska with spaceborne
imaging radar and numerical ice growth modelling, Arctic, 49, 367–374, 1996.
Jeffries, M. O., Morris, K., and Duguay, C. R.: Lake ice growth and decay in
central Alaska, USA: observations and computer simulations compared, Ann.
Glaciol., 40, 195–199, 2005.
Jones, B. M., Grosse, G., Farquharson, L. M., Roy-Léveillée, P.,
Veremeeva, A., Kanevskiy, M. Z., Gaglioti, B. V., Breen, A. L., Parsekian,
A. D., Ulrich, M., and Hinkel, K. M.: Lake and drained lake basin systems in
lowland permafrost regions, Nat. Rev. Earth Environ., 3, 85–98, https://doi.org/10.1038/s43017-021-00238-9, 2022.
Kheyrollah Pour, H., Duguay, C. R., Scott, K. A., and Kang, K.- K.:
Improvement of lake ice thickness retrieval from MODIS satellite data using
a thermodynamic model, IEEE Trans. Geosci. Remote Sens., 55, 5956–5965,
2017.
Kozlenko, N. and Jeffries, M. O.: Bathymetric mapping of shallow water in
thaw lakes on the North Slope of Alaska with spaceborne imaging radar,
Arctic, 53, 306–316, 2000.
Labrecque, S., Lacelle, D., Duguay, C. R., Lauriol, B., and Hawkings, J.:
Contemporary (1951–2001) evolution of lakes in the Old Crow Basin, Northern
Yukon, Canada: Remote sensing, numerical modeling, and stable isotope
analysis, Arctic, 62, 225–238, 2009.
Lantz, T. C. and Turner, K. W.: Changes in lake area in response to
thermokarst processes and climate in Old Crow Flats, Yukon, J. Geophys. Res.-Biogeo., 120, 513–524, 2015.
Lauriol, B., Lacelle, D., Labrecque, S., Duguay, C. R., and Telka, A.:
Holocene evolution of lakes in the Bluefish Basin, northern Yukon, Canada,
Arctic, 62, 212–224, 2009.
Makynen, M., Karvonen, J., Cheng, B.; Hiltunen, M., and Eriksson, P. B.:
Operational Service for Mapping the Baltic Sea Landfast Ice Properties,
Remote Sens., 12, 4032, https://doi.org/10.3390/rs12244032, 2020.
Ménard, P., Duguay, C. R., Flato, G. M., and Rouse, W. R.: Simulation of
ice phenology on Great Slave Lake, Northwest Territories, Canada, Hydrol.
Process., 16, 3691–3706, 2002.
Minh, D. H. T., Ienco, D., Gaetano, R., Lalande, N., Ndikumana, E., Osman,
F., and Maurel, P.: Deep recurrent neural networks for winter vegetation
quality mapping via multitemporal SAR Sentinel-1, IEEE Geosci. Remote Sens.
Lett., 15, 464–468, 2018.
Mommertz, R.: Mapping bedfast and floating thermokarst lake ice and
determining lake depth using Sentinel 1 synthetic aperture radar remote
sensing on the west shore of Hudson Bay, Canada and Prudhoe Bay, Alaska,
Master's thesis, Institute for Earth-and Environmental Science, University
of Potsdam, Potsdam, Germany, Master thesis, Institute for Earth- and Environmental Science, hdl: 10013/epic.a2aa0093-7f7b-4715-a33f-7345040f2a23, e-print ID: 51210, 2019.
Murfitt, J. and Duguay, C. R.: 50 years of lake ice research from active
microwave remote sensing: Progress and prospects, Remote Sens. Environ.,
264, 112616, https://doi.org/10.1016/j.rse.2021.112616, 2021.
Ndikumana, E., Ho Tong Minh, D., Baghdadi, N., Courault, D., and Hossard,
L.: Deep recurrent neural network for agricultural classification using
multitemporal SAR Sentinel-1 for Camargue, France, Remote Sens., 10, 1–16,
2018.
Nitze, I., Cooley, S. W., Duguay, C. R., Jones, B. M., and Grosse, G.: The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future, The Cryosphere, 14, 4279–4297, https://doi.org/10.5194/tc-14-4279-2020, 2020.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P.,
McGuire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., and
Turetsky, M. R.: Circumpolar distribution and carbon storage of thermokarst
landscapes, Nat. Commun., 7, 13043, https://doi.org/10.1038/ncomms13043, 2016.
Ovenden, L. E.: Hydroseral histories of the Old Crow peatlands, northern
Yukon, Ph.D. thesis, University of Toronto, Toronto, Canada, 1985.
Pelletier, C., Webb, G. I., and Petitjean, F.: Temporal convolutional neural
network for the classification of satellite image time series, Remote Sens.,
11, 1–25, 2019a.
Pelletier, C., Webb, G. I., and Petitjean, F.: Training temporal Convolution Neural Networks (CNNs) on satellite image time series, GitHub [code], https://github.com/charlotte-pel/temporalCNN (last access: 6 April 2023), 2019b.
Pointner, G. and Bartsch, A.: Interannual variability of lake ice
backscatter anomalies on Lake Neyto, Yamal, Russia, GI Forum J., 8,
47–62, 2020.
Pointner, G., Bartsch, A., Forbes, B. C., and Kumpula, T.: The role of lake
size and local phenomena for monitoring ground-fast lake ice, Int. J. Remote
Sens., 40, 832–858, 2019.
Porter, T. J. and Pisaric, M. F. J.: Temperature-growth divergence in white
spruce forests of Old Crow Flats, Yukon Territory, and adjacent regions of
northwestern North America, Glob. Change Biol., 17, 3418–3430, 2011.
Roy-Léveillée, P.: Permafrost and thermokarst lake dynamics in the
Old Crow Flats, northern Yukon, Canada, Ph.D. thesis, Carleton University,
Ottawa, Canada, 2014.
Roy-Léveillée, P. and Burn, C.: Permafrost conditions near
shorelines of oriented lakes in Old Crow Flats, Yukon Territory, in:
Conference Proceedings of GEO, 12–15 September 2010, Calgary, Alberta, Canada, 1510–1516, 2010.
Roy-Léveillée, P. and Burn, C. R.: Geometry of oriented lakes in Old
Crow Flats, northern Yukon, in: Proceedings, 68th Canadian Geotechnical
Conference and 7th Canadian Permafrost Conference, 20–23 September 2015, Quebec City, Québec, Canada,
2015.
Roy-Léveillée, P. and Burn, C. R.: A modified landform development
model for the topography of drained thermokarst lake basins in fine-grained
sediments, Earth Surf. Process. Landf., 41, 1504–1520, https://doi.org/10.1002/esp.3918, 2016.
Roy-Léveillée, P., and Burn, C. R.: Near-shore talik development beneath
shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon, J.
Geophys. Res.-Earth, 122, 1070–1089, https://doi.org/10.1002/2016JF004022, 2017.
Roy-Léveillée, P., Burn, C. R., and McDonald, I. D.:
Vegetation-permafrost relations within the forest-tundra ecotone near Old
Crow, Northern Yukon, Canada, Permafrost Periglac., 25, 127–135,
2014.
Sellmann, P., Weeks, W., and Campbell, W.: Use of Side-looking Airborne
Radar to determine lake depth on the Alaskan North Slope, Technical Report
Special Report No. 230, Cold Regions Research and Engineering Laboratory,
Hanover, New Hampshire, 1975.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's
tau, J. Am. Stat. Assoc., 63, 1379–1389, 1968.
Shaposhnikova, M., Duguay, C. R., and Roy-Léveillée, P.: Annotated
time-series of lake ice C-band synthetic aperture radar backscatter created
using Sentinel-1, ERS-1/2, and RADARSAT-1 imagery of Old Crow Flats, Yukon,
Canada, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.947789, 2022.
Surdu, C. M., Duguay, C. R., Brown, L. C., and Fernández Prieto, D.: Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis, The Cryosphere, 8, 167–180, https://doi.org/10.5194/tc-8-167-2014, 2014.
Tondu, J.-M.: An interdisciplinary approach to monitoring the hydroecology
of thermokarst lakes in Old Crow Flats, Yukon Territory, Canada, Master's
thesis, University of Waterloo, 2012.
Tsui, O. W., Chiang, M., and Dean, A.: Mapping of bottomfast lake ice
in the northwest territories via data mining of synthetic aperture radar
image time series, Can. J. Remote Sens., 45, 572–590, 2019.
Turner, K. W., Wolfe, B. B., and Edwards, T. W. D.: Characterizing the role
of hydrological processes on lake water balances in the Old Crow Flats,
Yukon Territory, Canada, using water isotope tracers, J. Hydrol., 386,
103–117, 2010.
Turner, K. W., Wolfe, B. B., Edwards, T. W. D., Lantz, T. C., Hall, R. I.,
and Larocque, G.: Controls on water balance of shallow thermokarst lakes and
their relations with catchment characteristics: a multi-year,
landscape-scale assessment based on water isotope tracers and remote sensing
in Old Crow Flats, Yukon (Canada), Glob. Change Biol., 20, 1585–1603,
https://doi.org/10.1111/gcb.12465, 2014.
Valero, S., Pelletier, C., and Bertolino, M.: Patch-based reconstruction of
high resolution satellite image time series with missing values using
spatial, spectral and temporal similarities, in: 2016 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 10–15 July 2016, Beijing, Chine, 16444878, IEEE, 2308–2311, https://doi.org/10.1109/IGARSS.2016.7729596, 2016.
Wakabayashi, H. and Motohashi, K.: Monitoring freezing and thawing of
shallow lakes in Northern Alaska using Sentinel-1 data, in: IGARSS 2018–2018
IEEE International Geoscience and Remote Sensing Symposium, 7157–7160, 4 November 2018, Valencia, Spain, 18244715, IEEE, https://doi.org/10.1109/IGARSS.2018.8519086,
2018.
Wang, L., Jolivel, M., Marzahn, P., Bernier, M., and Ludwig, R.: Thermokarst
pond dynamics in subarctic environment monitoring with radar remote sensing,
Permafrost Periglac., 29, 231–245, 2018.
Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R.
F., and Friedl, M. A.: Extensive land cover change across Arctic Boreal
Northwestern North America from disturbance and climate forcing, Global
Change Biol., 26, 807–822, 2020.
Wolfe, B. B., Humphries, M. M., Pisaric, M. F., Balasubramaniam, A. M., Burn, C. R., Chan, L., Cooley, D., Froese, D. G., Graupe, S., Hall, R. I., and Lantz, T.: Environmental change and traditional use of the Old Crow Flats in
northern Canada: an IPY opportunity to meet the challenges of the new
northern research paradigm, Arctic, 64, 127–135, 2011.
Zazula, G. D., Duk-Rodkin, A., Schweger, C. E., and Morlan, R. E.: Late
Pleistocene chronology of glacial lake Old Crow and the north-west margin of
the Laurentide Ice Sheet, in: Developments in Quaternary Sciences, 2,
347–362, Elsevier, https://doi.org/10.1016/S1571-0866(04)80207-0, 2004
Short summary
We explore lake ice in the Old Crow Flats, Yukon, Canada, using a novel approach that employs radar imagery and deep learning. Results indicate an 11 % increase in the fraction of lake ice that grounds between 1992/1993 and 2020/2021. We believe this is caused by widespread lake drainage and fluctuations in water level and snow depth. This transition is likely to have implications for permafrost beneath the lakes, with a potential impact on methane ebullition and the regional carbon budget.
We explore lake ice in the Old Crow Flats, Yukon, Canada, using a novel approach that employs...