Articles | Volume 16, issue 3
https://doi.org/10.5194/tc-16-903-2022
https://doi.org/10.5194/tc-16-903-2022
Research article
 | 
11 Mar 2022
Research article |  | 11 Mar 2022

Elements of future snowpack modeling – Part 1: A physical instability arising from the nonlinear coupling of transport and phase changes

Konstantin Schürholt, Julia Kowalski, and Henning Löwe

Related authors

Bayesian data selection to quantify the value of data for landslide runout calibration
V Mithlesh Kumar, Anil Yildiz, and Julia Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2025-4531,https://doi.org/10.5194/egusphere-2025-4531, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Data clustering to optimise the representativity of observational data in air quality data assimilation: a case study with EURAD-IM (version 5.9.1 DA)
Alexander Hermanns, Anne Caroline Lange, Julia Kowalski, Hendrik Fuchs, and Philipp Franke
EGUsphere, https://doi.org/10.5194/egusphere-2025-450,https://doi.org/10.5194/egusphere-2025-450, 2025
Short summary
OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024,https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary
Wind tunnel experiments to quantify the effect of aeolian snow transport on the surface snow microstructure
Benjamin Walter, Hagen Weigel, Sonja Wahl, and Henning Löwe
The Cryosphere, 18, 3633–3652, https://doi.org/10.5194/tc-18-3633-2024,https://doi.org/10.5194/tc-18-3633-2024, 2024
Short summary
Microstructure-based simulations of the viscous densification of snow and firn
Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe
The Cryosphere, 18, 2831–2846, https://doi.org/10.5194/tc-18-2831-2024,https://doi.org/10.5194/tc-18-2831-2024, 2024
Short summary

Cited articles

Adams, E. E. and Brown, R. L.: A mixture theory for evaluating heat and mass transport processes in nonhomogeneous snow, Continuum Mech. Therm., 2, 31–63, https://doi.org/10.1007/BF01170954, 1990. a, b, c, d, e
Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N.: The FEniCS Project Version 1.5, Archive of Numerical Software, 3, 9–23, https://doi.org/10.11588/ans.2015.100.20553, 2015. a, b, c
Bader, H. and Weilenmann, P.: Modeling temperature distribution, energy and mass flow in a (phase-changing) snowpack. I. Model and case studies, Cold Reg. Sci. Technol., 20, 157–181, 1992. a, b, c
Barrere, M., Domine, F., Decharme, B., Morin, S., Vionnet, V., and Lafaysse, M.: Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site, Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, 2017. a
Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.: An Energy and Mass Model of Snow Cover Suitable for Operational Avalanche Forecasting, J. Glaciol., 35, 333–342, https://doi.org/10.3189/S0022143000009254, 1989. a
Short summary
This companion paper deals with numerical particularities of partial differential equations underlying 1D snow models. In this first part we neglect mechanical settling and demonstrate that the nonlinear coupling between diffusive transport (heat and vapor), phase changes and ice mass conservation contains a wave instability that may be relevant for weak layer formation. Numerical requirements are discussed in view of the underlying homogenization scheme.
Share