Cao, J., Brossier, R., Górszczyk, A., Métivier, L., and Virieux, J.:
3-D multiparameter full-waveform inversion for ocean-bottom seismic data
using an efficient fluid–solid coupled spectral-element solver, Geophys.
J. Int., 229, 671–703, 2021. a
Choy, G. L. and Boatwright, J. L.: Global patterns of radiated seismic energy
and apparent stress, J. Geophys. Res.-Sol. Ea., 100,
18205–18228,
https://doi.org/10.1029/95JB01969, 1995.
a
Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-Law Distributions in
Empirical Data, SIAM Review, 51, 661–703,
https://doi.org/10.1137/070710111, 2009.
a
Comon, P.: Independent Component Analysis, in: Higher-Order Statistics,
edited by: Lacoume, J.-L., 29–38, Elsevier,
https://hal.archives-ouvertes.fr/hal-00346684, 1992.
a,
b
Eayrs, C., Holland, D., Francis, D., Wagner, T., Kumar, R., and Li, X.:
Understanding the Seasonal Cycle of Antarctic Sea Ice Extent in the Context
of Longer-Term Variability, Rev. Geophy., 57, 1037–1064,
https://doi.org/10.1029/2018RG000631, 2019.
a
Garnier, F., Fleury, S., Garric, G., Bouffard, J., Tsamados, M., Laforge, A., Bocquet, M., Fredensborg Hansen, R. M., and Remy, F.: Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka–Ku measurements, The Cryosphere, 15, 5483–5512,
https://doi.org/10.5194/tc-15-5483-2021, 2021.
a
Hunkins, K.: Seismic studies of sea ice, J. Geophys. Res., 65,
3459–3472, 1960. a
Kavanaugh, J., Schultz, R., Andriashek, L. D., van der Baan, M., Ghofrani, H.,
Atkinson, G., and Utting, D. J.: A New Year's Day icebreaker: icequakes on
lakes in Alberta, Canada, Can. J. Earth Sci., 56, 183–200,
https://doi.org/10.1139/cjes-2018-0196, 2018.
a
Marchenko, A. V., Chistyakov, P. V., Karulin, E. B., Markov, V. V., Morozov,
E. G., Karulina, M. M., and Sakharov, A. N.: Field experiments on collisional
interaction of floating ice blocks, in: Proceedings of the 26th International
Conference on Port and Ocean Engineering under Arctic Conditions, ISSN
2077-7841, 2021.
a,
b,
c
Marsan, D., Weiss, J., Larose, E., and Métaxian, J.-P.: Sea-ice thickness
measurement based on the dispersion of ice swell, J. Acoust. Soc. Am., 131, 80–91, 2012. a
Marsan, D., Weiss, J., Moreau, L., Gimbert, F., Doble, M., Larose, E., and
Grangeon, J.: Characterizing horizontally-polarized shear and infragravity
vibrational modes in the Arctic sea ice cover using correlation methods, J. Acoust. Soc. Am., 145, 1600–1608, 2019.
a,
b
Massey, F. J.: The Kolmogorov-Smirnov Test for Goodness of Fit, J.
Am. Stat. A., 46, 68–78, 1951. a
Mayot, N., Matrai, P. A., Arjona, A., Bélanger, S., Marchese, C., Jaegler,
T., Ardyna, M., and Steele, M.: Springtime Export of Arctic Sea Ice
Influences Phytoplankton Production in the Greenland Sea, J.
Geophys. Res.-Oceans, 125, e2019JC015799,
https://doi.org/10.1029/2019JC015799, 2020.
a
Moreau, L., Minonzio, J.-G., Talmant, M., and Laugier, P.: Measuring the
wavenumber of guided modes in waveguides with linearly varying thickness, J. Acoust. Soc. Am., 135, 2614–2624, 2014. a
Moreau, L., Lachaud, C., Théry, R., Predoi, M. V., Marsan, D., Larose, E.,
Weiss, J., and Montagnat, M.: Monitoring ice thickness and elastic properties
from the measurement of leaky guided waves: A laboratory experiment, J. Acoust. Soc. Am., 142, 2873–2880, 2017. a
Moreau, L., Boué, P., Serripierri, A., Weiss, J.,
Hollis, D., Pondaven, I., Vial, B., Garambois, S., Larose, É.,Helmstetter, A.,
Stehly, L., Hillers, G., and Gilbert, O.: Sea ice
thickness and elastic properties from the analysis of multimodal guided wave
propagation measured with a passive seismic array, J. Geophys.
Res.-Oceans, 125, e2019JC015709,
https://doi.org/10.1029/2019JC015709, 2020a.
a,
b,
c,
d,
e,
f
Moreau, L., Weiss, J., and Marsan, D.: Accurate estimations of sea-ice
thickness and elastic properties from seismic noise recorded with a minimal
number of geophones: from thin landfast ice to thick pack ice, J.
Geophys. Res.-Oceans, 125, e2020JC016492,
https://doi.org/10.1029/2020JC016492, 2020b.
a,
b,
c,
d,
e,
f
Olinger, S. D., Lipovsky, B. P., Wiens, D. A., Aster, R. C., Bromirski, P. D.,
Chen, Z., Gerstoft, P., Nyblade, A. A., and Stephen, R. A.: Tidal and Thermal
Stresses Drive Seismicity Along a Major Ross Ice Shelf Rift, Geophys. Res. Lett., 46, 6644–6652,
https://doi.org/10.1029/2019GL082842,
2019.
a
Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic,
P. Natl. Acad. Sci. USA, 116, 14414–14423,
https://doi.org/10.1073/pnas.1906556116, 2019.
a
Podolskiy, E. A., Fujita, K., Sunako, S., and Sato, Y.: Viscoelastic Modeling
of Nocturnal Thermal Fracturing in a Himalayan Debris-Covered Glacier,
J. Geophys. Res.-Earth Surf., 124, 1485–1515,
https://doi.org/10.1029/2018JF004848, 2019.
a
Romeyn, R., Hanssen, A., Ruud, B. O., and Johansen, T. A.: Sea ice thickness from air-coupled flexural waves, The Cryosphere, 15, 2939–2955,
https://doi.org/10.5194/tc-15-2939-2021, 2021.
a,
b,
c
Ruzhich, V., Psakhie, S., Chernykh, E., Bornyakov, S., and Granin, N.:
Deformation and seismic effects in the ice cover of Lake Baikal, Russ.
Geol. Geophys.+, 50, 214–221,
https://doi.org/10.1016/j.rgg.2008.08.005, 2009.
a,
b
Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W., and Fehler, M. C.:
Extracting time-domain Green's function estimates from ambient seismic noise,
Geophys. Res. Lett., 32, L03310,
https://doi.org/10.1029/2004GL021862, 2005.
a
Serripierri, A., Moreau, L., Boue, P., Weiss, J., and Roux, P.: Recovering and monitoring the thickness, density, and elastic properties of sea ice from seismic noise recorded in Svalbard, The Cryosphere, 16, 2527–2543,
https://doi.org/10.5194/tc-16-2527-2022, 2022.
a,
b,
c,
d,
e,
f
Seydoux, L., Balestriero, R., Poli, P., Hoop, M. d., Campillo, M., and
Baraniuk, R.: Clustering earthquake signals and background noises in
continuous seismic data with unsupervised deep learning, Nat.
Commun., 11, 3972,
https://doi.org/10.1038/s41467-020-17841-x, 2020.
a,
b,
c
Shapiro, N. M. and Campillo, M.: Emergence of broadband Rayleigh waves from
correlations of the ambient seismic noise, Geophys. Res. Lett., 31, L07614,
https://doi.org/10.1029/2004GL019491,
2004.
a
Stein, P. J., Euerle, S. E., and Parinella, J. C.: Inversion of pack ice
elastic wave data to obtain ice physical properties, J. Geophys.
Res.-Oceans, 103, 21783–21793, 1998.
a,
b
Steinmann, R., Seydoux, L., Beaucé, É., and Campillo, M.: Hierarchical
Exploration of Continuous Seismograms With Unsupervised Learning, J. Geophys.
Res.-Sol. Ea., 127, e2021JB022455,
https://doi.org/10.1029/2021JB022455, 2022.
a,
b,
c
Yang, T. and Giellis, G.: Experimental characterization of elastic waves in a
floating ice sheet, J. Acoust. Soc. Am., 96,
2993–3009, 1994. a