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Abstract. In light of the recent climate warming, monitoring
of lake ice in Arctic and subarctic regions is becoming in-
creasingly important. Many shallow Arctic lakes and ponds
of thermokarst origin freeze to the bed in the winter months,
maintaining the underlying permafrost in its frozen state.
However, as air temperatures rise and precipitation increases,
fewer lakes are expected to develop bedfast ice. In this work,
we propose a novel temporal deep-learning approach to lake
ice regime mapping from synthetic aperture radar (SAR) and
employ it to study lake ice dynamics in the Old Crow Flats
(OCF), Yukon, Canada, over the 1992/1993 to 2020/2021 pe-
riod. We utilized a combination of Sentinel-1, ERS-1 and
ERS-2, and RADARSAT-1 to create an extensive annotated
dataset of SAR time series labeled as either bedfast ice, float-
ing ice, or land, which was used to train a temporal convolu-
tional neural network (TempCNN). The trained TempCNN,
in turn, allowed us to automatically map lake ice regimes.
The classified maps aligned well with the available field mea-
surements and ice thickness simulations obtained with a ther-
modynamic lake ice model. Reaching a mean overall classi-
fication accuracy of 95 %, the TempCNN was determined to
be suitable for automated lake ice regime classification. The
fraction of bedfast ice in the OCF increased by 11 % over the
29-year period of analysis. Findings suggest that the OCF
lake ice dynamics are dominated by lake drainage events,
brought on by thermokarst processes accelerated by climate
warming, and fluctuations in water level and winter snow-
fall. Catastrophic drainage and lowered water levels cause
surface water area and lake depth to decrease and lake ice
to often transition from floating to bedfast ice, while a re-

duction in snowfall allows for the growth of thicker ice. The
proposed lake ice regime mapping approach allowed us to as-
sess the combined impacts of warming, drainage, and chang-
ing precipitation patterns on transitions between bedfast and
floating-ice regimes, which is crucial to understanding evolv-
ing permafrost dynamics beneath shallow lakes and drained
basins in thermokarst lowlands such as the OCF.

1 Introduction

Lake ice is a fundamental part of the freshwater processes
in cold regions, and its sensitivity to air temperatures makes
it a robust indicator of climate change (Brown and Duguay,
2010). Arctic and subarctic regions underlain by permafrost,
or perennially frozen ground, are rich in lakes that formed as
a result of localized ground subsidence attributable to per-
mafrost thaw, also known as thermokarst lakes (Bouchard
et al., 2017). Many shallow Arctic lakes and ponds of
thermokarst origin freeze to the bed in the winter months,
allowing lake bottom temperatures to drop below 0 ◦C and
frost to penetrate the lake bottom sediment. Permafrost is
sustained beneath the lake bottom where the freezing degree
days at the ice–sediment interface are sufficient to counter-
balance the thawing that takes place while lake bottom tem-
peratures are above 0 ◦C (Roy-Léveillée and Burn, 2017).
Where lake bottom conditions are too warm to sustain per-
mafrost, for instance where ice does not reach the lake bot-
tom or where the period of ice contact is brief, permafrost
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will degrade and a bulb of unfrozen ground or talik will de-
velop and expand beneath the lake bottom. Such talik de-
velopment contributes to positive feedbacks as it promotes
lake deepening via subsidence of the lake bottom (Roy-
Léveillée and Burn, 2016), further reducing the occurrence
of bedfast ice, and increases the ebullition of potent green-
house gases such as methane from the thawing and decom-
position of organic matter beneath the lake bottom (Arp
et al., 2012; Engram et al., 2020). However, lake ice thin-
ning and a subsequent decrease in the extent and duration
of bedfast-ice lakes has been noted by researchers investi-
gating thermokarst lakes of Arctic Alaska (Engram et al.,
2018; Surdu et al., 2014). Hence, monitoring and quanti-
fying thermokarst lake ice dynamics are critical for under-
standing changes in sub-lake permafrost stability and ex-
pected changes in methane ebullition patterns in thermokarst
lowlands. Bedfast-ice mapping, in particular, has a variety
of other applications, including climate monitoring (Arp et
al., 2012), permafrost studies (Arp et al., 2011), bathymet-
ric mapping (Duguay and Lafleur, 2003; Kozlenko and Jef-
fries, 2000), studying overwintering fish habitat (Brown et
al., 2010), and identification of lakes for winter water with-
drawal (Hirose et al., 2008; Jeffries et al., 1996).

The bedfast and floating-ice regimes of Alaskan lakes have
been studied extensively. For instance, a study by Surdu et
al. (2014) analyzed 402 lakes, near Utqiaġvik (formerly Bar-
row), the North Slope of Alaska, using ERS-1 and ERS-2
synthetic aperture radar (SAR) imagery from 1991–2011.
The study indicates a decrease in bedfast-ice fraction from a
maximum of 62 % in 1992 to 26 % in 2011. A study by Arp et
al. (2012) reports significant variability in ice regime changes
observed in inner and outer regions of the Arctic Coastal
Plain of northern Alaska (ACP). Analyzing SAR imagery be-
tween 2003–2011 and comparing it to radar-based ice maps
from 1980, it was found that 16 % of bedfast lakes shifted to
floating-ice regimes. However, while in the outer ACP only
three lakes shifted from being fully bedfast in 1980 to hav-
ing only floating ice in the period between 2003 and 2011,
in the inner ACP 27 % of lakes transitioned to floating ice.
Engram et al. (2018) analyzed a 25-year time series (1992–
2016) of C-band SAR images in seven regions of northern
Alaska and the Seward Peninsula. The authors note that due
to high interannual variability in floating-ice extent, no sta-
tistically significant trends could be observed. Nonetheless,
one of the study areas, namely the Fish Creek region on
the inner ACP, exhibited strong trends towards floating-ice
regimes. Over the 25 years of analysis an increase of 4.2 %
per decade was observed in the areas covered by floating ice,
and the number of floating-ice lakes increased by 1.5 % per
decade. Considering the variability observed between dif-
ferent study areas within northern Alaska, lake ice trends
in other thermokarst lake areas of the Northern Hemisphere
characterized by different climates and types of underlying
sediments could show different results. Hence, in this study,
the Old Crow Flats (OCF), Yukon, Canada, are selected as

the focus area. No previous study to date has examined the
bedfast and floating-ice regimes of lakes in this region.

Owing to the vast number of lakes occupying permafrost
regions, satellite remote sensing plays a key role in mon-
itoring lake ice. The potential of active microwave remote
sensing for bedfast-ice mapping has been known since 1975
when Sellmann et al. (1975) noticed a characteristic dark and
bright pattern of ice on shallow lakes of the Alaskan Coastal
Plain when observing them from the X-band side-looking
airborne radar. The dielectric properties of water and ice dis-
play a high contrast in an electromagnetic window between
5–17 GHz, making this range sensitive to the presence of liq-
uid water under the ice (Gunn et al., 2015a). As such, SAR
active microwave remote sensors, including X (8–12 GHz)-,
L (0.5–1.5 GHz)-, and C (4–8 GHz)-bands, are not only able
to penetrate clouds and operate independently of solar illu-
mination but also benefit from distinct backscatter patterns
for floating and bedfast ice. Floating ice in shallow lakes is
generally characterized by a high backscatter; surface scat-
tering from the ice–water interface is the largest contributor
to backscatter throughout the ice season, followed by vol-
ume scattering in the surface ice layer and double bounce
from tubular bubbles providing a smaller contribution to
total backscatter (Atwood et al., 2015; Gunn et al., 2018;
Murfitt and Duguay, 2021). Bedfast ice, on the other hand,
presents a dark SAR signature due to low dielectric contrast
between the ice and the underlying sediment, which results
in signal transmission or absorption by lake beds (Grunblatt
and Atwood, 2014; Jeffries et al., 2005). Traditionally bed-
fast and floating ice has been mapped from spaceborne C-
band SAR (e.g., Kozlenko and Jeffries, 2000; Duguay et al.,
2002; Brown et al., 2010), with a more limited use of L-
band (Engram et al., 2013) and X-band data (Antonova et
al., 2016). A variety of approaches have been proposed to
distinguish between bedfast and floating ice based on SAR
backscatter, namely a threshold-based classification (Bartsch
et al., 2017; Brown and Duguay, 2010; Duguay et al., 2002;
Duguay and Wang, 2019a; Engram et al., 2018; Hirose et al.,
2008; Kozlenko and Jeffries, 2000; Wakabayashi and Moto-
hashi, 2018), supervised and unsupervised classification ap-
proaches (Grunblatt and Atwood, 2014; Pointner et al., 2019;
Surdu et al., 2014), and one unique method based on data
mining (Tsui et al., 2019). It is worth noting that not all bed-
fast mapping approaches rely directly on the SAR backscat-
ter; for instance, some sea ice studies identified bedfast ice
using SAR interferometry (Dammann et al., 2018) and land-
fast ice using SAR image pairs (Makynen et al., 2020).

Thresholding is the most widely used method. For in-
stance, Bartsch et al. (2017), using Envisat ASAR C-band
imagery, produced circumpolar bedfast-ice maps for a single
winter season based on a threshold function fitted to data col-
lected from the Yamal Peninsula, Russia. The utilized thresh-
old function accounted for incidence angle variability and
was applied to 2 million Arctic lakes. Engram et al. (2018)
reported a 93 % overall accuracy achieved through an inter-
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active thresholding algorithm applied to a 25-year time series
of six generations of C-band SAR imagery. The developed al-
gorithm identified a unique threshold for each scene avoiding
errors resulting from variations in ice and weather conditions
as well as alleviating the need for incidence angle normaliza-
tion. Finally, Duguay and Wang (2019a) compared thresh-
olding with correction for incidence angle effects to two un-
supervised classification techniques (K-means and iterative
region growing using semantics) and found that thresholding
outperformed the other two algorithms, reaching an overall
accuracy of 92.56 %, and generalized the best to new geo-
graphical regions.

As to the remaining challenges, overestimation of bed-
fast ice in the middle of deeper lakes, such as Teshekpuk
Lake, Alaska, is still observed (Duguay and Wang, 2019a).
It has been hypothesized that the darker signatures in the
deeper sections of lakes could be caused by such phenom-
ena as cracks in the ice (Pointner et al., 2019) or local ice
thinning or complete melt caused by methane ebullition (En-
gram et al., 2020; Pointner and Bartsch, 2020). Moreover,
ice salinity and the presence of wet snow on the ice sur-
face result in reduced backscatter intensities of floating ice
(Duguay et al., 2002; Grunblatt and Atwood, 2014). With
the aim of improving classification results for deeper lakes,
Pointner et al. (2019) compared the threshold method to two
novel methods based on pixel connectivity: the flood-fill and
the watershed method. Both methods considered topography
and the fact that ice grounding generally takes place in the
shelf regions. Visual assessment suggested an improved per-
formance, but no definitive conclusion was reached due to
the lack of field measurements.

Although thresholding involves analyzing temporal evolu-
tion of backscatter, to the best of our knowledge, the only
study that fully exploited the temporal progression is Tsui
et al. (2019), who adopted a data mining approach called
dynamic time warping (DTW). DTW compares backscatter
time series based on their shape. However, approaches that
use temporal similarity measures, such as DTW, are very
computationally costly as they require scanning the training
set in its entirety in order to make a decision for every test
instance (Pelletier et al., 2019a).

With the aim of analyzing bedfast and floating lake ice
dynamics of the OCF over time, in this study we propose a
comprehensive automatic classification framework that em-
ploys temporal deep learning. A temporal convolutional neu-
ral network (TempCNN) architecture proposed by Pelletier
et al. (2019a) is adopted and modified to fit the lake ice clas-
sification from SAR. This approach allows us to develop a
non-linear framework able to automatically distinguish be-
tween ice regimes based on their temporal evolution. The
deep learning offers a more universal approach that works for
different SAR polarizations (HH and VV) and is not sensor-,
spatial resolution-, or year-specific. In addition, in contrast
to the existing methods, TempCNN does not require a lake
mask, as it is able to create a three-class output: bedfast ice,

floating ice, and land. The trained network is used to create
high-quality ice regime maps of the OCF and analyze lake ice
dynamics from 1992/1993–2020/2021. Documenting transi-
tions between bedfast and floating-ice regimes in relation to
climatic trends is crucial to understanding permafrost dy-
namics beneath shallow water in thermokarst plains such as
the OCF, with potential implications for methane emissions
and the regional carbon balance.

The remainder of the paper is organized as follows: Sect. 2
describes the study area; Sect. 3 outlines the methodology
used to select SAR imagery, process it, create an anno-
tated dataset (Shaposhnikova et al., 2022), train and test a
TempCNN model, create ice maps (Shaposhnikova et al.,
2022), and perform ice dynamics analysis in the OCF; Sect. 4
presents and discusses the results; finally, Sect. 5 summa-
rizes the key findings including potential causes and impli-
cations of the observed dynamics and suggestions for future
research.

2 Study area

While thermokarst lake ice regimes of northern Alaska
(USA), the Lena River delta (Russia), and Hudson
Bay (Canada) have been studied by multiple researchers
(Antonova et al., 2016; Arp et al., 2011, 2012; Duguay and
Wang, 2019a; Engram et al., 2018; Mommertz, 2019; Surdu
et al., 2014; Wang et al., 2018), ice regimes of the Old Crow
Flats, Yukon, Canada (OCF), remain largely unexplored.
The OCF is a wetland of international significance rich in
lakes of thermokarst origin and surrounded by mountains
(Fig. 1) (Lantz and Turner, 2015). The 6000 km2 area con-
tains over 1050 km2 of flat-bottomed shallow lakes approxi-
mately 1.5 m in depth on average (Roy-Léveillée and Burn,
2010, 2015). The OCF was submerged under the glacial lake
Old Crow during the Wisconsin stage (Irving and Cinq-Mars,
1974). The glacial lake drained catastrophically about 15 000
years ago leaving behind thick glaciolacustrine deposits and
remnant lakes (Lauriol et al., 2009; Zazula et al., 2004). More
lakes formed during the early Holocene through thermokarst
processes (Ovenden, 1985).

The northern part of the lowland is characterized by polyg-
onal tundra, while subarctic boreal forest is found in the
south (Roy-Léveillée, 2014). According to tree-ring climate
records, the last few decades have been characterized by
warming unseen in any other period of the past 300 years
(Porter and Pisaric, 2011). Moreover, members of the Vuntut
Gwitchin First Nation, whose lifestyle is largely sustained
by the OCF, note significant changes in air temperatures,
precipitation, and ice regimes in the past decades (Wolfe et
al., 2011). As a result, between 1951 and 2007, the OCF
has seen a decline in lake area of 60 km2 mainly attributed
to climate- and erosion-induced catastrophic lake drainage
(38 large lake drainages described by Lantz and Turner,
2015), the rate of which increased 5-fold in recent decades
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(Labrecque et al., 2009; Turner et al., 2010; Lantz and Turner,
2015). Despite the overall trend towards decreasing water
surface area brought on by catastrophic drainage events, most
lakes are increasing in surface area and new ponds are form-
ing due to rising air temperatures and increased precipitation,
which bring on lake ice thinning, deepening of active layers,
permafrost thaw, and ground subsidence (Labrecque et al.,
2009). The climate of the OCF is continental with cold win-
ters (mean January temperature of−31.1 ◦C) and warm sum-
mers (mean July temperature of 14.6 ◦C) (Lantz and Turner,
2015). Although the OCF is underlain by continuous ice-rich
permafrost, unlike other regions such as the Mackenzie River
delta, even shallow bedfast-ice areas within lakes can display
mean lake bed temperatures above 0 ◦C due to deep snow and
high summer air temperatures (Roy-Léveillée, 2014). Lakes
surrounded by boreal forest tend to accumulate more snow
and, therefore, develop thinner ice, while tundra lakes are
characterized by a thinner, denser snow which results in com-
plete (shallow ponds) or partial ice grounding (Duguay et al.,
2003; Roy-Léveillée et al., 2014). In light of this region’s
unique climate and sediment type, active thermokarst pro-
cesses, climate-driven vegetation changes, such as shrubi-
fication of the tundra area (Wang et al., 2020), and a vast
number of lakes which, given considerable changes to their
ice regime, have the potential to significantly influence the
underlaying permafrost and subsequently the climate of the
area, the analysis carried out in this study make a valuable
addition to the existing body of knowledge.

3 Data and methods

3.1 SAR imagery

The dataset consists of imagery from four C-band SAR
spaceborne platforms: Sentinel-1 A (S1) (VV polariza-
tion), ERS-1 and ERS-2 (ERS1/2) (VV polarization), and
RADARSAT-1 (R1) (HH polarization), which cover the time
period between 1992/1993–2020/2021. Although ice reaches
its maximum thickness in the OCF in late March or early
April, the October to mid-March window was selected ow-
ing to the classification approach requirement for a consistent
time series end date. For all the dates beyond mid-March, one
or more of the years had air temperatures above 0 ◦C, which
leads to surface melt interfering with the discrimination be-
tween floating and bedfast ice (Duguay and Lafleur, 2003).
Table 1 summarizes the dataset. In total, 18 years of data
were chosen as they offered a minimum of two scenes for
each month throughout the ice season (555 scenes).

The imagery was obtained from the Alaska Satellite Facil-
ity (ASF). For S1, radiometrically terrain-corrected (RTC)
level-2 products were downloaded. The RTC processing
procedure calibrates the images, removing topographic ef-
fects, and corrects for geometric distortions, ensuring pre-
cise geolocation. The process involves calibration, multi-

looking to six looks, digital elevation model (DEM) match-
ing, radiometric calibration to sigma nought amplitude, and
speckle filtering. Images are subsequently terrain-corrected
and geocoded to UTM Zone 7N, datum WGS84. The pixel
size of the RTC products is 30 m. The ERS1/2 and R1 data
were available as level-1 products with a respective pixel size
of 12.5 and 50 m. They were processed using the MapReady
Remote Sensing Tool Kit available from ASF. MapReady al-
lows us to perform calibration to sigma nought, terrain cor-
rection, and geocoding. Further processing was done using
the Sentinel Application Platform (SNAP) available from the
European Space Agency (ESA). First, all the scenes were
subset to the OCF extent. When working with SAR im-
agery, it is essential to minimize speckle noise for success-
ful analysis. Therefore, to match the RTC S1 products fil-
tered using a 7× 7 Lee filter (the filter kernel covers approx-
imately 44 100 m2) with a dampening factor of 1 and 180
looks, ERS1/2 and R1 were speckle-filtered using a 17× 17
(45 156 m2) and a 5× 5 (62 500 m2) Lee filter, respectively.
Adjusting the filter size allowed us to account for the pixel
size differences. Finally, the scenes for each year (October
to mid-March) were co-registered to create stacks of SAR
image time series and converted to a decibel (dB) logarith-
mic scale traditionally used for C-band SAR analysis (e.g.,
Brown et al., 2010; Engram et al., 2018).

It is important to note that the four SAR platforms differ
significantly in terms of pixel size, as well as spatial and tem-
poral coverage. S1 provided full coverage of the OCF at least
every 5 d between October and mid-March when data from
both descending and ascending overpasses were used. Due to
its relatively narrower swath size (100 km), ERS1/2 did not
cover the OCF in their entirety and scenes were much sparser
in time. The wide-swath ScanSAR imaging mode of R1 al-
lowed for full coverage of the OCF. However, the revisit time
was variable from month to month and year to year.

Although using different SAR instruments and polariza-
tions within the same classification algorithm presents its
challenges, previous research has shown that such a combi-
nation is suitable for the mapping of bedfast and floating-
ice regimes. For instance, Duguay and Wang (2019b) have
developed a thresholding algorithm for Sentinel-1 adjusted
for incidence angle and have demonstrated comparabil-
ity of VV and HH polarized C-band SAR imagery for
the purpose of classifying lake ice regimes. Engram et
al. (2018) also proposed an interactive threshold classifica-
tion method to analyze floating and bedfast lake ice regimes
across Arctic Alaska using 25-year time series (1992–2016)
of C-band SAR images from different platforms (ERS1/2,
RADARSAT-2, Envisat, and S1) with both HH and VV po-
larizations.

3.2 Annotated dataset creation

Deep-learning algorithms require extensive annotated
datasets. Therefore, a dataset consisting of 129 000 labeled
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Figure 1. Old Crow Flats, Yukon, Canada. The background image is an RGB Landsat 8 of 31 May 2020, downloaded from USGS Earth
Explorer (link: https://earthexplorer.usgs.gov/, last access: 4 July 2021). Most lakes are still ice-covered at this time of the year and appear
white; open-water surfaces of the river and smaller lakes as well as some of the ice fringes appear black; tundra has a brownish shade, while
areas of boreal forest appear dark green.

Table 1. Data used in the project (I.A. stands for incidence angle); number of scenes is indicated for each year, where “full” indicates the no.
of full coverage scenes of the OCF.

Instrument Year Polarization Imaging mode Data product Pixel size (m) Spatial I.A
resolution

(m)

Sentinel-1 2020/2021 (28 full);
2019/2020 (41 full);
2018/2019 (37 full);
2017/2018 (36 full);

VV IW
(interferometric
wide swath);
IW covers an
area of 250 km

L2 RTC
product

10 (30 after RTC) 5× 20 20–45

ERS-1/2 2009/2010 (32; 7 full);
2008/2009 (26; 7 full);
1995/1996 (52; 9 full);
1994/1995 (34; 6 full);
1993/1994 (25; 4 full);
1992/1993 (30; 6 full)

VV
(central
frequency
5.6 cm)

STD (SAR
imaging mode;
swath width
of 100 km)

L1 amplitude
CEOS image

12.5 26× 6 23 at mid-swath

RADARSAT-1 2007/2008 (24 full);
2005/2006 (16 full);
2004/2005 (21 full);
2003/2004 (24 full);
2002/2003 (32 full);
2001/2002 (45 full);
2000/2001
(22; 16 full);
1999/2000 (30 full)

HH
(central
frequency
5.6 cm)

ScanSAR
wide (SWB,
swath width
of 450 km)

L1 amplitude
CEOS image

50 100× 100 20–46
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backscatter time series was created (Shaposhnikova et al.,
2022). Labeling was done in SNAP by manually placing
pins at locations identified as either floating ice, bedfast ice,
or land through visual assessment of the ice regime and land
on the last day of the time series for a given season. This
was done for each of the SAR image stacks (18 years). Due
to variable temporal coverage, the dates of labeling ranged
from 4 to 22 March. The labeling date was selected as close
as possible to mid-March, and care was taken to ensure that
the air temperature was below 0 ◦C. Then, the backscatter
values at the locations marked by each pin were extracted
for each of the scenes in a SAR stack, creating time series
of labeled backscatter values for each year covering the
October to mid-March period.

Labels were assigned based on the following three fac-
tors: (1) backscatter values, (2) value of the projected inci-
dence angle of the SAR pulse (Duguay and Wang, 2019b),
and (3) location of the pixel within the scene. Firstly, due to
a high dielectric contrast of water and ice, on a grey-level
scale floating ice appears bright, whereas bedfast ice is dark.
Secondly, it has been noted in previous investigations that the
threshold between bedfast and floating ice becomes lower as
the value of the projected incidence angle increases (Bartsch
et al., 2017; Duguay and Wang, 2019a). Finally, shallower
shore areas tend to become bedfast, while deeper middle por-
tions maintain liquid water under the ice (Pointner et al.,
2019). In addition, ponds are likely to freeze to the bed in
their entirety, while bigger lakes display a combination of the
two regimes. To identify land areas, early fall scenes (e.g.,
October) were used as a reference where water covered by
thin ice appears dark as its mirror-like surface leads to spec-
ular reflection of the SAR signal away from the sensor, while
the land is bright due to the roughness of its surface and veg-
etation volume scattering (Huang et al., 2018). Later in the
season as the floating ice thickens its backscatter increases
due to high dielectric discontinuity and roughness of the ice–
water interface causing floating ice and land to have similar
signatures. In terms of spatial distribution, floating ice la-
beled pixels were spread out over each scene as evenly as
possible. Labeled pixels with bedfast ice, on the other hand,
being less prevalent, were less spread out. However, it was
ensured that areas in both the northern and the southern parts
of the Old Crow Flats were included to incorporate both tun-
dra and boreal forest environments. Resampling to a daily
frequency and linear interpolation were applied to compen-
sate for the temporal irregularity of the data ensuring that
each of the backscatter time series for each year of data had
the same length (161 values) and gearing it up for the deep-
learning classification (Pelletier et al., 2019a; Valero et al.,
2016). Although the lake ice lifecycle is non-linear, previous
studies have shown that more complex interpolation meth-
ods have little influence on classification accuracy (Pelletier
et al., 2019a; Valero et al., 2016). Linear interpolation was
performed utilizing the Python programming language and
the tools of the pandas module. Interpolation was performed

individually on every time series (backscatter value of each
pixel traced through time). As a result, we obtained SAR im-
age stacks consisting of 161 full coverage scenes, which were
subsequently input into the TempCNN to perform classifica-
tion. In addition to the proper SAR processing and speckle
filtering, further quality control was implemented by filling
any missing or not-a-number (NaN) values, especially com-
mon for ERS1/2 and scene fringes, as part of the temporal
interpolation process. The final labeled time series consisted
of 161 time steps (i.e., one time step per day) covering the
time period between 4 October and 13 March.

Figure 2 compares interpolated time series by class and
by sensor. One may note that the three classes are quite dis-
tinct. For a clearer presentation, each class is represented
by a mean and a standard deviation of a randomly selected
sample of 100 time series. As such, averaging masks the
initial drop in backscatter as thin ice forms on the wind-
roughened water surface (Duguay and Lafleur, 2003). How-
ever, Fig. 2 demonstrates that while floating-ice backscatter
gradually increases throughout the ice season, the bedfast-ice
backscatter peaks around the months of December and Jan-
uary and then decreases as the ice becomes bedfast (Duguay
and Lafleur, 2003). Land, on the other hand, shows little vari-
ability throughout the ice season and is characterized by a
narrow range of backscatter values. Despite slight differences
between the three sensors, the VV polarized S1 and ERS1/2
and HH polarized R1 have enough intra-class similarity and
interclass distinctions to allow for successful temporal clas-
sification.

3.3 Temporal convolutional neural network and ice
regime maps

3.3.1 TempCNN

In this work, the temporal dimension of ice backscatter
evolution is employed by adapting a TempCNN for land
cover classification from optical data proposed by Pelletier
et al. (2019a) for use in lake ice classification from SAR.
The study by Pelletier et al. (2019a) shows that TempC-
NNs are more suitable for large-scale studies due to their
lower computational complexity, higher classification accu-
racy, and shorter training time than recurrent neural networks
that are traditionally used for sequential data (Minh et al.,
2018; Ndikumana et al., 2018). A TempCNN learns from
the data by applying different filters to the input time se-
ries at the pixel level. A filter of a given size constitutes a
one-dimensional array of weights that slides across the time
series at the stride defined by the user; in each position the
values of the filter are multiplied element-wise by the values
of the time series. The summed up resulting products become
the part of the convolution output. The information extracted
by each filter depends on the values that constitute it. For in-
stance, Fig. 3 demonstrates an input and an output for filters
of size 5 known as the gradient filter and the low-pass fil-
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Figure 2. Comparison of the three classes by sensor: (a) Sentinel-1; (b) RADARSAT-1; (c) ERS-1/2. Each class is represented by a mean
and a standard deviation of a sample of 100 randomly selected pixels per sensor. Means and standard deviations are identified by solid and
dashed lines, respectively: pink – floating ice; dark blue – bedfast ice; green – land.

ter that extract the information on an increasing/decreasing
gradient of the input time series (Pelletier et al., 2019a, b)
and its trend, respectively. In a TempCNN, each input time
series undergoes a number of filters equal to the number of
neurons (units) in a given convolutional layer. The best fil-
ters are learned by the network through the training process
to allow for accurate mapping.

3.3.2 TempCNN architecture

The TempCNN architecture used in this article is shown in
Fig. 4. The network consists of three convolutional layers,
each of which contains 64 different filters of size 5. Padding
set to “same” in combination with the stride of the filter equal
to 1 ensures that the input retains its size from one convo-
lutional layer to the next. The three convolutional layers are
followed by a fully connected layer with 256 units. This layer
performs the final class assignment based on the final output
of the convolution process. Finally, the layer containing the
softmax function converts the probability output by the fully
connected layer into class probabilities that sum up to 1. Ul-
timately, this information can either be used to create proba-
bility maps or it can be transformed using an argmax function
that selects the highest probability and assigns a class to each
pixel.

The network was trained using an activation function
called a rectified linear unit (ReLU). Once the input has
been transformed by a convolutional unit, it is subsequently
transformed by an activation function that introduces non-
linearity to the model. Overfitting is a common deep-learning
problem. Overfit models perform extremely well on the train-
ing data but generalize poorly to unseen data. The TempCNN
incorporates four techniques that ensure that the model is
well-trained but at the same time able to perform well on
new data: batch normalization, early stopping (patience: 10
epochs) controlled by a validation set that constitutes 5 % of
the training set, the dropout technique (rate: 0.5), and L2 reg-
ularization (l2= 1× 10−6).

3.3.3 TempCNN architecture selection

Out of 18 years of data, 1 year was reserved for final test-
ing, while the remaining 17 years were used to identify the
best model structure utilizing a cross-validation procedure.
Cross-validation allowed us to determine the optimal number
of convolutional units (4, 8, 16, 32, 64, or 128) while keeping
other elements of the structure constant (Fig. 4). TempCNN
with each number of units was trained on 16 years of data and
tested on 1 year of data 17 times each time leaving a different
year out for testing. The overall accuracy summary of each
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Figure 3. The two graphs illustrate the application of one-dimensional (1D) filters to time series that can be used by convolutional layers
of a TempCNN for extraction of temporal features. The red line represents the original time series, while the blue line denotes the filtered
time series: (a) a curve that resembles floating ice transformed by a gradient filter; the red dashed line indicates the origin of the filtered time
series; the filtered series has positive values where the value of the original series is increasing, while the filtered series has negative values
where the value of the original series is decreasing; (b) a curve resembling floating ice transformed by a low-pass filter.

Figure 4. Structure of the trained TempCNN. The left portion represents an image stack that serves as an input to the neural network;
the middle portion illustrates the composition of the TempCNN including layers, activation functions, and mechanisms for overcoming
overfitting; the right portion represents the output created by the neural network that consists of a three-class (floating ice, bedfast ice, land)
map and three probability maps (one for each class).

of the six sets of experiments is shown in a box-plot form in
Fig. 5. Based on the value of the median, interquartile range
(IQR), length of the whiskers, and number of outliers, an ar-
chitecture with 64 convolutional units was identified as the
best and was subsequently used for creating lake ice maps.

3.3.4 TempCNN training and testing

The classification accuracy of the selected TempCNN model
was evaluated through 15 more experiments to account for
the stochastic nature of the neural network training process

(Pelletier et al., 2019a). The training and testing were per-
formed 15 times, consisting of three sets of five runs each
split for training and testing differently. The first set ran-
domly split the dataset into 80 % for training and 20 % for
testing, this way incorporating data from all the years into
both the training and the test set. The second set was trained
on 15 years and tested on 3 years, where each test year was
obtained by a different sensor. The third set was trained on
17 years of data and tested on the 18th year of data (S1, sea-
son 2020/2021) which had been reserved for validation. The
model trained on points from all years of the SAR dataset
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Figure 5. The graph illustrates temporal cross-validation results using box plots. Each box plot contains 17 overall accuracy values and if
read from left to right, each box plot corresponds to 4, 8, 16, 32, 64, and 128 convolutional units in each convolutional layer. Red highlights
the best architecture with 64 convolutional units.

was selected for the ice regime mapping. Although it is most
likely worse at generalizing to unseen years and areas than
other models, it produced better overall accuracy and there-
fore is more likely to create high-quality maps for the pur-
pose of OCF ice dynamics analysis.

3.4 Creation of ice regime maps using TempCNN

In order to transform SAR image stacks for each of the 18
years of data into lake ice regime maps using the trained
TempCNN, each stack had to be interpolated. Interpolation
allowed us to compensate for temporal-resolution variability
between different years such that each year’s stack consisted
of 161 scenes corresponding to a daily frequency from 4 Oc-
tober to 13 March. Pixel-based linear interpolation was per-
formed utilizing the Python programming language and the
tools of the pandas module. Although the lake ice lifecycle is
non-linear, previous studies have shown that more complex
interpolation methods have little influence on classification
accuracy (Pelletier et al., 2019a; Valero et al., 2016). Once
the SAR stacks for 18 years were interpolated and each con-
sisted of 161 scenes, the trained TempCNN model was used
to create ice regime classification maps consisting of three
classes: floating ice, bedfast ice, and land (Shaposhnikova et
al., 2022). Apart from outputting a classification map, Tem-
pCNN also provided probability maps for each class, where
the value of each pixel corresponded to the probability of this
pixel belonging to this specific class. For consistency, after
classification all the maps were subset to the areas with an el-

evation below 330 m using a digital elevation model (DEM)
granule included with the RTC S1 imagery from ASF. The
DEM granule comes from the National Elevation Dataset
at 2 arcsec resolution (NED2), which is produced and dis-
tributed by USGS. This step allowed us to exclude high-
elevation mountainous areas surrounding the OCF that ap-
pear very bright in SAR imagery and could be classified as
floating ice.

3.5 Accuracy assessment

Apart from statistical classification based on the test set, the
accuracy of the ice regime maps was assessed using a set
of 51 field observations. A set of bathymetry measurements
collected in the OCF in late July of 2000, in addition to a
small set of field measurements collected in taiga and tun-
dra zones of the OCF in spring of 2009 and 2021 was avail-
able. Data collection included some or all of the following
characteristics: ice thickness, ice regime, lake depth, temper-
ature of the underlying sediment, and snow depth and den-
sity. Given the limited number of field measurements, lake
ice thickness estimates were also obtained for comparison
via simulations with the Canadian Lake Ice Model (CLIMo)
(Duguay et al., 2003). CLIMo is a one-dimensional thermo-
dynamic model designed for the simulation of lake ice for-
mation, ice growth, and ice decay processes. The model has
been shown to perform well for the simulation of ice dates
and thickness on small (shallow) and large (deep) northern
lakes (e.g., Brown and Duguay, 2011; Duguay et al., 2003;

https://doi.org/10.5194/tc-17-1697-2023 The Cryosphere, 17, 1697–1721, 2023



1706 M. Shaposhnikova et al.: Bedfast and floating-ice dynamics of thermokarst lakes

Gunn et al., 2015b; Jeffries et al., 2005a; Kheyrollah Pour
et al., 2017; Ménard et al., 2002; Surdu et al., 2014). In
this study, CLIMo was forced with mean daily air tempera-
ture, wind speed, relative humidity, snowfall, and cloud cover
produced from ERA5 (global atmospheric reanalysis data,
produced using the ECMWF model freely available through
the Copernicus Climate Change Service). In the simulations,
lake depth was specified as 2 m (small changes in depth do
not impact ice thickness for the end of the season). Snow
density was set to 175 kg m−3 for lakes located in the taiga
zone and 300 kg m−3 for those in the tundra zone. The den-
sity values were chosen based on the combination of limited
field measurements and the range of typical values reported
in the literature (Duguay et al., 2003; Jeffries et al., 2005).

Bathymetric measurements from July 2000 were matched
with the corresponding TempCNN-predicted classes for
March 2000 based on geolocation and analyzed in the con-
text of CLIMo-simulated ice thickness for the same year.
Specifically, if the depth of the data point (based on the
bathymetric measurement) was shallower than the CLIMo-
simulated ice thickness for the corresponding vegetation type
(taiga, tundra, or mixed – using the Turner et al., 2014, the
OCF land cover classification) and the label created by Tem-
pCNN was “bedfast ice”, the point was considered to be clas-
sified correctly. Analogously, if the depth of the data point
was greater than the CLIMo-simulated ice thickness and the
TempCNN label was “floating ice”, the point was considered
to be classified correctly. Ice regime observations made in
early April of 2009 and 2021 were also matched with the
TempCNN classification output. In this case, both ice thick-
ness and lake depth measurements were available. As such,
if the lake depth was equal to the ice thickness, the point was
considered to be bedfast, while if the lake depth exceeded
the ice thickness measurement, the point was considered to
be floating. The precision of the utilized field lake depth and
ice depth measurements was 1–2 cm. Finally, in order to as-
sess the accuracy of all the classified ice regime maps, the
ice dynamics over the 29-year period of Husky Lake were
analyzed in the context of CLIMo ice thickness simulations.
Other factors, such as possible water level fluctuations, were
also taken into account by visually analyzing Landsat optical
imagery and looking at precipitation data provided by Envi-
ronment and Climate Change Canada.

3.6 Comparison to thresholding

In order to benchmark the proposed method against com-
monly used techniques of lake ice regime classification,
it was compared to one of the most recent variations
in the thresholding approach designed by Duguay and
Wang (2019b) and applicable to the S1 data acquired at HH
and VV polarization as is illustrated in Fig. 6. This thresh-
olding algorithm defines the backscatter threshold between
floating and bedfast ice as a linear function of the local in-
cidence angle. As such, the lake ice regime of each lake

Figure 6. Relationship between HH and VV polarized backscat-
ter and projected local incidence angle of floating and bedfast lake
ice. “New Threshold function” represents the threshold function
proposed by Duguay and Wang (2019b) for lake ice classification
and used in this work for the purpose of comparison. The figure is
adopted from Duguay and Wang (2019b).

pixel is determined in a two-step process: (1) a threshold
value is calculated using the following equation: f (θ)=
−0.257× θ −6.933; (2) if the backscatter value (VV or HH)
of a specific lake ice pixel is greater than or equal to the
threshold, it is classified as floating, and if the value is less
than the threshold, it is classified as bedfast. Due to the fact
that this approach is suitable only for lake ice pixels, it is
necessary to apply a lake mask to the SAR scene prior to
the classification, as is also the case for other previously pro-
posed thresholding approaches (see Sect. 1).

For the purpose of comparison between the thresholding
approach and the temporal deep-learning approach (Tem-
pCNN), lake ice regime maps were created for the 4 years
of S1 data using thresholding: 2021 (15 March), 2020
(13 March), 2019 (14 March), and 2018 (14 March). The
thresholding algorithm linear function was applied to the lo-
cal incidence angle layer obtained as part of the RTC level-
2 products from ASF. The resulting threshold layer, where
each pixel corresponded to the calculated threshold, was ap-
plied to classify the VV backscatter layer into either bedfast
or floating ice based on whether the backscatter value was
above or below the threshold for a given pixel. Next, it was
necessary to apply a lake mask. The extraction of lakes is
challenging in a wetland environment. As such, for simplic-
ity, a single lake mask was created using a 3 October 2020
scene and a threshold of −16.5 dB identified experimentally
by changing the threshold value in increments of 0.5 dB until
lake boundaries were accurately captured. The four resulting
lake ice regime maps were evaluated in terms of overall ac-
curacy by utilizing the labeled dataset created as part of this
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work as ground truth. Results were then compared to those
obtained from the TempCNN model for the same set of lakes.

3.7 Lake ice dynamics analysis

In order to assess ice regime changes that took place in the
OCF over the past 3 decades, change detection between the
first (1992/1993) and the last (2020/2021) years of the series
was performed. The change map was created using a sim-
ple raster calculation: (“class on date 1” ×10)+ “class on
date 2”, which created an output where a two-digit number
corresponded to the original class (first digit) and the subse-
quent class (second digit) (This approach to change detection
was introduced by Jinfei Wang, Western University, London,
Canada, personal communication, 2016). In addition, bedfast
and floating lake ice fractions were extracted for each year of
data. For the ice fraction analysis, a lake mask discussed in
the previous subsection was utilized in order to focus on the
lake surface rather than including all of the wetland. This will
allow for future comparison to trends observed in other ge-
ographic areas of thermokarst lakes. Ideally, a different lake
mask would be used for each year of data. However, due to
the scope and time frame of the project it was not feasible to
create a different lake mask for each year of data. In order
to establish a common baseline, a lake mask from fall of the
most recent season in the dataset 2020/2021 (indication of
the current status) was used, while acknowledging that this
could lead to an underestimation of the lake ice surface for
years prior to major catastrophic drainage events. Prior to
change detection analysis the ice regime maps created from
the S1 and ERS1/2 time series were resampled to 50 m to
match the largest pixel size of R1. The bedfast lake ice frac-
tion at the time of maximum ice thickness was traced through
the 29-year period (1992/1993–2020/2021) and the potential
presence of a trend was explored using the Mann–Kendall
statistical test in combination with Sen’s slope (Sen, 1968).
The Mann–Kendall test was selected due to its robustness
to missing values in the time series. The Mann–Kendall test
in combination with Sen’s slope was successfully utilized in
multiple lake ice studies (e.g., Surdu et al., 2014; Duguay et
al., 2006). The Python pyMannKendall package was used to
perform the test (Hussain and Mahmud, 2019). The observed
changes were analyzed in the context of CLIMo ice thickness
simulations and known lake drainage and refilling events in
the region (Lantz and Turner, 2015; e.g., Lake Zelma and
Lake Netro).

4 Results and discussion

4.1 TempCNN classification accuracy assessment

Our study shows that temporal deep learning offers a com-
prehensive framework that does not require a lake mask, as is
the case for other studies on the topic of floating and bedfast-
ice mapping from SAR, and automatically classifies SAR im-
agery into three classes: floating ice, bedfast ice, and land.
This approach offers high-quality ice regime maps for S1,
ERS1/2, and R1. Figure 7a, b, and c show examples of Tem-
pCNN classification output for S1, R1, and ERS1/2, respec-
tively. Although all the years were classified using the same
deep-learning model, map quality is dependent on the quality
of the input SAR data. Spatial and especially temporal reso-
lution of imagery through the ice season has a significant im-
pact on the output of temporal classification. S1 data having a
pixel size of 30 m and a regular full coverage of the study area
produced the best results, clearly separating the lake and the
land classes. Older ERS1/2 and R1 imagery suffers from ir-
regular and sparse temporal coverage resulting in a decreased
quality of the temporal classification output. In fact, available
ERS1/2 scenes provided full coverage of the study area only
four to eight times in the lake ice season. Therefore, an exten-
sive linear interpolation was employed to fill in the temporal
gaps. On the other hand, ERS1/2’s high original spatial reso-
lution and small pixel size of 12.5 m allow us to resolve finer
details. Although R1 had a slightly better temporal coverage,
the number of scenes still greatly varied from year to year
(16–45). Moreover, of the three platforms, R1 had the largest
pixel size of 50 m, which led to coarser lake outlines in ice
regime maps. It should be noted that years with higher tem-
poral resolution and more regular frequency showed better
results for all three sensors. Speckle noise is another factor
that can significantly compromise the classification accuracy.
Speckle filtering with the size adjusted based on spatial res-
olution has allowed us to reduce the noise effects.

As has been mentioned in Sect. 3, the TempCNN model
classification accuracy was evaluated through 15 experi-
ments. Table 2 presents the overall accuracy of the 15 exper-
iments calculated as the total number of correctly classified
time series in the training set divided by the total size of the
training set and multiplied by 100 %. The overall accuracy
ranges from 91 %–99 %. It should be noted that the model
appears to be very sensitive to the exclusion of certain years
from that dataset. The sensitivity is likely attributed to tem-
poral sparseness and the irregular frequency of scenes. Espe-
cially for ERS1/2, backscatter time series vary significantly
from year to year in terms of shape based on the missing
time periods. Although linear interpolation fills in the gaps,
the major features of the lifecycle can be lost.

The following pattern emerged when analyzing confusion
matrices from all experiments: the 80 / 20 % models had very
minimal misclassifications equally distributed between the
three classes; the models tested on 3 years had the most sig-
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Figure 7. A sample of TempCNN classification output for the OCF, Yukon, Canada: (a) Sentinel-1, March 2021; (b) RADARSAT-1,
March 2004; (c) ERS, March 1993. Dark blue, light blue, and grey represent bedfast ice, floating ice, and land, respectively.

Table 2. TempCNN overall classification accuracy for 15 experiments designed to test the sensitivity of the network to removing certain
years of data from the training set. Runs 1–5 correspond to the 20 / 80 % split of the entire dataset; runs 6–10 were performed by training the
network on 15 years of data and testing it on 3 years each from a different sensor; runs 10–15 were carried out by training the network on 17
years of data and testing it on 1 year of data that was originally reserved and was not part of the cross-validation procedure for determining
the best architecture. The mean accuracy for each set of five runs as well as the mean of the three means can be found in the last two rows.

Test set 20 % 3 years 1 year

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Overall accuracy 99.6 99.49 99.66 99.7 99.59 92.33 90.55 92.78 91.7 90.62 91.8 96.51 94.68 90.62 96.04
Mean accuracy 99.61 91.6 93.93

Mean of means 95.05

nificant misclassification of land as bedfast ice; and the mod-
els tested on 1 year of S1 had the most significant misclassifi-
cations of floating ice as bedfast ice. The better performance
of the 80 / 20 % model is believed to be attributed to the high
inter-year temporal variability in available scenes. As such
when time series from each year of data are present in both
the training and the test set, higher accuracy is achieved.
Land misclassification may be caused by the fact that the
OCF is a wetland with varying distribution of surface wa-
ter (water extent and level) that is frequently changing. The
backscatter evolution of areas that have standing water will
be very similar to that of bedfast lake ice, making the distinc-
tion between the two classes challenging. It has been men-

tioned by a few researchers (e.g., Engram et al., 2018; Point-
ner et al., 2019) that deeper thermokarst lakes often display
darker (low backscatter) patches of floating ice in their cen-
ters. Some lakes of the OCF manifest such patterns. More-
over, some of the years have characteristic dark spots in most
of the lakes. The dark spots are particularly pronounced for
R1 in 2001 and ERS in 1993 and 1994. Some of the re-
cent studies (e.g., Engram et al., 2020; Pointner and Bartsch,
2020) suggest that the dark-spot pattern could be a result of
local ice thinning or complete melt caused by methane ebul-
lition. Although these patterns have been accounted for in
the labeled dataset, the model still appears to struggle with
some of those cases. In addition, Antonova et al. (2016) and
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Engram et al. (2018) also suggest that the temperature of the
underlying sediments and whether they are fully frozen or
not once the ice has become bedfast could have an impact on
the SAR backscatter.

4.2 Assessment against field observations and lake ice
thickness simulations

Although an extensive accuracy assessment has been per-
formed using the labeled dataset, the model prediction is only
as accurate as the labeled data provided for its training and
testing. Only extensive fieldwork can truly validate the ac-
curacy of the created ice regime maps. However, most of
the fieldwork conducted in the OCF is performed in sum-
mer (Labrecque et al., 2009; Lantz and Turner, 2015; Turner
et al., 2010). Winter lake ice observations are largely non-
existent for the OCF so that little is known about the actual
ice regime (floating and bedfast ice) patterns of its lakes. As
such, due to the lack of ground truthing, the labeled dataset
used for model training was created from visual interpreta-
tion of SAR imagery and, therefore, could be subject to hu-
man error. In order to leverage the few field observations
available to us and ice thickness simulated using CLIMo,
classification results were compared against point lake depth
measurements collected in 2000, observations of ice thick-
ness and lake depth (or ice regime) at drilling holes collected
in early April 2009 and 2021, and ice thickness model out-
put from CLIMo. CLIMo-simulated ice thickness has been
successfully used in the absence of or in addition to lim-
ited field observations to provide context for SAR-derived
lake ice regime findings by Surdu et al. (2014), Antonova et
al. (2016), and Nitze et al. (2020).

The lake ice regime is determined by multiple factors, in-
cluding atmospheric conditions such as air temperature and
snow accumulation on the ice surface (i.e., depth and den-
sity), which, in turn, are impacted by wind and the pres-
ence/absence of vegetation cover surrounding the lake (for-
est and shrubs) (Duguay et al., 2003; Jeffries et al., 2005).
Another obvious control on the lake ice regime is lake
bathymetry; areas that exceed the depth of maximum ice
thickness remain afloat, while shallower areas become bed-
fast (Arp et al., 2011). As such, point lake depth measure-
ments collected in the OCF in late July 2000 were compared
with the ice regime classification produced by the TempCNN
model for mid-March 2000. Vegetation is another important
factor. The OCF is a forest–tundra ecotone, and while some
lakes are surrounded by tundra, namely dwarf shrubs and
herbaceous plants, some are located in deciduous, conifer-
ous, or mixed forest, and others are fringed by a combination
of tundra and forest environments (Turner et al., 2014). In
tundra environments, wind controls snow depth and density,
which have a greater influence on the ice thickness than air
temperature (Brown and Duguay, 2010; Roy-Léveillée et al.,
2014). For lakes surrounded by tundra the snow cover is ex-
pected to be thinner and denser leading to faster ice growth

(Roy-Léveillée, 2014). In contrast, for taiga lakes surrounded
by mixed and deciduous forest that facilitates greater loose
snow accumulation providing insulation, ice growth is hin-
dered (Roy-Léveillée, 2014). Figure 8 shows a plot of lake
depths against mid-March SAR backscatter where the color
of the points indicates the class predicted by TempCNN,
while the shape refers to the surrounding vegetation (tundra,
taiga, or combination of the two). In addition, the horizon-
tal lines indicate the ice thickness simulated with CLIMo for
mid-March 2000 for two different snow scenarios. The line
labeled “CLIMo taiga ice thickness” represents a scenario of
100 % snow cover and 175 kg m−3 snow density, while the
line labeled “CLIMo tundra ice thickness” represents a snow
scenario of 50 % snow cover and 300 kg m−3 snow density
(Fig. 9).

The three bedfast (dark blue) locations align well with
the CLIMo results. The two tundra bedfast locations (dark
blue circles) correspond to depths shallower than the CLIMo-
simulated ice thickness for tundra, while the one bedfast lo-
cation surrounded by taiga (dark blue square) falls above
the CLIMo-simulated ice thickness for taiga. All of the tun-
dra, taiga, and mixed vegetation locations with depths greater
than the CLIMo-simulated tundra ice thickness are classi-
fied as floating by the TempCNN indicating its accuracy. Out
of the four floating ice points that fall in between the two
CLIMo-simulated values, two are surrounded by taiga (pink
triangles) and logically fall below the CLIMo-simulated taiga
ice thickness, while the remaining two points are surrounded
by tundra (pink circle) and mixed vegetation (pink square).
It is difficult to claim with certainty whether the two latter
points are a TempCNN misclassification or are the result of
local snow cover and vegetation variations as CLIMo output
is sensitive to the input values of snow depth and density. As
to the one point classified as land (green circle), it belongs
to a small pond that contains floating vegetation (Turner et
al., 2014) whose backscatter signal was likely diluted in the
surrounding land signal due to low spatial resolution and the
large pixel size of R1. Looking at Fig. 8 it can be noted that
the deeper the lake, the lower the backscatter of floating ice.
This relationship contributes to the challenge of distinguish-
ing between floating and bedfast ice in deeper lakes noted by
a few researchers (Duguay and Wang, 2019a; Engram et al.,
2018; Pointner et al., 2019).

Apart from depth measurements, a small number of ice
thickness data were collected in the OCF in April of 2009 and
2021. The results can be seen in Tables 3 and 4. For 2021, the
ice regime of the four points matches the TempCNN classi-
fication output. The field-observed ice thickness is between
77–81 cm, which is consistent with the taiga CLIMo predic-
tion for the early April of 2021 (Fig. 9). Table 4 also illus-
trates the effect of snow depth on the ice growth, as thicker
snow above drill hole 3 corresponds to thinner ice and thin-
ner snow above drill hole 4 leads to thicker ice. For 2009, the
first eight drill holes were made in tundra, where ice grows
thicker (Table 3). All but one of the tundra drill hole loca-
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Figure 8. Matching TempCNN output with lake depths collected in 2000. Horizontal lines indicate CLIMo ice thickness predictions for taiga
(0.72 m) and tundra (1.21 m) environments. RADARSAT-1 SAR 1999/2000 time series were used for ice regime classification. The color of
points corresponds to labels assigned to each location by the TempCNN: dark blue – bedfast ice; pink – floating ice; green – land. The shape
corresponds to the surrounding vegetation: circle – tundra; triangle – taiga; square – mixed; these are assigned based on the OCF vegetation
map created by Turner et al. (2014).

tions were classified correctly by the TempCNN, with five
floating-ice locations (ice thickness less than lake depth), and
two bedfast-ice locations (ice thickness equal to lake depth).
The first drill hole was misclassified as land. However, the
land pixel is directly adjacent to the lake border and is likely
a result of the drill hole being close to the lake shore, which
in combination with low spatial resolution, leads to mixing of
backscatter contributions from the lake and the surrounding
taiga. In the taiga (last two drill holes), the ice is noticeably
thinner. While one of the points was correctly classified as
floating, the last drill hole was misclassified as land for the
reasons discussed above.

Finally, using an example of a lake traditionally known as
Husky Lake, we can assess the TempCNN ice regime clas-
sification (Fig. 10) in the context of CLIMo-simulated ice
thickness over the 29-year period (1992/1993–2020/2021)
(Fig. 9). Due to the fact that Husky Lake is surrounded
mainly by dwarf shrubs and herbaceous vegetation, tun-
dra CLIMo-simulation results were used. Aligning CLIMo-
simulated ice thickness with TempCNN classification results,
it was noticed that all years with simulated ice thickness
equal to or thinner than 1.14 m were classified as floating
ice, while all years with simulated ice thickness equal to or
greater than 1.29 m were classified as bedfast. Years with
simulated ice thickness ranging between 1.21 and 1.23 m
fluctuated between the two ice regimes. This could be at-
tributed to the fact that CLIMo has a general uncertainty
of approximately 0.05–0.06 m (Duguay et al., 2003), which
could explain the fluctuations. In addition, according to
Tondu (2012), the depth of Husky Lake is approximately
1 m based on 2010/2011 observations. As such, the CLIMo

results for tundra are most likely overestimating ice thick-
ness, while the taiga simulation is underestimating it. Conse-
quently, years where CLIMo-simulated ice thickness ranged
between 1.21 and 1.23 m were likely characterized by ice
thickness very close to the depth of Husky Lake, result-
ing in different ice regimes for different years. The 2 years
where CLIMo results seemed to contradict the TempCNN
predictions were 2006 (1.19 m CLIMo-simulated ice thick-
ness; bedfast label) and 1996 (1.32 m CLIMo-simulated ice
thickness; floating label). It is worth noting that ice thickness
is not the only factor that dictates lake ice regime. Fluctuating
lake water levels could result in different ice regimes given
the same winter atmospheric conditions especially consid-
ering the shallow nature of OCF lakes (Surdu et al., 2014).
Therefore, a mismatch between CLIMo and TempCNN pre-
dictions is most likely rooted in the water level difference.
The summer preceding the spring of 2006 was characterized
by lower water levels (drier year) based on visual analysis
of Landsat optical imagery. The lower water level could po-
tentially explain ice grounding in spite of thinner CLIMo-
simulated ice thickness. For 1996, on the other hand, the
reason for the floating-ice regime, despite greater than usual
CLIMo-simulated ice thickness, was not identified. However,
it is important to note that CLIMo simulations can be im-
pacted by the quality of the atmospheric forcing input data.
Visual analysis of mid-March SAR scenes in 1996 indicates
widespread floating ice throughout the OCF.
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Figure 9. CLIMo-simulated ice thickness for the OCF: (a) simulation for the taiga environment; (b) simulation for the tundra environment.
Dark blue represents ice thickness and grey stands for snow depth. The grey and dark blue points mark the condition on 13 March (the last
day of the time series) for each year.

4.3 Comparison to the state-of-the art thresholding
approach

To benchmark the proposed temporal deep-learning ap-
proach against the state-of-the-art methods of lake ice regime
classification from SAR, a brief comparison to the threshold-
ing algorithm proposed by Duguay and Wang (2019b) was
carried out. The overall accuracy for each year was found
to be as follows: 2018 – 87.8 %; 2019 – 99.4 %; 2020 –
98.8 %; and 2021 – 99.3 %, with a mean accuracy of 96.3 %.
The mean overall accuracy of the TempCNN model with a

20 / 80 % testing and training split, which was used to create
lake ice maps further employed for lake ice dynamics anal-
ysis of the OCF, was 99.6 % (Table 2). It should be noted
that the overall accuracy assessment for TempCNN was per-
formed using the 18 years of data, while thresholding algo-
rithm was evaluated using only 4 years of S1 data showing
accuracies ranging from 87.8 % to 99.4 %. Figure 11 con-
tains a side-by-side comparison of the lake ice maps created
by the TempCNN (Fig. 11a) and the thresholding algorithm
(Fig. 11b) for March 2021. Visual analysis of the results of
both methods is rather similar. Nonetheless, let us summarize
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Table 3. Field data collected in the OCF in April 2009. For each of the 10 locations, UTM coordinates, ice thickness, lake depth, and ice
regime recorded in the field are matched with the TempCNN output (bedfast, floating, land) and vegetation type (tundra or taiga).

Drill hole UTM Ice Lake Ice TempCNN- Vegetation
easting/northing thickness depth regime predicted
(m) (cm) (cm) ice regime

1 565 714/7 532 111 109 154 floating land tundra
2 565 765/7 532 196 124 208 floating floating tundra
3 564 146/7 535 012 125 145 floating floating tundra
4 564 104/7 535 066 130 200 floating floating tundra
5 564 646/7 535 556 140 232 floating floating tundra
6 566 304/7 535 568 102.5 102.5 bedfast bedfast tundra
7 566 278/7 535 604 151 151 bedfast bedfast tundra
8 564 669/7 539 300 132.5 213 floating floating tundra
9 543 100/7 569 101 77.5 232 floating floating taiga
10 543 418/7 568 436 100 191 floating land taiga

Table 4. Field data collected in April 2021 on a small lake located beside the drained basin of Zelma Lake. For each of the four locations,
UTM coordinates, ice regime, ice thickness, snow depth, and sediment temperature are matched with the TempCNN output.

Drill hole UTM Ice Ice Snow Sediment Backscatter TempCNN-
easting/northing regime thickness depth temperature (db) predicted
(m) (cm) (cm) (◦C) ice regime

1 545 779/7 536 142 bedfast 67 46 <0 −18 bedfast
2 545 850/7 536 206 bedfast 79 37 0.5 −16.4 bedfast
3 545 924/7 536 277 floating 77 49 0.5 −10.17 floating
4 545 996/7 536 339 floating 81 39 0.5 −9.36 floating

the benefits and shortcomings of both methods. The thresh-
olding algorithm (1) produces highly accurate results overall
for the 4 years examined and (2) is simple in implementation;
however, (3) it requires a lake mask, and due to the dynamic
nature of the wetlands a new mask would be needed for each
year for the best results. (4) A local incidence angle layer is
necessary; and (5) this algorithm has been designed to work
with S1 data (VV and HH polarizations), while its suitabil-
ity for other SAR platforms is yet to be explored. Temporal
deep learning (TempCNN) (1) is more complex in implemen-
tation due to the requirement for time series of scenes, rather
than one scene; nonetheless, (2) it produces highly accurate
results, (3) does not require a lake mask due to its ability
to classify VV and HH backscatter into three classes (float-
ing ice, bedfast ice, and land), which is critical for dynamic
thermokarst landscapes, (4) does not require incidence angle
information, (5) based on visual comparison of the lake ice
maps, is better at classifying lake ice in deeper portions of
larger and deeper lakes than the thresholding algorithm (in
Fig. 11b, some misclassifications of floating ice as bedfast
ice are observed in large lakes), and (6) is applicable to mul-
tiple SAR platforms (S1 – VV polarization; ERS1/2 – VV
polarization; R1 – HH polarization) as shown in this study.

4.4 OCF lake ice dynamics analysis

With the goal of analyzing the ice dynamics of lakes within
the OCF, this study yielded 18 lake ice regime maps from
1992/1993–2020/2021 created using SAR image time series
and the trained TempCNN deep-learning model. The classi-
fied maps contain three classes, where two classes character-
ize the lake surface: bedfast ice and floating ice; the remain-
ing class encompasses the surrounding land area, including
various vegetation types (Turner et al., 2014).

Performing change detection between the first
(1992/1993) and the last years of the dataset (2020/2021)
reveals a transition of 51 km2 from bedfast to floating-ice
regime. However, 172 km2 of floating ice shifted to a bedfast
state. In addition, over the 29-year period, 256 km2 transi-
tioned from land to water reflecting active erosion processes
(Roy-Léveillée and Burn, 2015), of which 106 km2 transi-
tioned from land to bedfast ice and 159 km2 transitioned
from land to floating ice. Moreover, 450 km2 shifted from
water to land, including 341 km2 bedfast ice to land and
109 km2 floating ice to land. It is crucial to remember that no
lake mask was used and that the OCF is a wetland. As such, a
significant extent of area that transitioned from land to water
and water to land does not consist only of lake drainage,
refilling, expansion, and shrinkage but also captures the
changing nature of the wetland. Figure 12 highlights the
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Figure 10. Husky Lake TempCNN-predicted ice regime (1992/1993–2020/2021). Dark blue represents bedfast ice; light blue – floating ice;
grey – land. Ice regime fluctuates between floating and bedfast depending on snow conditions, water level, and air temperature.

Figure 11. Comparison of the (a) TempCNN lake ice regime classification and (b) thresholding algorithm output, which defines the threshold
between the two classes as a linear function of the local incidence angle (Duguay and Wang, 2019b).

lake ice regime transitions in dark (floating to bedfast) and
light (bedfast to floating) blue, and also shows areas that
switched from floating ice to land in green. The three insets
illustrate each of the change types. According to ERA5
atmospheric data and CLIMo ice thickness simulations, the
winter of 1993 was warmer than the winter of 2021 with the
maximum ice thickness of 0.81 m for taiga in both years, and
1.37 and 1.47 m in 1993 and 2021, respectively, for tundra.
In mid-March, the simulated ice thickness was 0.72 m for
taiga and 1.22 m for tundra in 1993 and 0.77 m for taiga and
1.39 m for tundra in 2021. Based on the ERA5 atmospheric
data displayed in Fig. 13, one may note that apart from
the air temperature difference, 2021 was characterized by

a significantly lower depth of the snow cover compared to
1993 and most of the years in the dataset. In fact, the total
snow accumulation over the period between 4 October 2020
and 13 March 2021 was 30 % lower than the 29-year mean.
Reduced snow insulation allowed thicker ice to develop,
which is reflected in greater ice thickness simulated for
2021. As such, lower air temperature and reduced snow
depth help explain part of the transition from floating to
bedfast regime as, for shallow flat-bottomed OCF lakes,
a 5–17 cm difference in ice thickness could allow for ice
grounding. Moreover, as has been mentioned above, water
levels play a significant role in winter lake ice conditions.
As indicated by Lantz and Turner (2015), who studied OCF
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lake area changes in response to thermokarst processes and
climate change between 1950 and 2009, the annual rate of
lake drainage has increased 4–5 times in the recent decades.
Looking at the change map, one may note multiple locations
where the significant ice regime change was indeed caused
by significant changes in water level, in particular lake
drainage and refills.

Firstly, let us look in more detail at Netro Lake, which
represents the most significant transition to a floating-ice
regime. Figure 14 illustrates its gradual transition from
mostly bedfast to a mostly floating-ice regime. It has been
reported by Labrecque et al. (2009) that Netro Lake drained
catastrophically, losing 10.51 km2 between 1972 and 2001.
However, it appears that Netro Lake has not only refilled, re-
gaining a lot of its area, but has also transitioned to a mostly
floating-ice regime. The latter transition coincided with the
catastrophic drainage of a neighboring lake which spilled in
Netro Lake in 2019.

The second example is Zelma Lake. Zelma Lake drained
catastrophically in the summer of 2007 into a nearby creek
through an outflow gully losing 43 % of its area over the
course of a few weeks (Lantz and Turner, 2015; Turner et al.,
2010). The drainage exposed approximately 5.2 km2 (Turner
et al., 2010) of lake bed leaving behind shallow remnant
ponds. Figure 15 illustrates ice regime dynamics over the
course of the past 29 years. A significant reduction in lake
area can clearly be seen between 2006 and 2008 maps. It
should also be noted that the ice regime has mostly become
bedfast for the years 2009, 2010, 2020, and 2021 following
the drainage. The fact that 2018 and 2019 contain patches of
floating ice in deeper areas can be explained by these 2 years
being significantly warmer than the others, resulting in thin-
ner ice (Figs. 9 and 13).

The two other lakes that experienced drainage events in re-
cent years are referred to as lakes no. 1 and no. 2 in Fig. 12.
Lakes no. 1 and no. 2 presumably drained in 2017 and 2018,
respectively, and therefore are not mentioned in the study of
Lantz and Turner (2015). Figure 16 presents lake ice regime
change detection between 2010 and 2018 for both lakes.
Change maps reveal extensive transition to a bedfast lake
ice regime (dark blue) as the lakes drained and became shal-
lower. Moreover, a significant area at the lake fringes tran-
sitioned to land. Both change maps are supplemented with
Landsat images that clearly demonstrate exposed land at the
lake edges. It is worth noting that extensive lake drainage
(192 lakes) has been recently documented for nearby north-
western Alaska in 2018 and explained by winter 2017/2018
being the warmest and wettest on record (Nitze et al., 2020).

It is important to consider that a variety of simultaneous
processes are working to modify the OCF landscape. For in-
stance, while larger lakes drain losing surface area, smaller
ponds are forming and expanding through permafrost thaw
and erosion processes (Labrecque et al., 2009; Roy-Léveillée
and Burn, 2010; Roy-Léveillée and Burn, 2015) as is illus-
trated in Fig. 12. However, based on the above examples, it

appears that the OCF lake ice dynamics are significantly im-
pacted by drainage events driven by a combination of climate
change and thermokarst processes (Labrecque et al., 2009;
Lantz and Turner, 2015).

To capture interannual lake ice dynamics, we have ana-
lyzed bedfast and floating lake ice fractions throughout the
29-year period (18 years of data). For simplicity, a lake mask
created using an early October S1 SAR scene from 2020 was
utilized to isolate lake areas. Table 5 shows ice dynamics in
terms of ice fractions as well as area. We can observe sig-
nificant interannual fluctuations, most likely driven by vary-
ing atmospheric conditions (air temperature and snow depth)
and water level changes. However, over the 29-year period,
a decrease in floating-ice fraction and an increase in bedfast-
ice fraction is observed. It appears that the main drivers be-
hind the observed trend are the lake drainage events, which
lead to a significant reduction in water level allowing for
subsequent ice grounding and increasing frequency of dry
years characterized by reduced snow cover, negative water
balances, and low lake water levels. The mean bedfast lake
ice fraction for the period between 1993 and 1996 is 11 %,
for 2000 to 2006 it is 15 %, for 2008 to 2010 it is 12 %, and
for 2018 to 2021 it is 25 %. It is expected that the extent of
over- or underestimation of the bedfast-ice fraction varies be-
tween the above-listed time periods due to the difference in
spatial resolution. Based on the Mann–Kendall test, the bed-
fast lake ice fraction between 1992/1993 and 2020/2021 dis-
played an increasing trend at a 10 % significance level. The
trend line fitted using Sen’s slope test indicates an increase
of about 11 % in the fraction of bedfast ice over the 29-year
period (0.375 % yr−1). The years 2018 and 2021 stand out
among other years in the dataset due to a significantly higher
bedfast-ice fraction (Table 5). Nonetheless, more extensive
field validation is required to draw more definitive conclu-
sions regarding the progression of the bedfast-ice fraction in
the OCF.

5 Conclusions

In this work we explored a temporal deep-learning approach
for bedfast- and floating-ice regime mapping from C-band
SAR time series and used it to study the lake ice dynam-
ics of the Old Crow Flats, Yukon, Canada. Scenes cover-
ing the period from October to mid-March for each year of
data were obtained from Sentinel-1, ERS-1 and ERS-2, and
RADARSAT-1 and were used to create an extensive anno-
tated dataset of time series each labeled as either floating ice,
bedfast ice, or land based on the ice regime on the last day of
the series. A temporal convolutional neural network (Tem-
pCNN) was trained and tested using the annotated dataset.
The trained network, in turn, was employed to create lake ice
maps of the Old Crow Flats covering a period of 29 years
from 1992/1993 to 2020/2021. The created ice maps allowed
us to perform ice dynamics analysis.
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Figure 12. Change detection between 1992/1993 (ERS) and 2020/2021 (Sentinel-1) ice regime maps. Dark blue represents transition from
floating to bedfast-ice regime; light blue shows transition from bedfast to floating-ice regime; green stands for transition from floating-ice
regime to land. The inset map in the top left corner is a zoomed-in view of the area highlighted as a green rectangle on the main map; top
right corner – dark blue rectangle; bottom right corner – light blue rectangle.

Figure 13. Total seasonal snow and mean seasonal air temperature in the OCF from 1992/1993–2020/2021 (4 October–13 March) calculated
based on the daily ERA5 (global atmospheric reanalysis data, produced using the ECMWF model freely available through the Copernicus
Climate Change Service). The horizontal dashed red line assists in visually comparing 2021 snow to all the other years.

This study demonstrates the potential of a temporal deep-
learning approach to lake ice mapping from C-band SAR.
TempCNN offers a comprehensive automated classification
framework suitable for different polarizations (HH and VV),
SAR platforms, and years. Comparison of the proposed ap-
proach to a state-of-the-art thresholding algorithm (Duguay

and Wang, 2019b) has shown the lake ice classification re-
sults to be very similar, with each algorithm offering its ad-
vantages. While both methods allow us to produce accurate
lake ice maps, thresholding is simpler in implementation as it
requires a single SAR scene. TempCNN, on the other hand, is
made complex by heavier data requirements but does not re-
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Figure 14. Netro Lake TempCNN-predicted ice regime (1992/1993–2020/2021). Dark blue represents bedfast ice; light blue – floating ice;
grey – land. Between 1992/1993 and 2020/2021 the ice regime has transitioned from mostly bedfast to mostly floating.

Figure 15. Zelma Lake TempCNN-predicted ice regime (1992/1993–2020/2021). Dark blue represents bedfast ice; light blue – floating ice;
grey – land. You may note a significant reduction in water surface area and a transition to a mostly bedfast-ice regime following the 2007
catastrophic drainage event.

quire a lake mask or incidence angle information. In addition,
due to extensive training on deeper portions of larger lakes,
TempCNN is better at avoiding misclassifications of floating
ice as bedfast ice in deeper portions of larger lakes. Although
both methods are applicable to VV and HH polarizations, the
thresholding algorithm used for comparison was designed to
work with S1 HH and VV imagery and its applicability to

other SAR platforms remains unexplored; nevertheless, En-
gram et al. (2018) obtained an overall accuracy of 93 % us-
ing a threshold-based algorithm, with ERS1/2, RADARSAT-
2, Envisat, and S1 SAR imagery evaluated over seven lake-
rich regions in Arctic Alaska. The present study has shown
TempCNN to also be applicable to S1 (VV), ERS1/2 (VV),
and R1 (HH), achieving a mean overall accuracy of 95 % in
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Figure 16. Lake no. 1 (top): transition from floating to bedfast-ice regime between 2010 and 2018 (left); water level changes visible on
Landsat imagery between the summers of 2016 (center) and 2017 (right). Lake no. 2 (bottom): transition from floating to bedfast-ice regime
between 2010 and 2018 (left); water level changes visible on Landsat imagery between the summers of 2017 (center) and 2019 (right).
Landsat scenes were obtained from the Google Earth Timelapse tool (link: https://earthengine.google.com/timelapse/, last access: 15 Au-
gust 2021).

the classification of bedfast ice, floating ice, and land and
of 99.6 % in the classification of bedfast ice and floating
ice (using the TempCNN model trained on 80 % of the la-
beled dataset). The TempCNN-generated ice map accuracy
was validated using a small set of field measurements and
CLIMo-simulated ice thickness, which partially explain the
interannual lake ice dynamics of the OCF. Aside from ice
thickness, which is in part controlled by snow accumula-
tion, variations in lake water levels can impact the interan-
nual variability in the bedfast- and floating-ice regime.

The proposed approach could be improved by extensive
OCF field data collection. More field observations of lake
bathymetry, ice regimes, and vegetation cover changes could
contribute to more accurate ice mapping and understanding
of the ice dynamics underlying causes. In addition, the cur-
rent temporal deep-learning model learns only from the tem-
poral component of the data. In future work, incorporation of
the spatial component would be beneficial. Breaks in the data
record also pose a challenge. More frequent SAR acquisi-
tions possible with the combination of Sentinel-1 and the re-
cently launched RADARSAT Constellation Mission (RCM)
could help in this respect. Future analyses of the bedfast- and
floating-ice regime will also benefit from data of the Surface
Water and Ocean Topography (SWOT) mission (launched

on 16 December 2022; https://swot.jpl.nasa.gov/, last access:
6 April 2023), which will allow for higher-accuracy map-
ping of the water level of lakes than is currently possible
from current radar altimetry missions. This comprehensive
approach will help reduce the uncertainty in whether the ice
regime change is associated with air temperature, snowfall,
water level changes, or a combination of these factors.

Over the period between 1992/1993 and 2020/2021, lake
ice fraction analysis from the available 18 years of data sug-
gests that the bedfast-ice fraction in the OCF has increased
by 11 % despite a warming climate (Fig. 12). This counter-
intuitive result is linked to the increased frequency of catas-
trophic lake drainages affecting the OCF (Lantz and Turner,
2015), which result in drastic decreases in water depths and
exposed portions of lake bottoms in several large lakes that
were associated with a transition to bedfast ice (Figs. 15 and
16). The partial refilling of drained basins, in some cases
linked to the catastrophic drainage of adjacent lakes, was as-
sociated with a transition to floating ice (Fig. 14). As per-
mafrost may be sustained or aggrade under shallow water
with a bedfast-ice regime in the OCF (Roy-Léveillée and
Burn, 2017), this transition may impact permafrost sustain-
ability and talik development beneath OCF lakes (Heslop
et al., 2015). Change detection analysis revealed an almost
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Table 5. Bedfast and floating lake ice fractions and area (km2) in
the OCF from 1992/1993 to 2020/2021. A lake mask created using
the 2020/2021 lake extent was used to extract lake ice fractions.

Year Floating- Bedfast- Floating- Bedfast-
ice fraction ice fraction ice area ice area

(%) (%) (km2) (km2)

1993 88 12 790 108
1994 86 14 779 127
1995 88 12 848 111
1996 92 8 909 82
2000 90 10 825 93
2001 81 19 753 175
2002 86 14 796 134
2003 79 21 746 203
2004 91 9 836 80
2005 77 23 687 207
2006 90 10 884 98
2008 89 11 826 101
2009 92 8 757 70
2010 83 17 792 160
2018 66 34 671 346
2019 79 21 798 206
2020 81 19 794 184
2021 75 25 762 252

13 % net decrease in the extent of water in the OCF. This
change was associated with the catastrophic drainages of sev-
eral large lakes (Lantz and Turner, 2015) and with the shrink-
ing or desiccation of several small waterbodies located near
the periphery of the OCF, where snowmelt is an important
component of the water balance of the lakes (Turner et al.,
2014), leaving them vulnerable to desiccation when snow
runoff is low (Bouchard et al., 2013), as was the case in
2021. The decrease in water area detected is partly compen-
sated for by the transition of land to water. More than half
of the area affected transitioned to floating rather than bed-
fast ice, despite low snow precipitation in winter 2020–2021.
This is associated with rapid permafrost degradation at these
new water areas, as the lake or pond bottom subsides follow-
ing talik development and the melting of ground ice beneath
waterbodies with a floating-ice regime (Roy-Léveillée and
Burn, 2017). While part of this land-to-water transition is as-
sociated with the expansion of existing lakes via the erosion
of thermokarst lake shores (Roy-Léveillée and Burn, 2010,
2015), many of the new water areas detected are spread in
between lakes and may be associated with the initiation and
expansion of ponds (Labrecque et al., 2009) which were not
detected on the early imagery due to their appearance during
the study period or to their size in 1993 in relation to the spa-
tial resolution of the data available for that year. The detected
areas transitioning from water to land and land to water are
yet larger than expected based on known rates and occur-
rences of lake initiation, growth, drainage or desiccation, and
refilling because no lake mask was used in this analysis, and

the changes detected and compiled also reflect changes in
the wetland’s surface wetness and the convolutional neural
network’s ability to detect these changing conditions using
different data types. This study provides a landscape-level
perspective on the combined impacts of climatic warming,
interannual variations in precipitation, and accelerated lake
drainages on the extent of bedfast and floating ice in the OCF.
The unexpected overall increase in the fraction of bedfast ice
and rapid transition of floating to bedfast ice following catas-
trophic lake drainage will inform ongoing analyses of per-
mafrost distribution, recovery, and sustainability in drained
lake basins.

This work provides a strong baseline for future
thermokarst lake ice dynamics analysis, a topic of circumpo-
lar relevance as thermokarst lowlands cover approximately
20 % of the northern permafrost regions (Jones et al., 2002)
and contain globally significant stores of soil organic car-
bon (Olefeldt et al., 2015). Documenting transitions be-
tween bedfast and floating ice is crucial to understanding
permafrost dynamics beneath shallow lakes and drained lake
basins, with potential impacts on methane ebullition and the
regional carbon balance.
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