Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1327-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1327-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysis of microseismicity in sea ice with deep learning and Bayesian inference: application to high-resolution thickness monitoring
Ludovic Moreau
CORRESPONDING AUTHOR
Institut des Sciences de la Terre, Université Grenoble Alpes, Grenoble, France
Léonard Seydoux
Institut des Sciences de la Terre, Université Grenoble Alpes, Grenoble, France
Jérôme Weiss
Institut des Sciences de la Terre, Université Grenoble Alpes, Grenoble, France
Michel Campillo
Institut des Sciences de la Terre, Université Grenoble Alpes, Grenoble, France
Related authors
Sebastien Kuchly, Baptiste Auvity, Nicolas Mokus, Matilde Bureau, Paul Nicot, Amaury Fourgeaud, Véronique Dansereau, Antonin Eddi, Stéphane Perrard, Dany Dumont, and Ludovic Moreau
EGUsphere, https://doi.org/10.5194/egusphere-2025-3304, https://doi.org/10.5194/egusphere-2025-3304, 2025
Short summary
Short summary
During February and March 2024, we realized a multi-instrument field campaign in the St. Lawrence Estuary, to capture swell-driven sea ice fragmentation. The dataset combines geophones, wave buoys, smartphones, and video recordings with drones, to study wave-ice interactions under natural conditions. It enables analysis of ice thickness, wave properties, and ice motion. Preliminary results show strong consistency across instruments, offering a valuable resource to improve sea ice models.
Agathe Serripierri, Ludovic Moreau, Pierre Boue, Jérôme Weiss, and Philippe Roux
The Cryosphere, 16, 2527–2543, https://doi.org/10.5194/tc-16-2527-2022, https://doi.org/10.5194/tc-16-2527-2022, 2022
Short summary
Short summary
As a result of global warming, the sea ice is disappearing at a much faster rate than predicted by climate models. To better understand and predict its ongoing decline, we deployed 247 geophones on the fast ice in Van Mijen Fjord in Svalbard, Norway, in March 2019. The analysis of these data provided a precise daily evolution of the sea-ice parameters at this location with high spatial and temporal resolution and accuracy. The results obtained are consistent with the observations made in situ.
Sebastien Kuchly, Baptiste Auvity, Nicolas Mokus, Matilde Bureau, Paul Nicot, Amaury Fourgeaud, Véronique Dansereau, Antonin Eddi, Stéphane Perrard, Dany Dumont, and Ludovic Moreau
EGUsphere, https://doi.org/10.5194/egusphere-2025-3304, https://doi.org/10.5194/egusphere-2025-3304, 2025
Short summary
Short summary
During February and March 2024, we realized a multi-instrument field campaign in the St. Lawrence Estuary, to capture swell-driven sea ice fragmentation. The dataset combines geophones, wave buoys, smartphones, and video recordings with drones, to study wave-ice interactions under natural conditions. It enables analysis of ice thickness, wave properties, and ice motion. Preliminary results show strong consistency across instruments, offering a valuable resource to improve sea ice models.
Agathe Serripierri, Ludovic Moreau, Pierre Boue, Jérôme Weiss, and Philippe Roux
The Cryosphere, 16, 2527–2543, https://doi.org/10.5194/tc-16-2527-2022, https://doi.org/10.5194/tc-16-2527-2022, 2022
Short summary
Short summary
As a result of global warming, the sea ice is disappearing at a much faster rate than predicted by climate models. To better understand and predict its ongoing decline, we deployed 247 geophones on the fast ice in Van Mijen Fjord in Svalbard, Norway, in March 2019. The analysis of these data provided a precise daily evolution of the sea-ice parameters at this location with high spatial and temporal resolution and accuracy. The results obtained are consistent with the observations made in situ.
Cited articles
Anderson, D.: Preliminary results and review of sea ice elasticity and related
studies, Transactions of the Engineering Institute of Canada, 2, 2–8, 1958. a
Ardyna, M., Babin, M., Gosselin, M., Devred, E., Rainville, L., and Tremblay,
J.-É.: Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton
blooms, Geophys. Res. Lett., 41, 6207–6212,
https://doi.org/10.1002/2014GL061047, 2014. a
Barruol, G., Cordier, E., Bascou, J., Fontaine, F. R., Legrésy, B., and
Lescarmontier, L.: Tide-induced microseismicity in the Mertz glacier
grounding area, East Antarctica, Geophys. Res. Lett., 40,
5412–5416, https://doi.org/10.1002/2013GL057814, 2013. a
Caline, F. and Barrault, S.: Measurements of stresses in the coastal ice on
both sides of a tidal crack., in: 19th IAHR International Symposium on Ice, 6 to 11 July 2008, Vancouver, British Columbia, Canada,
2008. a
Cao, J., Brossier, R., Górszczyk, A., Métivier, L., and Virieux, J.:
3-D multiparameter full-waveform inversion for ocean-bottom seismic data
using an efficient fluid–solid coupled spectral-element solver, Geophys.
J. Int., 229, 671–703, 2021. a
Choy, G. L. and Boatwright, J. L.: Global patterns of radiated seismic energy
and apparent stress, J. Geophys. Res.-Sol. Ea., 100,
18205–18228, https://doi.org/10.1029/95JB01969, 1995. a
Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-Law Distributions in
Empirical Data, SIAM Review, 51, 661–703, https://doi.org/10.1137/070710111, 2009. a
Crary, A. P.: Seismic studies on Fletcher's Ice Island, T-3, Eos, Transactions
American Geophysical Union, 35, 293–300,
https://doi.org/10.1029/TR035i002p00293, 1954. a
Dumont, D.: Marginal ice zone dynamics: history, definitions and research
perspectives, Philos. T. Roy. Soc. A, 380, 20210253,
https://doi.org/10.1098/rsta.2021.0253, 2022. a
Eayrs, C., Holland, D., Francis, D., Wagner, T., Kumar, R., and Li, X.:
Understanding the Seasonal Cycle of Antarctic Sea Ice Extent in the Context
of Longer-Term Variability, Rev. Geophy., 57, 1037–1064,
https://doi.org/10.1029/2018RG000631, 2019. a
Garnier, F., Fleury, S., Garric, G., Bouffard, J., Tsamados, M., Laforge, A., Bocquet, M., Fredensborg Hansen, R. M., and Remy, F.: Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka–Ku measurements, The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, 2021. a
Hunkins, K.: Seismic studies of sea ice, J. Geophys. Res., 65,
3459–3472, 1960. a
Kavanaugh, J., Schultz, R., Andriashek, L. D., van der Baan, M., Ghofrani, H.,
Atkinson, G., and Utting, D. J.: A New Year's Day icebreaker: icequakes on
lakes in Alberta, Canada, Can. J. Earth Sci., 56, 183–200,
https://doi.org/10.1139/cjes-2018-0196, 2018. a
Marchenko, A. V. and Morozov, E. G.: Asymmetric tide in Lake Vallunden (Spitsbergen), Nonlin. Processes Geophys., 20, 935–944, https://doi.org/10.5194/npg-20-935-2013, 2013. a, b
Marchenko, A. V., Chistyakov, P. V., Karulin, E. B., Markov, V. V., Morozov,
E. G., Karulina, M. M., and Sakharov, A. N.: Field experiments on collisional
interaction of floating ice blocks, in: Proceedings of the 26th International
Conference on Port and Ocean Engineering under Arctic Conditions, ISSN
2077-7841, 2021. a, b, c
Marsan, D., Weiss, J., Larose, E., and Métaxian, J.-P.: Sea-ice thickness
measurement based on the dispersion of ice swell, J. Acoust. Soc. Am., 131, 80–91, 2012. a
Massey, F. J.: The Kolmogorov-Smirnov Test for Goodness of Fit, J.
Am. Stat. A., 46, 68–78, 1951. a
Mayot, N., Matrai, P. A., Arjona, A., Bélanger, S., Marchese, C., Jaegler,
T., Ardyna, M., and Steele, M.: Springtime Export of Arctic Sea Ice
Influences Phytoplankton Production in the Greenland Sea, J.
Geophys. Res.-Oceans, 125, e2019JC015799,
https://doi.org/10.1029/2019JC015799, 2020. a
Moreau, L.: Python package for icequakes inversions (Version 1), Zenodo [code], https://doi.org/10.5281/zenodo.7755633, 2023a. a
Moreau, L.: Catalog of icequakes recorded in March 2019, in the Van Mijen Fjord, in Svalbard (Norway), Zenodo [data set], https://doi.org/10.5281/zenodo.7755650, 2023b. a
Moreau, L. and RESIF: Svalbard – Vallunden (Icewaveguide) (RESIF – SISMOB_Nodes), RESIF – Réseau Sismologique et géodésique Français [data set], https://doi.org/10.15778/resif.xg2019, 2019. a, b
Moreau, L., Minonzio, J.-G., Talmant, M., and Laugier, P.: Measuring the
wavenumber of guided modes in waveguides with linearly varying thickness, J. Acoust. Soc. Am., 135, 2614–2624, 2014. a
Moreau, L., Lachaud, C., Théry, R., Predoi, M. V., Marsan, D., Larose, E.,
Weiss, J., and Montagnat, M.: Monitoring ice thickness and elastic properties
from the measurement of leaky guided waves: A laboratory experiment, J. Acoust. Soc. Am., 142, 2873–2880, 2017. a
Moreau, L., Boué, P., Serripierri, A., Weiss, J.,
Hollis, D., Pondaven, I., Vial, B., Garambois, S., Larose, É.,Helmstetter, A.,
Stehly, L., Hillers, G., and Gilbert, O.: Sea ice
thickness and elastic properties from the analysis of multimodal guided wave
propagation measured with a passive seismic array, J. Geophys.
Res.-Oceans, 125, e2019JC015709, https://doi.org/10.1029/2019JC015709, 2020a. a, b, c, d, e, f
Moreau, L., Weiss, J., and Marsan, D.: Accurate estimations of sea-ice
thickness and elastic properties from seismic noise recorded with a minimal
number of geophones: from thin landfast ice to thick pack ice, J.
Geophys. Res.-Oceans, 125, e2020JC016492, https://doi.org/10.1029/2020JC016492, 2020b. a, b, c, d, e, f
Olinger, S. D., Lipovsky, B. P., Wiens, D. A., Aster, R. C., Bromirski, P. D.,
Chen, Z., Gerstoft, P., Nyblade, A. A., and Stephen, R. A.: Tidal and Thermal
Stresses Drive Seismicity Along a Major Ross Ice Shelf Rift, Geophys. Res. Lett., 46, 6644–6652, https://doi.org/10.1029/2019GL082842,
2019. a
Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic,
P. Natl. Acad. Sci. USA, 116, 14414–14423,
https://doi.org/10.1073/pnas.1906556116, 2019. a
Podolskiy, E. A., Fujita, K., Sunako, S., and Sato, Y.: Viscoelastic Modeling
of Nocturnal Thermal Fracturing in a Himalayan Debris-Covered Glacier,
J. Geophys. Res.-Earth Surf., 124, 1485–1515,
https://doi.org/10.1029/2018JF004848, 2019. a
Romeyn, R., Hanssen, A., Ruud, B. O., and Johansen, T. A.: Sea ice thickness from air-coupled flexural waves, The Cryosphere, 15, 2939–2955, https://doi.org/10.5194/tc-15-2939-2021, 2021. a, b, c
Ruzhich, V., Psakhie, S., Chernykh, E., Bornyakov, S., and Granin, N.:
Deformation and seismic effects in the ice cover of Lake Baikal, Russ.
Geol. Geophys.+, 50, 214–221,
https://doi.org/10.1016/j.rgg.2008.08.005, 2009. a, b
Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W., and Fehler, M. C.:
Extracting time-domain Green's function estimates from ambient seismic noise,
Geophys. Res. Lett., 32, L03310, https://doi.org/10.1029/2004GL021862, 2005. a
Seydoux, L., Balestriero, R., Poli, P., Hoop, M. d., Campillo, M., and
Baraniuk, R.: Clustering earthquake signals and background noises in
continuous seismic data with unsupervised deep learning, Nat.
Commun., 11, 3972, https://doi.org/10.1038/s41467-020-17841-x, 2020. a, b, c
Shapiro, N. M. and Campillo, M.: Emergence of broadband Rayleigh waves from
correlations of the ambient seismic noise, Geophys. Res. Lett., 31, L07614, https://doi.org/10.1029/2004GL019491,
2004. a
Steinmann, R., Seydoux, L., Beaucé, É., and Campillo, M.: Hierarchical
Exploration of Continuous Seismograms With Unsupervised Learning, J. Geophys.
Res.-Sol. Ea., 127, e2021JB022455, https://doi.org/10.1029/2021JB022455, 2022.
a, b, c
Yang, T. and Giellis, G.: Experimental characterization of elastic waves in a
floating ice sheet, J. Acoust. Soc. Am., 96,
2993–3009, 1994. a
Short summary
In the perspective of an upcoming seasonally ice-free Arctic, understanding the dynamics of sea ice in the changing climate is a major challenge in oceanography and climatology. It is therefore essential to monitor sea ice properties with fine temporal and spatial resolution. In this paper, we show that icequakes recorded on sea ice can be processed with artificial intelligence to produce accurate maps of sea ice thickness with high temporal and spatial resolutions.
In the perspective of an upcoming seasonally ice-free Arctic, understanding the dynamics of sea...