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Abstract. In light of the recent climate warming, monitoring
of lake ice in Arctic and subarctic regions is becoming in-
creasingly important. Many shallow Arctic lakes and ponds
of thermokarst origin freeze to the bed in the winter months,
maintaining the underlying permafrost in its frozen state.
However, as air temperatures rise and precipitation increases,
fewer lakes are expected to develop bedfast ice. In this work,
we propose a novel temporal deep-learning approach to lake
ice regime mapping from synthetic aperture radar (SAR) and
employ it to study lake ice dynamics in the Old Crow Flats
(OCF), Yukon, Canada, over the 1992/1993 to 2020/2021 pe-
riod. We utilized a combination of Sentinel-1, ERS-1 and
ERS-2, and RADARSAT-1 to create an extensive annotated
dataset of SAR time series labeled as either bedfast ice, float-
ing ice, or land, which was used to train a temporal convolu-
tional neural network (TempCNN). The trained TempCNN,
in turn, allowed us to automatically map lake ice regimes.
The classified maps aligned well with the available field mea-
surements and ice thickness simulations obtained with a ther-
modynamic lake ice model. Reaching a mean overall classi-
fication accuracy of 95 %, the TempCNN was determined to
be suitable for automated lake ice regime classification. The
fraction of bedfast ice in the OCF increased by 11 % over the
29-year period of analysis. Findings suggest that the OCF
lake ice dynamics are dominated by lake drainage events,
brought on by thermokarst processes accelerated by climate
warming, and fluctuations in water level and winter snow-
fall. Catastrophic drainage and lowered water levels cause
surface water area and lake depth to decrease and lake ice
to often transition from floating to bedfast ice, while a re-

duction in snowfall allows for the growth of thicker ice. The
proposed lake ice regime mapping approach allowed us to as-
sess the combined impacts of warming, drainage, and chang-
ing precipitation patterns on transitions between bedfast and
floating-ice regimes, which is crucial to understanding evolv-
ing permafrost dynamics beneath shallow lakes and drained
basins in thermokarst lowlands such as the OCF.

1 Introduction

Lake ice is a fundamental part of the freshwater processes
in cold regions, and its sensitivity to air temperatures makes
it a robust indicator of climate change (Brown and Duguay,
2010). Arctic and subarctic regions underlain by permafrost,
or perennially frozen ground, are rich in lakes that formed as
a result of localized ground subsidence attributable to per-
mafrost thaw, also known as thermokarst lakes (Bouchard
et al., 2017). Many shallow Arctic lakes and ponds of
thermokarst origin freeze to the bed in the winter months,
allowing lake bottom temperatures to drop below 0°C and
frost to penetrate the lake bottom sediment. Permafrost is
sustained beneath the lake bottom where the freezing degree
days at the ice—sediment interface are sufficient to counter-
balance the thawing that takes place while lake bottom tem-
peratures are above 0°C (Roy-Léveillée and Burn, 2017).
Where lake bottom conditions are too warm to sustain per-
mafrost, for instance where ice does not reach the lake bot-
tom or where the period of ice contact is brief, permafrost
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will degrade and a bulb of unfrozen ground or talik will de-
velop and expand beneath the lake bottom. Such talik de-
velopment contributes to positive feedbacks as it promotes
lake deepening via subsidence of the lake bottom (Roy-
Léveillée and Burn, 2016), further reducing the occurrence
of bedfast ice, and increases the ebullition of potent green-
house gases such as methane from the thawing and decom-
position of organic matter beneath the lake bottom (Arp
et al., 2012; Engram et al., 2020). However, lake ice thin-
ning and a subsequent decrease in the extent and duration
of bedfast-ice lakes has been noted by researchers investi-
gating thermokarst lakes of Arctic Alaska (Engram et al.,
2018; Surdu et al., 2014). Hence, monitoring and quanti-
fying thermokarst lake ice dynamics are critical for under-
standing changes in sub-lake permafrost stability and ex-
pected changes in methane ebullition patterns in thermokarst
lowlands. Bedfast-ice mapping, in particular, has a variety
of other applications, including climate monitoring (Arp et
al., 2012), permafrost studies (Arp et al., 2011), bathymet-
ric mapping (Duguay and Lafleur, 2003; Kozlenko and Jef-
fries, 2000), studying overwintering fish habitat (Brown et
al., 2010), and identification of lakes for winter water with-
drawal (Hirose et al., 2008; Jeffries et al., 1996).

The bedfast and floating-ice regimes of Alaskan lakes have
been studied extensively. For instance, a study by Surdu et
al. (2014) analyzed 402 lakes, near Utqiagvik (formerly Bar-
row), the North Slope of Alaska, using ERS-1 and ERS-2
synthetic aperture radar (SAR) imagery from 1991-2011.
The study indicates a decrease in bedfast-ice fraction from a
maximum of 62 % in 1992 t0 26 % in 201 1. A study by Arp et
al. (2012) reports significant variability in ice regime changes
observed in inner and outer regions of the Arctic Coastal
Plain of northern Alaska (ACP). Analyzing SAR imagery be-
tween 2003-2011 and comparing it to radar-based ice maps
from 1980, it was found that 16 % of bedfast lakes shifted to
floating-ice regimes. However, while in the outer ACP only
three lakes shifted from being fully bedfast in 1980 to hav-
ing only floating ice in the period between 2003 and 2011,
in the inner ACP 27 % of lakes transitioned to floating ice.
Engram et al. (2018) analyzed a 25-year time series (1992—
2016) of C-band SAR images in seven regions of northern
Alaska and the Seward Peninsula. The authors note that due
to high interannual variability in floating-ice extent, no sta-
tistically significant trends could be observed. Nonetheless,
one of the study areas, namely the Fish Creek region on
the inner ACP, exhibited strong trends towards floating-ice
regimes. Over the 25 years of analysis an increase of 4.2 %
per decade was observed in the areas covered by floating ice,
and the number of floating-ice lakes increased by 1.5 % per
decade. Considering the variability observed between dif-
ferent study areas within northern Alaska, lake ice trends
in other thermokarst lake areas of the Northern Hemisphere
characterized by different climates and types of underlying
sediments could show different results. Hence, in this study,
the Old Crow Flats (OCF), Yukon, Canada, are selected as
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the focus area. No previous study to date has examined the
bedfast and floating-ice regimes of lakes in this region.
Owing to the vast number of lakes occupying permafrost
regions, satellite remote sensing plays a key role in mon-
itoring lake ice. The potential of active microwave remote
sensing for bedfast-ice mapping has been known since 1975
when Sellmann et al. (1975) noticed a characteristic dark and
bright pattern of ice on shallow lakes of the Alaskan Coastal
Plain when observing them from the X-band side-looking
airborne radar. The dielectric properties of water and ice dis-
play a high contrast in an electromagnetic window between
5-17 GHz, making this range sensitive to the presence of lig-
uid water under the ice (Gunn et al., 2015a). As such, SAR
active microwave remote sensors, including X (8-12 GHz)-,
L (0.5-1.5 GHz)-, and C (4-8 GHz)-bands, are not only able
to penetrate clouds and operate independently of solar illu-
mination but also benefit from distinct backscatter patterns
for floating and bedfast ice. Floating ice in shallow lakes is
generally characterized by a high backscatter; surface scat-
tering from the ice—water interface is the largest contributor
to backscatter throughout the ice season, followed by vol-
ume scattering in the surface ice layer and double bounce
from tubular bubbles providing a smaller contribution to
total backscatter (Atwood et al., 2015; Gunn et al., 2018;
Murfitt and Duguay, 2021). Bedfast ice, on the other hand,
presents a dark SAR signature due to low dielectric contrast
between the ice and the underlying sediment, which results
in signal transmission or absorption by lake beds (Grunblatt
and Atwood, 2014; Jeffries et al., 2005). Traditionally bed-
fast and floating ice has been mapped from spaceborne C-
band SAR (e.g., Kozlenko and Jeffries, 2000; Duguay et al.,
2002; Brown et al., 2010), with a more limited use of L-
band (Engram et al., 2013) and X-band data (Antonova et
al., 2016). A variety of approaches have been proposed to
distinguish between bedfast and floating ice based on SAR
backscatter, namely a threshold-based classification (Bartsch
et al., 2017; Brown and Duguay, 2010; Duguay et al., 2002;
Duguay and Wang, 2019a; Engram et al., 2018; Hirose et al.,
2008; Kozlenko and Jeffries, 2000; Wakabayashi and Moto-
hashi, 2018), supervised and unsupervised classification ap-
proaches (Grunblatt and Atwood, 2014; Pointner et al., 2019;
Surdu et al., 2014), and one unique method based on data
mining (Tsui et al., 2019). It is worth noting that not all bed-
fast mapping approaches rely directly on the SAR backscat-
ter; for instance, some sea ice studies identified bedfast ice
using SAR interferometry (Dammann et al., 2018) and land-
fast ice using SAR image pairs (Makynen et al., 2020).
Thresholding is the most widely used method. For in-
stance, Bartsch et al. (2017), using Envisat ASAR C-band
imagery, produced circumpolar bedfast-ice maps for a single
winter season based on a threshold function fitted to data col-
lected from the Yamal Peninsula, Russia. The utilized thresh-
old function accounted for incidence angle variability and
was applied to 2 million Arctic lakes. Engram et al. (2018)
reported a 93 % overall accuracy achieved through an inter-
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active thresholding algorithm applied to a 25-year time series
of six generations of C-band SAR imagery. The developed al-
gorithm identified a unique threshold for each scene avoiding
errors resulting from variations in ice and weather conditions
as well as alleviating the need for incidence angle normaliza-
tion. Finally, Duguay and Wang (2019a) compared thresh-
olding with correction for incidence angle effects to two un-
supervised classification techniques (K-means and iterative
region growing using semantics) and found that thresholding
outperformed the other two algorithms, reaching an overall
accuracy of 92.56 %, and generalized the best to new geo-
graphical regions.

As to the remaining challenges, overestimation of bed-
fast ice in the middle of deeper lakes, such as Teshekpuk
Lake, Alaska, is still observed (Duguay and Wang, 2019a).
It has been hypothesized that the darker signatures in the
deeper sections of lakes could be caused by such phenom-
ena as cracks in the ice (Pointner et al., 2019) or local ice
thinning or complete melt caused by methane ebullition (En-
gram et al., 2020; Pointner and Bartsch, 2020). Moreover,
ice salinity and the presence of wet snow on the ice sur-
face result in reduced backscatter intensities of floating ice
(Duguay et al., 2002; Grunblatt and Atwood, 2014). With
the aim of improving classification results for deeper lakes,
Pointner et al. (2019) compared the threshold method to two
novel methods based on pixel connectivity: the flood-fill and
the watershed method. Both methods considered topography
and the fact that ice grounding generally takes place in the
shelf regions. Visual assessment suggested an improved per-
formance, but no definitive conclusion was reached due to
the lack of field measurements.

Although thresholding involves analyzing temporal evolu-
tion of backscatter, to the best of our knowledge, the only
study that fully exploited the temporal progression is Tsui
et al. (2019), who adopted a data mining approach called
dynamic time warping (DTW). DTW compares backscatter
time series based on their shape. However, approaches that
use temporal similarity measures, such as DTW, are very
computationally costly as they require scanning the training
set in its entirety in order to make a decision for every test
instance (Pelletier et al., 2019a).

With the aim of analyzing bedfast and floating lake ice
dynamics of the OCF over time, in this study we propose a
comprehensive automatic classification framework that em-
ploys temporal deep learning. A temporal convolutional neu-
ral network (TempCNN) architecture proposed by Pelletier
et al. (2019a) is adopted and modified to fit the lake ice clas-
sification from SAR. This approach allows us to develop a
non-linear framework able to automatically distinguish be-
tween ice regimes based on their temporal evolution. The
deep learning offers a more universal approach that works for
different SAR polarizations (HH and VV) and is not sensor-,
spatial resolution-, or year-specific. In addition, in contrast
to the existing methods, TempCNN does not require a lake
mask, as it is able to create a three-class output: bedfast ice,
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floating ice, and land. The trained network is used to create
high-quality ice regime maps of the OCF and analyze lake ice
dynamics from 1992/1993-2020/2021. Documenting transi-
tions between bedfast and floating-ice regimes in relation to
climatic trends is crucial to understanding permafrost dy-
namics beneath shallow water in thermokarst plains such as
the OCF, with potential implications for methane emissions
and the regional carbon balance.

The remainder of the paper is organized as follows: Sect. 2
describes the study area; Sect. 3 outlines the methodology
used to select SAR imagery, process it, create an anno-
tated dataset (Shaposhnikova et al., 2022), train and test a
TempCNN model, create ice maps (Shaposhnikova et al.,
2022), and perform ice dynamics analysis in the OCF; Sect. 4
presents and discusses the results; finally, Sect. 5 summa-
rizes the key findings including potential causes and impli-
cations of the observed dynamics and suggestions for future
research.

2 Study area

While thermokarst lake ice regimes of northern Alaska
(USA), the Lena River delta (Russia), and Hudson
Bay (Canada) have been studied by multiple researchers
(Antonova et al., 2016; Arp et al., 2011, 2012; Duguay and
Wang, 2019a; Engram et al., 2018; Mommertz, 2019; Surdu
et al., 2014; Wang et al., 2018), ice regimes of the Old Crow
Flats, Yukon, Canada (OCF), remain largely unexplored.
The OCF is a wetland of international significance rich in
lakes of thermokarst origin and surrounded by mountains
(Fig. 1) (Lantz and Turner, 2015). The 6000 km? area con-
tains over 1050 km? of flat-bottomed shallow lakes approxi-
mately 1.5m in depth on average (Roy-Léveillée and Burn,
2010, 2015). The OCF was submerged under the glacial lake
Old Crow during the Wisconsin stage (Irving and Cing-Mars,
1974). The glacial lake drained catastrophically about 15 000
years ago leaving behind thick glaciolacustrine deposits and
remnant lakes (Lauriol et al., 2009; Zazula et al., 2004). More
lakes formed during the early Holocene through thermokarst
processes (Ovenden, 1985).

The northern part of the lowland is characterized by polyg-
onal tundra, while subarctic boreal forest is found in the
south (Roy-Léveillée, 2014). According to tree-ring climate
records, the last few decades have been characterized by
warming unseen in any other period of the past 300 years
(Porter and Pisaric, 2011). Moreover, members of the Vuntut
Gwitchin First Nation, whose lifestyle is largely sustained
by the OCF, note significant changes in air temperatures,
precipitation, and ice regimes in the past decades (Wolfe et
al., 2011). As a result, between 1951 and 2007, the OCF
has seen a decline in lake area of 60 km? mainly attributed
to climate- and erosion-induced catastrophic lake drainage
(38 large lake drainages described by Lantz and Turner,
2015), the rate of which increased 5-fold in recent decades
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(Labrecque et al., 2009; Turner et al., 2010; Lantz and Turner,
2015). Despite the overall trend towards decreasing water
surface area brought on by catastrophic drainage events, most
lakes are increasing in surface area and new ponds are form-
ing due to rising air temperatures and increased precipitation,
which bring on lake ice thinning, deepening of active layers,
permafrost thaw, and ground subsidence (Labrecque et al.,
2009). The climate of the OCF is continental with cold win-
ters (mean January temperature of —31.1 °C) and warm sum-
mers (mean July temperature of 14.6 °C) (Lantz and Turner,
2015). Although the OCF is underlain by continuous ice-rich
permafrost, unlike other regions such as the Mackenzie River
delta, even shallow bedfast-ice areas within lakes can display
mean lake bed temperatures above 0 °C due to deep snow and
high summer air temperatures (Roy-Léveillée, 2014). Lakes
surrounded by boreal forest tend to accumulate more snow
and, therefore, develop thinner ice, while tundra lakes are
characterized by a thinner, denser snow which results in com-
plete (shallow ponds) or partial ice grounding (Duguay et al.,
2003; Roy-Léveillée et al., 2014). In light of this region’s
unique climate and sediment type, active thermokarst pro-
cesses, climate-driven vegetation changes, such as shrubi-
fication of the tundra area (Wang et al., 2020), and a vast
number of lakes which, given considerable changes to their
ice regime, have the potential to significantly influence the
underlaying permafrost and subsequently the climate of the
area, the analysis carried out in this study make a valuable
addition to the existing body of knowledge.

3 Data and methods
3.1 SAR imagery

The dataset consists of imagery from four C-band SAR
spaceborne platforms: Sentinel-1 A (S1) (VV polariza-
tion), ERS-1 and ERS-2 (ERS1/2) (VV polarization), and
RADARSAT-1 (R1) (HH polarization), which cover the time
period between 1992/1993-2020/2021. Although ice reaches
its maximum thickness in the OCF in late March or early
April, the October to mid-March window was selected ow-
ing to the classification approach requirement for a consistent
time series end date. For all the dates beyond mid-March, one
or more of the years had air temperatures above 0 °C, which
leads to surface melt interfering with the discrimination be-
tween floating and bedfast ice (Duguay and Lafleur, 2003).
Table 1 summarizes the dataset. In total, 18 years of data
were chosen as they offered a minimum of two scenes for
each month throughout the ice season (555 scenes).

The imagery was obtained from the Alaska Satellite Facil-
ity (ASF). For S1, radiometrically terrain-corrected (RTC)
level-2 products were downloaded. The RTC processing
procedure calibrates the images, removing topographic ef-
fects, and corrects for geometric distortions, ensuring pre-
cise geolocation. The process involves calibration, multi-
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looking to six looks, digital elevation model (DEM) match-
ing, radiometric calibration to sigma nought amplitude, and
speckle filtering. Images are subsequently terrain-corrected
and geocoded to UTM Zone 7N, datum WGS84. The pixel
size of the RTC products is 30 m. The ERS1/2 and R1 data
were available as level-1 products with a respective pixel size
of 12.5 and 50 m. They were processed using the MapReady
Remote Sensing Tool Kit available from ASF. MapReady al-
lows us to perform calibration to sigma nought, terrain cor-
rection, and geocoding. Further processing was done using
the Sentinel Application Platform (SNAP) available from the
European Space Agency (ESA). First, all the scenes were
subset to the OCF extent. When working with SAR im-
agery, it is essential to minimize speckle noise for success-
ful analysis. Therefore, to match the RTC S1 products fil-
tered using a 7 x 7 Lee filter (the filter kernel covers approx-
imately 44 100 m?) with a dampening factor of 1 and 180
looks, ERS1/2 and R1 were speckle-filtered using a 17 x 17
(45156 m?) and a 5 x 5 (62500 m?) Lee filter, respectively.
Adjusting the filter size allowed us to account for the pixel
size differences. Finally, the scenes for each year (October
to mid-March) were co-registered to create stacks of SAR
image time series and converted to a decibel (dB) logarith-
mic scale traditionally used for C-band SAR analysis (e.g.,
Brown et al., 2010; Engram et al., 2018).

It is important to note that the four SAR platforms differ
significantly in terms of pixel size, as well as spatial and tem-
poral coverage. S1 provided full coverage of the OCF at least
every 5d between October and mid-March when data from
both descending and ascending overpasses were used. Due to
its relatively narrower swath size (100 km), ERS1/2 did not
cover the OCF in their entirety and scenes were much sparser
in time. The wide-swath ScanSAR imaging mode of R1 al-
lowed for full coverage of the OCF. However, the revisit time
was variable from month to month and year to year.

Although using different SAR instruments and polariza-
tions within the same classification algorithm presents its
challenges, previous research has shown that such a combi-
nation is suitable for the mapping of bedfast and floating-
ice regimes. For instance, Duguay and Wang (2019b) have
developed a thresholding algorithm for Sentinel-1 adjusted
for incidence angle and have demonstrated comparabil-
ity of VV and HH polarized C-band SAR imagery for
the purpose of classifying lake ice regimes. Engram et
al. (2018) also proposed an interactive threshold classifica-
tion method to analyze floating and bedfast lake ice regimes
across Arctic Alaska using 25-year time series (1992-2016)
of C-band SAR images from different platforms (ERS1/2,
RADARSAT-2, Envisat, and S1) with both HH and VV po-
larizations.

3.2 Annotated dataset creation

Deep-learning algorithms require extensive annotated
datasets. Therefore, a dataset consisting of 129 000 labeled
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Figure 1. Old Crow Flats, Yukon, Canada. The background image is an RGB Landsat § of 31 May 2020, downloaded from USGS Earth
Explorer (link: https://earthexplorer.usgs.gov/, last access: 4 July 2021). Most lakes are still ice-covered at this time of the year and appear
white; open-water surfaces of the river and smaller lakes as well as some of the ice fringes appear black; tundra has a brownish shade, while
areas of boreal forest appear dark green.

Table 1. Data used in the project (I.A. stands for incidence angle); number of scenes is indicated for each year, where “full” indicates the no.
of full coverage scenes of the OCF.

Instrument Year Polarization Imaging mode Data product Pixel size (m) Spatial LA
resolution
(m)
Sentinel-1 2020/2021 (28 full); \'AY% w L2 RTC 10 (30 after RTC) 5x20 2045
2019/2020 (41 full); (interferometric ~ product
2018/2019 (37 full); wide swath);
2017/2018 (36 full); IW covers an
area of 250 km
ERS-1/2 2009/2010 (32; 7 full); VV STD (SAR L1 amplitude 12.5 26 x 6 23 at mid-swath
2008/2009 (26; 7 full); (central imaging mode; CEOS image
1995/1996 (52; 9 full); frequency swath width
1994/1995 (34; 6 full);  5.6cm) of 100 km)

1993/1994 (25; 4 full);
1992/1993 (30; 6 full)

RADARSAT-1  2007/2008 (24 full); HH ScanSAR L1 amplitude 50 100 x 100 2046
2005/2006 (16 full); (central wide (SWB, CEOS image
2004/2005 (21 full); frequency swath width
2003/2004 (24 full); 5.6cm) of 450 km)
2002/2003 (32 full);
2001/2002 (45 full);
2000/2001
(22; 16 full);
1999/2000 (30 full)
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backscatter time series was created (Shaposhnikova et al.,
2022). Labeling was done in SNAP by manually placing
pins at locations identified as either floating ice, bedfast ice,
or land through visual assessment of the ice regime and land
on the last day of the time series for a given season. This
was done for each of the SAR image stacks (18 years). Due
to variable temporal coverage, the dates of labeling ranged
from 4 to 22 March. The labeling date was selected as close
as possible to mid-March, and care was taken to ensure that
the air temperature was below 0°C. Then, the backscatter
values at the locations marked by each pin were extracted
for each of the scenes in a SAR stack, creating time series
of labeled backscatter values for each year covering the
October to mid-March period.

Labels were assigned based on the following three fac-
tors: (1) backscatter values, (2) value of the projected inci-
dence angle of the SAR pulse (Duguay and Wang, 2019b),
and (3) location of the pixel within the scene. Firstly, due to
a high dielectric contrast of water and ice, on a grey-level
scale floating ice appears bright, whereas bedfast ice is dark.
Secondly, it has been noted in previous investigations that the
threshold between bedfast and floating ice becomes lower as
the value of the projected incidence angle increases (Bartsch
et al., 2017; Duguay and Wang, 2019a). Finally, shallower
shore areas tend to become bedfast, while deeper middle por-
tions maintain liquid water under the ice (Pointner et al.,
2019). In addition, ponds are likely to freeze to the bed in
their entirety, while bigger lakes display a combination of the
two regimes. To identify land areas, early fall scenes (e.g.,
October) were used as a reference where water covered by
thin ice appears dark as its mirror-like surface leads to spec-
ular reflection of the SAR signal away from the sensor, while
the land is bright due to the roughness of its surface and veg-
etation volume scattering (Huang et al., 2018). Later in the
season as the floating ice thickens its backscatter increases
due to high dielectric discontinuity and roughness of the ice—
water interface causing floating ice and land to have similar
signatures. In terms of spatial distribution, floating ice la-
beled pixels were spread out over each scene as evenly as
possible. Labeled pixels with bedfast ice, on the other hand,
being less prevalent, were less spread out. However, it was
ensured that areas in both the northern and the southern parts
of the Old Crow Flats were included to incorporate both tun-
dra and boreal forest environments. Resampling to a daily
frequency and linear interpolation were applied to compen-
sate for the temporal irregularity of the data ensuring that
each of the backscatter time series for each year of data had
the same length (161 values) and gearing it up for the deep-
learning classification (Pelletier et al., 2019a; Valero et al.,
2016). Although the lake ice lifecycle is non-linear, previous
studies have shown that more complex interpolation meth-
ods have little influence on classification accuracy (Pelletier
et al., 2019a; Valero et al., 2016). Linear interpolation was
performed utilizing the Python programming language and
the tools of the pandas module. Interpolation was performed
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individually on every time series (backscatter value of each
pixel traced through time). As a result, we obtained SAR im-
age stacks consisting of 161 full coverage scenes, which were
subsequently input into the TempCNN to perform classifica-
tion. In addition to the proper SAR processing and speckle
filtering, further quality control was implemented by filling
any missing or not-a-number (NaN) values, especially com-
mon for ERS1/2 and scene fringes, as part of the temporal
interpolation process. The final labeled time series consisted
of 161 time steps (i.e., one time step per day) covering the
time period between 4 October and 13 March.

Figure 2 compares interpolated time series by class and
by sensor. One may note that the three classes are quite dis-
tinct. For a clearer presentation, each class is represented
by a mean and a standard deviation of a randomly selected
sample of 100 time series. As such, averaging masks the
initial drop in backscatter as thin ice forms on the wind-
roughened water surface (Duguay and Lafleur, 2003). How-
ever, Fig. 2 demonstrates that while floating-ice backscatter
gradually increases throughout the ice season, the bedfast-ice
backscatter peaks around the months of December and Jan-
vary and then decreases as the ice becomes bedfast (Duguay
and Lafleur, 2003). Land, on the other hand, shows little vari-
ability throughout the ice season and is characterized by a
narrow range of backscatter values. Despite slight differences
between the three sensors, the VV polarized S1 and ERS1/2
and HH polarized R1 have enough intra-class similarity and
interclass distinctions to allow for successful temporal clas-
sification.

3.3 Temporal convolutional neural network and ice
regime maps

3.3.1 TempCNN

In this work, the temporal dimension of ice backscatter
evolution is employed by adapting a TempCNN for land
cover classification from optical data proposed by Pelletier
et al. (2019a) for use in lake ice classification from SAR.
The study by Pelletier et al. (2019a) shows that TempC-
NNs are more suitable for large-scale studies due to their
lower computational complexity, higher classification accu-
racy, and shorter training time than recurrent neural networks
that are traditionally used for sequential data (Minh et al.,
2018; Ndikumana et al., 2018). A TempCNN learns from
the data by applying different filters to the input time se-
ries at the pixel level. A filter of a given size constitutes a
one-dimensional array of weights that slides across the time
series at the stride defined by the user; in each position the
values of the filter are multiplied element-wise by the values
of the time series. The summed up resulting products become
the part of the convolution output. The information extracted
by each filter depends on the values that constitute it. For in-
stance, Fig. 3 demonstrates an input and an output for filters
of size 5 known as the gradient filter and the low-pass fil-
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ter that extract the information on an increasing/decreasing
gradient of the input time series (Pelletier et al., 2019a, b)
and its trend, respectively. In a TempCNN, each input time
series undergoes a number of filters equal to the number of
neurons (units) in a given convolutional layer. The best fil-
ters are learned by the network through the training process
to allow for accurate mapping.

3.3.2 TempCNN architecture

The TempCNN architecture used in this article is shown in
Fig. 4. The network consists of three convolutional layers,
each of which contains 64 different filters of size 5. Padding
set to “same” in combination with the stride of the filter equal
to 1 ensures that the input retains its size from one convo-
lutional layer to the next. The three convolutional layers are
followed by a fully connected layer with 256 units. This layer
performs the final class assignment based on the final output
of the convolution process. Finally, the layer containing the
softmax function converts the probability output by the fully
connected layer into class probabilities that sum up to 1. Ul-
timately, this information can either be used to create proba-
bility maps or it can be transformed using an argmax function
that selects the highest probability and assigns a class to each
pixel.
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The network was trained using an activation function
called a rectified linear unit (ReLU). Once the input has
been transformed by a convolutional unit, it is subsequently
transformed by an activation function that introduces non-
linearity to the model. Overfitting is a common deep-learning
problem. Overfit models perform extremely well on the train-
ing data but generalize poorly to unseen data. The TempCNN
incorporates four techniques that ensure that the model is
well-trained but at the same time able to perform well on
new data: batch normalization, early stopping (patience: 10
epochs) controlled by a validation set that constitutes 5 % of
the training set, the dropout technique (rate: 0.5), and L2 reg-
ularization (12=1 x 107°).

3.3.3 TempCNN architecture selection

Out of 18 years of data, 1 year was reserved for final test-
ing, while the remaining 17 years were used to identify the
best model structure utilizing a cross-validation procedure.
Cross-validation allowed us to determine the optimal number
of convolutional units (4, 8, 16, 32, 64, or 128) while keeping
other elements of the structure constant (Fig. 4). TempCNN
with each number of units was trained on 16 years of data and
tested on 1 year of data 17 times each time leaving a different
year out for testing. The overall accuracy summary of each
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the middle portion illustrates the composition of the TempCNN including layers, activation functions, and mechanisms for overcoming
overfitting; the right portion represents the output created by the neural network that consists of a three-class (floating ice, bedfast ice, land)

map and three probability maps (one for each class).

of the six sets of experiments is shown in a box-plot form in
Fig. 5. Based on the value of the median, interquartile range
(IQR), length of the whiskers, and number of outliers, an ar-
chitecture with 64 convolutional units was identified as the
best and was subsequently used for creating lake ice maps.

3.3.4 TempCNN training and testing

The classification accuracy of the selected TempCNN model
was evaluated through 15 more experiments to account for
the stochastic nature of the neural network training process

The Cryosphere, 17, 1697-1721, 2023

(Pelletier et al., 2019a). The training and testing were per-
formed 15 times, consisting of three sets of five runs each
split for training and testing differently. The first set ran-
domly split the dataset into 80 % for training and 20 % for
testing, this way incorporating data from all the years into
both the training and the test set. The second set was trained
on 15 years and tested on 3 years, where each test year was
obtained by a different sensor. The third set was trained on
17 years of data and tested on the 18th year of data (S1, sea-
son 2020/2021) which had been reserved for validation. The
model trained on points from all years of the SAR dataset
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the best architecture with 64 convolutional units.

was selected for the ice regime mapping. Although it is most
likely worse at generalizing to unseen years and areas than
other models, it produced better overall accuracy and there-
fore is more likely to create high-quality maps for the pur-
pose of OCF ice dynamics analysis.

3.4 Creation of ice regime maps using TempCNN

In order to transform SAR image stacks for each of the 18
years of data into lake ice regime maps using the trained
TempCNN, each stack had to be interpolated. Interpolation
allowed us to compensate for temporal-resolution variability
between different years such that each year’s stack consisted
of 161 scenes corresponding to a daily frequency from 4 Oc-
tober to 13 March. Pixel-based linear interpolation was per-
formed utilizing the Python programming language and the
tools of the pandas module. Although the lake ice lifecycle is
non-linear, previous studies have shown that more complex
interpolation methods have little influence on classification
accuracy (Pelletier et al., 2019a; Valero et al., 2016). Once
the SAR stacks for 18 years were interpolated and each con-
sisted of 161 scenes, the trained TempCNN model was used
to create ice regime classification maps consisting of three
classes: floating ice, bedfast ice, and land (Shaposhnikova et
al., 2022). Apart from outputting a classification map, Tem-
pCNN also provided probability maps for each class, where
the value of each pixel corresponded to the probability of this
pixel belonging to this specific class. For consistency, after
classification all the maps were subset to the areas with an el-
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evation below 330 m using a digital elevation model (DEM)
granule included with the RTC S1 imagery from ASF. The
DEM granule comes from the National Elevation Dataset
at 2 arcsec resolution (NED2), which is produced and dis-
tributed by USGS. This step allowed us to exclude high-
elevation mountainous areas surrounding the OCF that ap-
pear very bright in SAR imagery and could be classified as
floating ice.

3.5 Accuracy assessment

Apart from statistical classification based on the test set, the
accuracy of the ice regime maps was assessed using a set
of 51 field observations. A set of bathymetry measurements
collected in the OCF in late July of 2000, in addition to a
small set of field measurements collected in taiga and tun-
dra zones of the OCF in spring of 2009 and 2021 was avail-
able. Data collection included some or all of the following
characteristics: ice thickness, ice regime, lake depth, temper-
ature of the underlying sediment, and snow depth and den-
sity. Given the limited number of field measurements, lake
ice thickness estimates were also obtained for comparison
via simulations with the Canadian Lake Ice Model (CLIMo)
(Duguay et al., 2003). CLIMo is a one-dimensional thermo-
dynamic model designed for the simulation of lake ice for-
mation, ice growth, and ice decay processes. The model has
been shown to perform well for the simulation of ice dates
and thickness on small (shallow) and large (deep) northern
lakes (e.g., Brown and Duguay, 2011; Duguay et al., 2003;
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Gunn et al., 2015b; Jeffries et al., 2005a; Kheyrollah Pour
et al., 2017; Ménard et al., 2002; Surdu et al., 2014). In
this study, CLIMo was forced with mean daily air tempera-
ture, wind speed, relative humidity, snowfall, and cloud cover
produced from ERAS (global atmospheric reanalysis data,
produced using the ECMWF model freely available through
the Copernicus Climate Change Service). In the simulations,
lake depth was specified as 2m (small changes in depth do
not impact ice thickness for the end of the season). Snow
density was set to 175kgm™> for lakes located in the taiga
zone and 300 kg m~3 for those in the tundra zone. The den-
sity values were chosen based on the combination of limited
field measurements and the range of typical values reported
in the literature (Duguay et al., 2003; Jeffries et al., 2005).

Bathymetric measurements from July 2000 were matched
with the corresponding TempCNN-predicted classes for
March 2000 based on geolocation and analyzed in the con-
text of CLIMo-simulated ice thickness for the same year.
Specifically, if the depth of the data point (based on the
bathymetric measurement) was shallower than the CLIMo-
simulated ice thickness for the corresponding vegetation type
(taiga, tundra, or mixed — using the Turner et al., 2014, the
OCEF land cover classification) and the label created by Tem-
pCNN was “bedfast ice”, the point was considered to be clas-
sified correctly. Analogously, if the depth of the data point
was greater than the CLIMo-simulated ice thickness and the
TempCNN label was “floating ice”, the point was considered
to be classified correctly. Ice regime observations made in
early April of 2009 and 2021 were also matched with the
TempCNN classification output. In this case, both ice thick-
ness and lake depth measurements were available. As such,
if the lake depth was equal to the ice thickness, the point was
considered to be bedfast, while if the lake depth exceeded
the ice thickness measurement, the point was considered to
be floating. The precision of the utilized field lake depth and
ice depth measurements was 1-2 cm. Finally, in order to as-
sess the accuracy of all the classified ice regime maps, the
ice dynamics over the 29-year period of Husky Lake were
analyzed in the context of CLIMo ice thickness simulations.
Other factors, such as possible water level fluctuations, were
also taken into account by visually analyzing Landsat optical
imagery and looking at precipitation data provided by Envi-
ronment and Climate Change Canada.

3.6 Comparison to thresholding

In order to benchmark the proposed method against com-
monly used techniques of lake ice regime classification,
it was compared to one of the most recent variations
in the thresholding approach designed by Duguay and
Wang (2019b) and applicable to the S1 data acquired at HH
and VV polarization as is illustrated in Fig. 6. This thresh-
olding algorithm defines the backscatter threshold between
floating and bedfast ice as a linear function of the local in-
cidence angle. As such, the lake ice regime of each lake
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Figure 6. Relationship between HH and VV polarized backscat-
ter and projected local incidence angle of floating and bedfast lake
ice. “New Threshold function” represents the threshold function
proposed by Duguay and Wang (2019b) for lake ice classification
and used in this work for the purpose of comparison. The figure is
adopted from Duguay and Wang (2019b).

pixel is determined in a two-step process: (1) a threshold
value is calculated using the following equation: f () =
—0.257 x 6 —6.933; (2) if the backscatter value (VV or HH)
of a specific lake ice pixel is greater than or equal to the
threshold, it is classified as floating, and if the value is less
than the threshold, it is classified as bedfast. Due to the fact
that this approach is suitable only for lake ice pixels, it is
necessary to apply a lake mask to the SAR scene prior to
the classification, as is also the case for other previously pro-
posed thresholding approaches (see Sect. 1).

For the purpose of comparison between the thresholding
approach and the temporal deep-learning approach (Tem-
pCNN), lake ice regime maps were created for the 4 years
of S1 data using thresholding: 2021 (15 March), 2020
(13 March), 2019 (14 March), and 2018 (14 March). The
thresholding algorithm linear function was applied to the lo-
cal incidence angle layer obtained as part of the RTC level-
2 products from ASF. The resulting threshold layer, where
each pixel corresponded to the calculated threshold, was ap-
plied to classify the VV backscatter layer into either bedfast
or floating ice based on whether the backscatter value was
above or below the threshold for a given pixel. Next, it was
necessary to apply a lake mask. The extraction of lakes is
challenging in a wetland environment. As such, for simplic-
ity, a single lake mask was created using a 3 October 2020
scene and a threshold of —16.5 dB identified experimentally
by changing the threshold value in increments of 0.5 dB until
lake boundaries were accurately captured. The four resulting
lake ice regime maps were evaluated in terms of overall ac-
curacy by utilizing the labeled dataset created as part of this
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work as ground truth. Results were then compared to those
obtained from the TempCNN model for the same set of lakes.

3.7 Lake ice dynamics analysis

In order to assess ice regime changes that took place in the
OCF over the past 3 decades, change detection between the
first (1992/1993) and the last (2020/2021) years of the series
was performed. The change map was created using a sim-
ple raster calculation: (“class on date 17 x10) 4 “class on
date 27, which created an output where a two-digit number
corresponded to the original class (first digit) and the subse-
quent class (second digit) (This approach to change detection
was introduced by Jinfei Wang, Western University, London,
Canada, personal communication, 2016). In addition, bedfast
and floating lake ice fractions were extracted for each year of
data. For the ice fraction analysis, a lake mask discussed in
the previous subsection was utilized in 