Articles | Volume 16, issue 3
https://doi.org/10.5194/tc-16-903-2022
https://doi.org/10.5194/tc-16-903-2022
Research article
 | 
11 Mar 2022
Research article |  | 11 Mar 2022

Elements of future snowpack modeling – Part 1: A physical instability arising from the nonlinear coupling of transport and phase changes

Konstantin Schürholt, Julia Kowalski, and Henning Löwe

Related authors

Temporospatial variability of snow's thermal conductivity on Arctic sea ice
Amy R. Macfarlane, Henning Löwe, Lucille Gimenes, David N. Wagner, Ruzica Dadic, Rafael Ottersberg, Stefan Hämmerle, and Martin Schneebeli
The Cryosphere, 17, 5417–5434, https://doi.org/10.5194/tc-17-5417-2023,https://doi.org/10.5194/tc-17-5417-2023, 2023
Short summary
A finite-element framework to explore the numerical solution of the coupled problem of heat conduction, water vapor diffusion, and settlement in dry snow (IvoriFEM v0.1.0)
Julien Brondex, Kévin Fourteau, Marie Dumont, Pascal Hagenmuller, Neige Calonne, François Tuzet, and Henning Löwe
Geosci. Model Dev., 16, 7075–7106, https://doi.org/10.5194/gmd-16-7075-2023,https://doi.org/10.5194/gmd-16-7075-2023, 2023
Short summary
A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
Anna Braun, Kévin Fourteau, and Henning Löwe
EGUsphere, https://doi.org/10.5194/egusphere-2023-1947,https://doi.org/10.5194/egusphere-2023-1947, 2023
Short summary
Microstructure-based simulations of the viscous densification of snow and firn
Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe
EGUsphere, https://doi.org/10.5194/egusphere-2023-1928,https://doi.org/10.5194/egusphere-2023-1928, 2023
Short summary
Wind tunnel experiments to quantify the effect of aeolian snow transport on the surface snow microstructure
Benjamin Walter, Hagen Weigel, Sonja Wahl, and Henning Löwe
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-112,https://doi.org/10.5194/tc-2023-112, 2023
Revised manuscript under review for TC
Short summary

Related subject area

Discipline: Snow | Subject: Numerical Modelling
Regime Shifts in Arctic Terrestrial Hydrology Manifested From Impacts of Climate Warming
Michael A. Rawlins and Ambarish V. Karmalkar
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-84,https://doi.org/10.5194/tc-2023-84, 2023
Revised manuscript accepted for TC
Short summary
Snow cover prediction in the Italian central Apennines using weather forecast and land surface numerical models
Edoardo Raparelli, Paolo Tuccella, Valentina Colaiuda, and Frank S. Marzano
The Cryosphere, 17, 519–538, https://doi.org/10.5194/tc-17-519-2023,https://doi.org/10.5194/tc-17-519-2023, 2023
Short summary
A data exploration tool for averaging and accessing large data sets of snow stratigraphy profiles useful for avalanche forecasting
Florian Herla, Pascal Haegeli, and Patrick Mair
The Cryosphere, 16, 3149–3162, https://doi.org/10.5194/tc-16-3149-2022,https://doi.org/10.5194/tc-16-3149-2022, 2022
Short summary
Land–atmosphere interactions in sub-polar and alpine climates in the CORDEX flagship pilot study Land Use and Climate Across Scales (LUCAS) models – Part 1: Evaluation of the snow-albedo effect
Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Michal Belda, Tomas Halenka, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022,https://doi.org/10.5194/tc-16-2403-2022, 2022
Short summary
Elements of future snowpack modeling – Part 2: A modular and extendable Eulerian–Lagrangian numerical scheme for coupled transport, phase changes and settling processes
Anna Simson, Henning Löwe, and Julia Kowalski
The Cryosphere, 15, 5423–5445, https://doi.org/10.5194/tc-15-5423-2021,https://doi.org/10.5194/tc-15-5423-2021, 2021
Short summary

Cited articles

Adams, E. E. and Brown, R. L.: A mixture theory for evaluating heat and mass transport processes in nonhomogeneous snow, Continuum Mech. Therm., 2, 31–63, https://doi.org/10.1007/BF01170954, 1990. a, b, c, d, e
Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N.: The FEniCS Project Version 1.5, Archive of Numerical Software, 3, 9–23, https://doi.org/10.11588/ans.2015.100.20553, 2015. a, b, c
Bader, H. and Weilenmann, P.: Modeling temperature distribution, energy and mass flow in a (phase-changing) snowpack. I. Model and case studies, Cold Reg. Sci. Technol., 20, 157–181, 1992. a, b, c
Barrere, M., Domine, F., Decharme, B., Morin, S., Vionnet, V., and Lafaysse, M.: Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site, Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, 2017. a
Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.: An Energy and Mass Model of Snow Cover Suitable for Operational Avalanche Forecasting, J. Glaciol., 35, 333–342, https://doi.org/10.3189/S0022143000009254, 1989. a
Short summary
This companion paper deals with numerical particularities of partial differential equations underlying 1D snow models. In this first part we neglect mechanical settling and demonstrate that the nonlinear coupling between diffusive transport (heat and vapor), phase changes and ice mass conservation contains a wave instability that may be relevant for weak layer formation. Numerical requirements are discussed in view of the underlying homogenization scheme.