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Abstract. The incorporation of vapor transport has become
a key demand for snowpack modeling in which accompa-
nied phase changes give rise to a new, nonlinear coupling in
the heat and mass equations. This coupling has an impact
on choosing efficient numerical schemes for 1D snowpack
models which are naturally not designed to cope with mathe-
matical particularities of arbitrary, nonlinear partial differen-
tial equations (PDEs). To explore this coupling we have im-
plemented a stand-alone finite element solution of the cou-
pled heat and mass equations in snow using the computing
platform FEniCS. We focus on the nonlinear feedback of
the ice phase exchanging mass with a diffusing vapor phase
with concurrent heat transport in the absence of settling. We
demonstrate that existing continuum-mechanical models de-
rived through homogenization or mixture theory yield simi-
lar results for homogeneous snowpacks of constant density.
When snow density varies significantly with depth, we show
that phase changes in the presence of temperature gradients
give rise to nonlinear advection of the ice phase amplifying
existing density variations. Eventually, this advection trig-
gers a wave instability in the continuity equations. This is
traced back to the density dependence of the effective trans-
port coefficients as revealed by a linear stability analysis of
the nonlinear PDE system. The instability is an inherent fea-
ture of existing continuum models and predicts, as a side
product, the formation of a low-density (mechanical) weak
layer on the sublimating side of an ice crust. The wave insta-
bility constitutes a key challenge for a faithful treatment of
solid—vapor mass conservation between layers, which is dis-

cussed in view of the underlying homogenization schemes
and their numerical solutions.

1 Introduction

Neglecting vapor transport in the pore space of a snowpack
for the overall mass balance is considered as a serious un-
certainty in snow modeling. Persistent temperature gradients
throughout the season may contribute to the depletion of
snow density at the bottom of the snowpack due to upward
vapor fluxes, as has been hypothesized for shallow tundra
snowpacks by Barrere et al. (2017) and Domine et al. (2016).
This problem is relevant for applications, for example, in per-
mafrost where temperature gradients may induce the drying
of soils with a feedback on snow metamorphism in the adja-
cent bottom layer (Domine et al., 2016), in turn affecting the
ground thermal regime. Other applications of vapor transport
comprise post-depositional redistribution of stable water iso-
topes in polar snow (Touzeau et al., 2018), density variations
in polar firn (Li and Zwally, 2004), or the general impact on
stratigraphy and metamorphism (Sturm and Benson, 1997).
The governing equations of macroscopic vapor transport
in snow have been used for a long time. The homogenized
equations of heat and purely diffusive vapor transport in-
cluding phase changes have been derived from mixture the-
ory in early work (Adams and Brown, 1990; Morland et al.,
1990; Bader and Weilenmann, 1992). More recently, the
equations were re-derived from a rigorous two-scale expan-
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sion (Calonne et al., 2014) yielding the same form of the re-
sulting equations. The asset of the latter approach is the pa-
rameter control, which allows us to assess the model’s scope
and limits of applicability from the scale analysis. This ho-
mogenization method was later generalized to include ef-
fects of thermal convection (Calonne et al., 2014). Hansen
and Foslien (2015) revisited the problem of coupled heat
and vapor transport using mixture theory, leading to a more
restrictive set of transport equations. They rely on the as-
sumption that the vapor concentration is always close but
not exactly in equilibrium with temperature. While the ex-
isting vapor schemes largely differ in the form of the effec-
tive transport coefficients, there is a general agreement on
the basic type and form of the partial differential equations
(PDEs) governing coupled heat and diffusive vapor transport
in snow. These PDEs are coupled, nonlinear reaction diffu-
sion equations. The diffusion terms are characterized by the
effective diffusion constant and effective thermal conductiv-
ity in snow, while the reaction (or source) terms describe
the phase changes, i.e., the volume-averaged, solid—vapor re-
crystallization rates from metamorphism (Krol and Lowe,
2018). However, Calonne et al. (2014) and Hansen and
Foslien (2015) both neglect the feedback of phase changes
through an evolving ice phase in their numerical experiments.
It is this coupling that needs to be understood for the incorpo-
ration of published homogenized vapor schemes into snow-
pack models for assessing the impact on snow density.

Recently Jafari et al. (2020) equipped the model SNOW-
PACK with a vapor transport scheme in the form of a non-
linear reaction—diffusion equation. It is the first attempt to
solve the vapor diffusion equation in a snowpack model. The
numerical solution requires time steps of 1 min and mesh
sizes of 1 mm to avoid "numerical oscillations” that were ob-
served, even within an implicit, unconditionally stable nu-
merical scheme. ”Sawtooth effects” attributed to ”slight nu-
merical errors” were already revealed in early numerical
work on the coupling of ice, vapor and energy transport
in snow (Adams and Brown, 1990), and likewise, the nu-
merical solution in Hansen and Foslien (2015) shows os-
cillations if longer simulation runs are considered (Andy
Hansen, personal communication, 2017). Numerical issues
have also been reported for solid—liquid phase changes when
incorporating water flow into SNOWPACK via the Richards
equation, which were attributed to density inhomogeneities
(Wever et al., 2014). Phase change processes on seasonal
timescales in polar snowpacks are important for climate
modeling ideally adequately simulated on coarse meshes
with large time steps. Therefore, it is necessary to understand
the mathematical complexity of phase changes coupled to the
mass transport equation. This will enable us to either design
stable and accurate numerical schemes or otherwise accept
simplified treatments which, in the case of vapor transport,
could be, for example, based on a strict equilibrium assump-
tion (Li and Zwally, 2004; Touzeau et al., 2018).
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Due to the lack of analytical solutions for these nonlinear
problems, confidence in orders of magnitudes of computed
numbers can only be achieved via careful numerical exper-
iments to address solver accuracy or mesh effects. This is
naturally cumbersome within a full snowpack model. In ad-
dition, an explicit solution of the ice mass conservation equa-
tion is commonly avoided by using the Lagrangian frame of
reference of the settling equation (Brun et al., 1989; Lehn-
ing et al., 2002). This complicates the assessment of phase
change models in their originally published Eulerian form.
Stand-alone numerical investigations of specific model com-
ponents are therefore justified and necessary to understand
nonlinear effects and numerical requirements for the design
of efficient solvers in future snowpack models.

It is the aim of the present paper to advance the un-
derstanding of coupled heat and mass transport in snow
by a careful numerical analysis of existing homogeniza-
tion schemes. To overcome the limited flexibility in existing
snowpack models we have implemented a stand-alone solver
for the PDEs using the finite element (FE) framework FEn-
iCS (Alnzs et al., 2015). The python-based computing plat-
form was previously used for other problems in cryospheric
sciences (Cummings, 2016). We focus on the nonlinear feed-
back of heat and vapor transport on an evolving ice phase. We
consider the simplest setting and neglect convection in the
gas phase and settling in the solid phase to provide a sound
reference for future extensions. The question of how these
effects can be coupled to settling will be addressed in a com-
panion paper (Simson et al., 2021). Our approach will reveal
the rich mathematical complexity that is hidden in published
models and will provide evidence that the origin of this com-
plexity is the density dependence of the effective transport
coefficients in the presence of phase changes. We will show
that this coupling causes the formation of wave patterns in
the ice volume fraction profile as a true mathematical feature
of the nonlinear PDE system. This is confirmed by an an-
alytical, linear stability analysis attributing the unstable be-
havior to the density dependence of the effective (heat and
mass) diffusion coefficients. The results suggest that previ-
ously obtained oscillations in the numerical schemes (Adams
and Brown, 1990; Jafari et al., 2020) are physical and not nu-
merical artifacts. With this work we seek to contribute to an
understanding of if and how these features should be taken
into account in future work.

The paper is organized as follows. In Sect. 2 we state the
governing partial differential equations from the homoge-
nization schemes (Calonne et al., 2014; Hansen and Foslien,
2015). In Sect. 3 we outline the finite element solution of the
weak formulation of the problem and its implementation in
FEniCS. In Sect. 4 we first provide an intercomparison of
the two models in their original test scenarios and the sce-
nario of a thin “Gaussian crust” as a smooth density hetero-
geneity. In Sect. 5 we characterize the observed migration of
the ice phase under vapor re-crystallization by comparing the
full model with an approximate advection equation for the
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ice phase which is derived under simplified assumptions. In
Sect. 6 we detail the wave patterns that emerge in the numer-
ical solution of the Gaussian crust. The analysis of the mesh
resolution, integration time step and the residuals indicates
that the wave patterns are intrinsic features of the mathemat-
ical model and not numerical artifacts. This is confirmed by
the linear stability analysis in Sect. 6.2. After a few sensitiv-
ity tests we will discuss practical consequences of our study
for vapor transport modeling in snow models (Sect. 8) and
provide summarizing conclusions.

2 Homogenized heat and mass transport

As a theoretical starting point we focus on two recently
published homogenized formulations for an evolving vapor
phase, namely Calonne et al. (2014) and Hansen and Foslien
(2015). Despite differences in their theoretical homogeniza-
tion approach, asymptotic expansion (Calonne et al., 2014)
and mixture theory (Hansen and Foslien, 2015), both models
have a very similar mathematical structure that resembles the
earlier work of Bader and Weilenmann (1992).

2.1 Vapor scheme from Calonne et al. (2014)

The two-scale expansion for (vapor) mass and energy
(Calonne et al., 2014) leads to the following set of equations
for the vapor density p, and the temperature 7':

0 _

(1— ¢i)§,0v — V- DtV py = —piSUp, (D
0

(pc)effET —V ket VT = Lsvy. )

Here ¢; is the ice volume fraction, Degr the effective diffu-
sion coefficient, p; the constant density of ice, s the surface
area density per unit volume, v, the volume-averaged nor-
mal velocity of the ice—air interface indicating deposition or
sublimation, (pC)efr the effective volumetric heat capacity
(times snow density), kefr the effective thermal conductivity
and L the latent heat of sublimation.

The surface area density s, reflecting the current state of
the microstructure and principally evolving in time, is as-
sumed to be constant here in accordance with Calonne et al.
(2014).

The source term — p;sv, on the righthand side (r.h.s.) of the
vapor Eq. (1) quantifies phase changes, i.e., the net conden-
sation rate. This implies the form of the energy source term
Lsvy, through latent heat. In the simplest setting (Calonne
et al., 2014), the volume-averaged interface velocity is given
by

1
By (T)

where g is the inverse growth velocity and py (T the sat-
uration vapor density. Note that v, strongly depends on the

(pv — Py U(T)), A3)

Up =
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temperature, indicating the temperature feedback on the va-
por mass balance. In order to close the system of Egs. (1)-
(3), parametrizations for the effective PDE coefficients must
be provided (see below in Sect. 2.3). The feedback of a spa-
tiotemporally evolving ice phase ¢i(z,?) has not been con-
sidered in Calonne et al. (2014).

2.2 Vapor scheme from Hansen and Foslien (2015)

A similar coupling scheme of the vapor transport to the en-
ergy equation has been put forward in Hansen and Foslien
(2015). Using the same notation as above, these equations
can be written in the form

dped aT 9%

(1— ) 8"} -V (Deff—a"; VT) =, )
3 L

(PC)ett—T =V ket VT =c—. (5)
ot Pi

Here the r.h.s. of both equations is expressed in terms of the
condensation rate c.

The comparison of both models reveals that the vapor
mass balance of Hansen and Foslien (2015) (Eq. 4) can
be obtained from the corresponding vapor mass balance of
Calonne et al. (2014) (Eq. 1) using the following reasoning:
the deviation of the vapor concentration § py from its equilib-
rium value py ' (T') will be mostly small. This suggests the use
of an ansatz py, = ,osq(T) + épy in Eq. (1). Assuming further
that 8 py diffuses faster than it relaxes locally, the deviation
from equilibrium is kept nonzero only in the reaction term,
which then implies Eq. (4). Hansen and Foslien (2015) sup-
port this derivation with a (non-rigorous) scaling argument to
avoid two conflicting equations for the temperature 7 .

Though both presented models are strikingly similar
in structure, it should be emphasized that the system of
Egs. (1)—(3) is closed and can be solved for py and T using
an arbitrary closure for the condensation rate. This is differ-
ent for the system of Egs. (4)—(5): due to the simplifying as-
sumption outlined above, Hansen’s model lacks an evolution
equation for the (perturbed) vapor mass balance. Since both
vapor mass balance (Eq. 4) and energy balance (Eq. 5) are ac-
tually formulated in terms of the temperature 7', Hansen and
Foslien (2015) proceeds by consolidating both equations into
a single equation which eliminates the condensation rate.

ot pi aT
1 — )2 L B p0)er) =
(¢ ®i) T + L(P ett) o

It pi
-V. De —kett | VT | =0 6
(( eff 3T + I eff ( )

The latter now poses a nonlinear yet closed PDE that can
be solved for the evolving temperature. Back-substituting
the resulting temperature into either Eq. (4) or Eq. (5) al-
lows us to evaluate the condensation rate ¢, without the free-
dom remaining to impose yet another closure relation. An
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additional, important implication of the near-equilibrium as-
sumption in Hansen and Foslien (2015) is the impossibility
to impose arbitrary boundary conditions for the vapor phase.
By construction of the model, the boundary conditions are
Dirichlet values for the equilibrium vapor concentration con-
sistent with the boundary temperatures. Similar to Calonne
et al. (2014) the feedback of a spatiotemporally evolving ice-
phase ¢;(z, t) is not considered in Hansen and Foslien (2015).

2.3 Parametrization of the PDE coefficients

Despite similarities in the forms of the PDEs, both mod-
els have used different parametrizations for the transport
coefficients Degr, kefr and (pC)efr and pyl. While the two-
scale homogenization presented in Calonne et al. (2014)
contains derived expressions for the effective properties in
terms of the microstructure as a byproduct, mixture theory
in Hansen and Foslien (2015) relies on independently postu-
lated parametrizations. The implications of these differences
are presently still under debate (Fourteau et al., 2021).

In general, there is a broad agreement that all effective pa-
rameters are primarily influenced by the density or ice vol-
ume fraction ¢;. The goal of the present paper is not an
exhaustive intercomparison of different formulations of the
parametrized coefficients in the analyzed snow pack mod-
els. We rather want to focus on the intrinsic features and
physical implications of the underlying process models. We
therefore aim to keep differences due to specific flavors of
the coefficients at the minimal level. To this end we use the
same parametrization for the equilibrium vapor pressure and
the effective heat capacity in both models but use differ-
ent parametrizations for the effective thermal conductivity
and diffusion constant. In the following we refer to these
PDE parametrizations as the Calonne parametrization and
the Hansen parametrization. All coefficients are stated ex-
plicitly in Appendix A.

2.4 Feedback from an evolving ice phase

The consistent treatment of phase changes requires a dy-
namic ice phase that evolves through recrystallization along-
side the vapor phase in a mass-conserving way. This was con-
sidered in neither Calonne et al. (2014) nor Hansen and Fos-
lien (2015). To investigate the feedback of an evolving ice
phase on the two models from above we supply Egs. (1)-(3)
and (4)—(5) with a dynamic ice mass conservation equation
(Bader and Weilenmann, 1992; Krol and Lowe, 2018). In the
absence of settling but in the presence of phase changes, the
continuity equation reduces to an ordinary differential equa-
tion for each location in space,

d v, (Calonne
= { Sc o ( )

ot o (Hansen)

; )

to balance the source terms in the vapor equations above. In
Calonne’s model v, can be evaluated from the closure rela-
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tion (Eq. 3), whereas Hansen’s ¢ has to be reconstructed from
either Eq. (4) or Eq. (5) as outlined before.

We summarize all symbols and parameter values of the
models in Table 1.

3 Finite element solution in FEniCS

To minimize the coding overhead and focus on the phys-
ical problem while keeping access to advanced numerical
adjustments, the coupled PDE model was implemented us-
ing the python-based finite element framework FEniCS (Al-
nas et al., 2015). It provides a high-level programming in-
terface for the solution of PDEs in their weak formulation,
with capabilities for parallelization and cross-platform porta-
bility via docker images. FEniCS’ flexibility arises from its
interface to the Unified Form Language (UFL) (Alns et al.,
2015) which supports an intuitive declaration of discrete FE
formulations of variational problems.

Below we outline the spatial and temporal discretization
for the weak formulation of both systems (Eqs. 1-3 and 4-5),
and describe the solution strategy employed for the coupled
PDEs.

3.1 Spatial discretization — standard Galerkin

The nonlinear PDE systems of interest can be rewritten in the
form

F(u)=0,

where F'(u) is a nonlinear differential operator, and u is the
(vector valued) solution that comprises the unknown fields.
Following a standard Galerkin approach, the PDE’s weak
formulation is obtained by multiplying F(u) =0 with test
functions v and integrating over the domain. The Galerkin
method approximates the solution as the sum over a discrete
set of basis functions {v;}, i.e.,u ~ }_;u ;jv;. This procedure
allows us to apply the differential operator to the test func-
tions. The test functions have a small support in which the
values are nonzero, which simplifies the integral evaluations
significantly. By choosing the test functions v from the ba-
sis {v;}, the PDE system is reduced to finding the roots of a
(nonlinear) algebraic system. This standard Galerkin proce-
dure is, for example, detailed in Donea and Huerta (2003).
The implementation in the open-source finite element soft-
ware FEniCS is straightforward.

3.2 Temporal discretization — theta method
Time derivatives are approximated using the theta method,

also known as Rothe’s method (Donea and Huerta, 2003).
For a PDE of the form

%u = F(u), ()
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Table 1. Symbols, defining equations and constants used in this study.

907

Symbol Name Equation/value ~ Unit

PDE state variables

T Temperature Egs. (2), (5) K

oy Vapor density Egs. (1), (4) kgm™3

b Ice volume fraction Eq. (7) -

PDE coefficients

(pC)esr  Effective heat capacity Eq. (A2) Jm—3K~!
Degr Effective vapor diffusion coefficient  Eqs. (A3), (AS5) m?s~!

keff Effective thermal conductivity Eqgs. (A3), (AS) WmlK!
c Ice deposition rate Eq. (5) kg m3s~!
Un Averaged interface velocity Eq. (3) ms~!

ol Equilibrium vapor density Eq. (A1) kg m~3
Constant parameters

0i Ice density 917 kg m~3

ki Ice thermal conductivity 2.3 wm~lK~!
ka Air thermal conductivity 0.024 Wm~! K]
Ci Ice heat capacity 2000 J kg_l K1
Ca Air heat capacity 1005 Jkg~1K!
L Ice latent heat of sublimation 2.6 x 10° Jm—3

Dy Diffusion coefficient of vapor in air 2 x 1072 m?s~!

B Kinetic coefficient 5.5x% 10° sm~!

s Surface area per unit volume 3770 m™~!
Parameters of the linear stability analysis

Tref Reference temperature Eq. (28)/263 K

?i.0 Reference ice volume fraction Eq. (29)/0.3 -

o Linearized kinetic coefficient Eq. (26)/3.62 m3s~! kg71

the discretization reads

un—i—l —u"

— n+l _ n
— —0F@ )+ (-0 F )

+O((1/2=0) At, At?), )

where u”" denotes the state vector’s solution at time #,,. Note
that for 6 =0 and 0 =1 this reduces to standard first-order
explicit and implicit Euler methods, respectively, whereas for
0 € (0, 1) it constitutes a weighted average of both.

3.3 Coupling scheme

Due to the different timescales of the involved equations, a
monolithically coupled solution for the vector u = (T, py, ¢;)
would be most consistent, yet it turns out to be inefficient.
The vapor equation has by far the fastest dynamics, followed
by the second fastest, the energy equation. The ice mass bal-
ance equations have much slower dynamics. The water vapor
and energy equations are coupled diffusion-reaction equa-
tions and directly determine the r.h.s. of all equations. There-
fore we solve them together in a first step and subsequently
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integrate the ice equation with its expected slower dynam-
ics in a separate step. This operator splitting allows an in-
dependent fine-tuning of the numerical methods. Practically,
we included the r.h.s. of the equations as an algebraic con-
straint in the state vector, i.e., u = (T, py, v,) for Calonne
and u = (T, ¢) for Hansen, which are then solved in a fully
coupled way. The ¢;-dependent coefficients of the vapor and
energy equations use ¢; from the previous time step. Subse-
quently ¢; is updated via v, (or ¢). Time step size is mostly
determined through the vapor and energy dynamics. Changes
in ¢;, and hence in the PDE coefficients, are therefore ex-
pected to be very small, which justifies the splitting-based
coupling procedure.

We apply different theta values for each differential opera-
tor. For the diffusion operators in the vapor and energy equa-
tions we use 8 = 0.5 (Crank—Nicolson) which is known to be
stable and convergent with second-order accuracy for linear
operators. As the phase change (source) terms are expected
to be stiff, a fully implicit, unconditionally stable backwards
Euler scheme with 6 = 1.0 is applied.
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4 Model comparison

To evaluate the models, we tested them on three different sce-
narios comprising specific combinations of initial conditions
(ICs) and boundary conditions (BCs). The first two scenar-
ios discussed in Sect. 4.1 and 4.2 are taken from Calonne
et al. (2014) and Hansen and Foslien (2015), respectively,
while the last (Sect. 4.3) is the simulation of a Gaussian-
shaped crust. The three scenarios test different relevant as-
pects of snow modeling, namely the transient response to
time-dependent BCs, piecewise-linear ice profiles covering
the entire range of snow densities and lastly a high-density
layer in a small sample with smooth, high-density gradients.
For each of the three physical scenarios, we evaluate three
model formulations: first, Calonne’s Egs. (1), (2) and (7) with
Calonne coefficient closure from Appendix A (referred to as
Cal-Eq/Cal-Par); second, Hansen’s Egs. (6) and (7) with the
Hansen coefficient closure from Appendix A (Han-Eq/Han-
Par); and third, the mixed case of Hansen’s Eqgs. (A5) and (7)
with Calonne coefficient closure (Han-Eq/Cal-Par).

4.1 Scenario 1: homogeneous snow — transient heating
at the boundary

The first scenario is proposed by Calonne et al. (2014) and
investigates the response of a homogeneous snow layer on
transient heating. The initial conditions are

T(z,0) = Tp, (10)
ov(z,0) = py (T (z,0)), (11)
#i(z,0) = ¢i 0, (12)

with Tp =273 K and ¢;,9 = 0.3. We employ a fixed Dirichlet
BC atz = 0 and a transient temperature dropatz = H = 1 m,
viz.

T(0,1) = To,
t r—t
T(H,t)=To— (Ty — To) <;®(t) - T@(r - r)),

ov(0,1) = py (T (0, 1)),
ov(H, 1) = py (T (H, 1)), (13)

where the transient drop is characterized by the Heaviside
step function ® with parameters 7 = 5h and Ty = 263 K.
The solutions of all three cases we obtain for this com-
bination of IC and BC are shown in Fig. 1 for + = 100 min.
Notably, Calonne’s and Hansen’s model along with their own
(different) parameterizations for the PDE coefficients deviate
in all variables since Hansen’s effective diffusion constant is
higher. This difference does not depend on the underlying
process models but is rather due to the formulations used
of the PDE coefficients as shown by the mixed case (Han-
Eq/Cal-Par) which coincides with Han-Eq/Han-Par. Only a
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small difference can be observed close to the right boundary,
where the changes in T and p, are the fastest, and therefore
the assumption p, & pf}q(T) underlying Hansen and Foslien
(2015) is violated.

4.2 Scenario 2: heterogeneous snow — fixed
temperature boundary conditions

Next we investigate the test case envisaged by Hansen and
Foslien (2015) that comprises a piece-wise linear density
profile as an approximation for a layered snowpack contain-
ing a crust with an additional ice layer at the bottom to con-
strain the vapor from below. The IC is given by

Z

T(z,0)="To— (T = To) 1, (14)
pv(z,0) = py (T (2, 0)), (15)
9i(z,0)

1 —-9.24257 z €10,0.08],

0.2606 7 €[0.08,0.64]
B 0.2606 +4.915(z — 0.64) z €[0.64,0.72] 16
- 0.6538 z7€[0.72,0.75] ’ (16)

0.6538 —4.915(z —0.75335) 7z €[0.75,0.86]

0.1295895 z €[0.86,1.0]

with Ty =273 K and Ty = 253 K. The BCs are given by

T@,t) =Ty,

T(H,t)=Ty,

pv(0,1) = py(T (0, 1)),

pv(H, 1) = piN(T (H, 1)). (17)

The corresponding simulation results are shown in Fig. 2 at
a simulation time of 38 h. Again, the fields py, and T highly
agree in homogeneous regions as long as the same parame-
terizations for the PDE coefficients are used. In contrast, the
phase change term (r.h.s. of the equations) shows an agree-
ment only if the same equations are used. This is revealed in
the kink regions of the profile where Han-Eq/Han-Par coin-
cides with Han-Eq/Cal-Par. This shows the different sensitiv-
ities of the T, py and phase change terms on the form of the
homogenized equation when density gradients are present.

4.3 Scenario 3: the Gaussian crust

To further detail the response to high-gradient regions in the
ice phase, our third scenario investigates the response of the
models to a smooth, small-scale density variation under a
temperature gradient in a shallow snow sample of height
H = 0.02m. This scenario investigates the response of the
models to density changes occurring on small length scales,
e.g., layer interfaces which can be monitored in tomography
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(a)

0.311
~ 0.30
=
0.294
0.0 0.2 0.4 0.6 0.8 1.0
z (m)
(b)
5 0.0E+00 —— Cal.-Eq/ Cal.-Par., t = 100 min
ME —-- Han.-Eq / Cal.-Par., t=100 min
) - Han.-Eq / Han.-Par., t =100 min
X< 2.0E-061
<
IS
Lp_ .....
&
0.0 0.2 0.4 0.6 0.8 1.0
z(m)
(c)
@ 4.50E-03/
IS
S~ -
[@)] N ~=
o~ —— Cal.-Eq / Cal.-Par., t = 100 min
3 4.00E-031 —-- Han.-Eq/ Cal.-Par., t =100 min
_— Han.-Eq / Han.-Par., t =100 min
0.0 0.2 0.4 0.6 0.8 1.0
z (m)
(d)
2731
272
3
= 2711 Cal.-Eq / Cal.-Par., t =100 min
— = Han.-Eq / Cal.-Par., t =100 min
2704 —-- Han.-Eq/Han.-Par., t =100min
0.0 0.2 0.4 0.6 0.8 1.0
z (m)

Figure 1. Comparison of Calonne’s and Hansen’s model for the response to a transient temperature decrease at the boundary without ice-
phase evolution: slight differences are observed if the models are used with their own formulation of coefficients (red and green line), while
both yield virtually indistinguishable results if the same coefficients are used (red and turquoise line).

experiments (Hammonds et al., 2015). In contrast to the pre-
vious two scenarios, the ice phase is now evolving according
to Eq. (7).

In the following we solely focus on differences between
Cal-Eqg/Cal-Par and Han-Eq/Han-Par and investigate this dif-
ference at different physical times. We refer to this scenario
as a Gaussian crust. As IC we employ

T(z,0>=To—<TH—To>§, (18)

https://doi.org/10.5194/tc-16-903-2022

pv(z,0) = py (T (z,0)), (19)

_ 2

9i(z,0) = ¢i,0 + Adio eXP{— 252
o

with 7o =273 K, Ty =253 K, ¢i.0 =0.3, Agi 0 =0.2, z0 =
0.01 m and 62 = 5 x 10~7 m?. For the Gaussian crust we use
the same boundary conditions as in Eq. (17).
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Figure 2. Comparison of Calonne’s and Hansen’s model for the response to a piecewise-linear, layered profile under a temperature gradient
without ice-phase evolution: the results for Hansen’s model are indistinguishable even if different PDE coefficients are used (green and

turquoise lines) but differ from the Calonne model (red line).

Figure 3 shows the simulation results for several points
in time. Similar to before the solutions for p, and T agree
very well, and notable differences are observed for the phase
changes in density transition regions. From this comparison
for a smooth density variation, two additional observations
can be made for both models. These are a consequence of
the evolving ice phase.

First, the Gaussian crust shows a quasi-advection in the
ice phase towards the warm boundary despite the absence of
an explicit advection term in the ice equation. During this
quasi-advection, density gradients steepen on the cold side

The Cryosphere, 16, 903-923, 2022

and flatten on the warm side. Far away from the crust a linear
density gradient emerges in the domain as a consequence of
the boundary conditions. The difference between the mod-
els lies in the apparent advection velocity. This is consistent
with the observed differences in the phase changes since re-
crystallization rates differ approximately by a factor of 2.

Second, in both models oscillations emerge at the lower
boundary. They are modest in the Calonne model and arise
at a considerably later time with smaller magnitude. For the
Hansen model these are apparent immediately.

These two observations are further detailed below.

https://doi.org/10.5194/tc-16-903-2022
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Figure 3. Comparison of Calonne’s and Hansen’s model each with their own formulation of coefficients. Both models are coupled to the
evolving ice phase for an initial Gaussian profile under a temperature gradient.

5 Quasi-advection of the ice phase

The quasi-advection of density heterogeneities in the ice
phase despite the absence of an explicit advection term in
Eq. (7) is a consequence of phase changes (vapor sublima-
tion and re-sublimation) as an intrinsic feature of the coupled
system.

To understand the origin of this quasi-advection, we ap-
proach the coupled system (Eqs. 1, 2 and 7) with sev-
eral analytical approximations. Justified by the separation of
timescales we first restrict ourselves to stationary heat trans-
fer and neglect the phase changes in the energy equation fol-

https://doi.org/10.5194/tc-16-903-2022

lowing arguments given in Calonne et al. (2014). This is a
considerable simplification since the two-way coupling be-
tween heat and vapor is eliminated. Consequently, the heat
equation VkeVT =0 can be solved for the BC of Eq. 17
independent of the vapor transport process even for an inho-
mogeneous ice profile, with its exact solution given by

JEd2! [kee(@i(z)]
J 2! kerr(¢i ()17

T(z)=To+ (Tu —To) 21

The local temperature (and its gradient) is thus a functional
of the heterogeneous, non-constant ice volume fraction ¢; via
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the dependence of the effective conductivity kegr on ¢;. We
express this in the form

T = Frléil, (22)

which defines the functional F7 via Eq. (21). Motivated by
the similarity between the solutions of Calonne et al. (2014)
and Hansen and Foslien (2015) found in the previous section,
we adopt the simplification from Hansen and Foslien (2015)
and account for deviations in the vapor concentration from
equilibrium only in the phase change (source) term. Again,
we use a stationary diffusion equation VDefprsq = PiSTVy
due to the separation of timescales between vapor and ice.
This allows us to rewrite the ice mass conservation Eq. (7) in
a conservative form as a single advection equation,

0
E‘pi + VG¢i] =0, (23)
with a functional,

1 3py(T)
G$i] = — Degl ] ————
[¢1] o eff [¢1] 3T T=Frii]

(Ty — To) lkefr (¢ (2))] !

(24)
Sz Therr(¢i ()17

that expanded ,osq(T) by means of the chain rule and then
uses the previously derived temperature expression (Eq. 22).
The boundary conditions

0
§¢>i(z,t)=0 for z=0,z=H (25)

follow from the BC p = py? of the vapor phase.

We stress the significance of this result. First, by using the
approximations for the heat and vapor transfer, the three cou-
pled heat and mass conservation equations can be equiva-
lently cast into a single continuity equation for the ice phase.
Second, the form of this continuity equation is a nonlinear
and non-local advection equation, which explains the nature
of this quasi-advection as a variant of shock formation remi-
niscent of the nonlinear Burgers equation (Du et al., 2012).

To test the derived approximation we have compared the
numerical solution of Eq. (23) to the full solution of the
Calonne model as shown in Fig. 4 for the Gaussian crust.
In general, the agreement between the two models is very
close, yielding almost identical results in homogeneous re-
gions, i.e., towards the boundaries and close to the center of
the crust. In the high gradient regions both models predict a
steepening of the gradient, which is faster in the advection
Eq. (23). Since Eq. (23) involves the same quasi-equilibrium
approximation as used for the Hansen model, these quantita-
tive differences are consistent with the results from the pre-
vious section.

Despite remaining differences, the approximation
(Eq. 23), together with Eq. (24), allows us to unambiguously

The Cryosphere, 16, 903-923, 2022

trace back the quasi-advection and gradient steepening to
the dependence of the effective diffusion constant and the
effective thermal conductivity on ice volume fraction: if Degf
was linear in ¢; and kefr was constant, Eq. (21) would take
the form of a simple advection equation, d;¢; + vV¢; =0,
with constant v. This would imply a shape invariant advec-
tion of any initial density profile. In contrast, the true Degr
decreases and kefr increases when the ice volume fraction is
increased. Both dependencies lead to a decrease in the flux
functional G in high-density regions, which explains the
emergent asymmetry in the crust shape.

Similar to Eq. (3), the numerical solution of the advection
equation also displays oscillations at the boundary already
after a few hours. This will be further detailed in the follow-
ing.

6 Pattern formation

All numerical solutions so far are subject to oscillations at
some point in time irrespective of the details. Therefore we
will investigate the nature of these oscillations, now only
considering the full Calonne model applied to the Gaussian
crust.

6.1 Oscillatory solutions

The following example shows simulations with varying mesh
size (number of elements n.) and varying time steps (d¢) for
the numerical solution at a fixed physical time. The results
are shown in Fig. 5. Figure 5a shows the entire domain, re-
vealing oscillations at the left boundary and on the sublimat-
ing side of the crust. Figure 5b shows a close up of the left
boundary, while Fig. 5S¢ shows a close-up of the sublimating
side of the crust. For very low mesh resolution (ne = 100,
corresponding to a mesh size of 0.2 mm) and large time step
(1 min), the solution in the vicinity of the crust oscillates
from node to node, while for sufficiently high resolution the
numerical solution converges to a smooth wave pattern in-
dependent of temporal and spatial resolution. This suggests
that these waves are an intrinsic feature of the Calonne model
equations rather than an artifact of the numerical scheme.

As an additional check we have analyzed the residuals
of the numerical solution (see Appendix B) which confirms
that patterns persist even when enforcing the residuals to ap-
proach zero.

6.2 Linear stability analysis

We use perturbation theory to further comprehend the os-
cillatory nature of the solution. Pattern formation in nonlin-
ear PDE systems can be generally understood by investigat-
ing the dynamics of perturbations around a known stationary
state via linear stability analysis of the dynamical equations.
To do so, we start from the full, nonlinear, coupled, transient
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Figure 4. Comparison between Calonne’s model coupled to an evolving ice phase and the derived advection Eq. (23) for an initial Gaussian

crust.

situation (Calonne model) in the form

La(py — pyY),
—api(py —pv),  (26)
alpy —py),

(0Ot T — VikettV, T =
(I — @) oy — V; DeftV; py
at¢i =

which is only subject to the simplification that on the r.h.s. the
division by peq(T') in Eq. (3) is subsumed in the prefactor o
which is assumed to be constant.

https://doi.org/10.5194/tc-16-903-2022

The system (26) is, as before, equipped with Dirichlet BC
for the two PDEs,

TO) = T,
T(H) = Ty,

pv(0) = pyd(To), @7
pv(H) = p(Tw),

at the bottom z = 0 and top z = H of the domain. To proceed
analytically, we need to make an additional assumption to
obtain an exact stationary solution of the system. We assume
that the equilibrium vapor concentration is a linear function
in T'. This is reasonable within thin layers where temperature

The Cryosphere, 16, 903-923, 2022



914

K. Schiirholt et al: An instability from nonlinear coupling in snow modeling — Part 1

(a)

—— ne=10000; dt = 60s

—— ne =3500; dt =60s

—— ne =3500; dt=2s
ne =1000; dt =60s
ne =350; dt=60s
ne =100; dt=60s

0.301
0.0000 0.0025 0.0050 0.0075 00100 0.0125 0.0150 00175  0.0200
z (m)
0.405 (b)
—=— n,=10000; dt = 60s
—<— ne =3500; dt=60s
0.4001 —— n.=3500; dt=2s
Ne = 1000; dt = 60s
0.3951
=
0.390
0.3851
0.380 | | . | | |
20.0001  0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
z (m)
(c)
0.44 1
0.42 1
0.40 1
0.381
~ 036
s —=— . =10000; dt = 60s
0.341 —— N, =3500; dt = 60s
0.321 —— . =3500; dt=2s
ne =1000; dt = 60s
0.30 —aEal A=
—%— n.=350; dt=60s
0.28 —— n.=100; dt=60s
0.0080 0.0085 0.0090 0.0095 0.0100 0.0105 0.0110
z (m)

Figure 5. Sensitivity of the numerical solution to mesh resolution and time step size: (a) entire domain, (b) close-up of the left bound-

ary region and (c) close-up of the sublimating (right) side of the Gaussian crust. Apart from the coarsest resolution, the lines are almost
indistinguishable, indicating numerical convergence to the true solution.
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differences are small and a linearization of the equilibrium
vapor curve is always justified. This linearization is written
in the form

oy i) = pot + pyUT — Trer) (28)

as an expansion around a reference temperature Tir (e.g., the
mean temperature in the sample). With this assumption, a
stationary solution of Eq. (26) can be obtained by inspection.
It is easily verified that the system

TOG@) = To+Ty—Tog.
P (2) (T O (2)), (29)
¢i(0) (@) = ¢i0,

satisfies Eq. (26) with BC Eq. (27) for arbitrary, constant vol-
ume fraction ¢; .

To carry out the stability analysis we use a vector notation
and combine the fields in the vector u := (T, py, ¢;). Then
the PDE system (26) can be written in the matrix form

Cu)ou — K(u)VZZu — (V. Ku))(V.u) =Ru+ f (30)

with state-dependent (3 x 3) matrices K(u), C(u), constant
matrix R and constant vector f defined by

[(pC)eit 0 0
C = 0 (I—-¢) 0 |,
0 0o 1
[kett 0 0
K = 0 Def‘f 0 3
0 0 0 .
_—L(x,(;zq La O @D
R = piap;.  —pia 0 |,
_—(x,ofq o 0
[ Lap, Tret — Lapy’
f o= | —piap et + picepg
& [
ap]qTref - Olpoq

Then, the (stable) stationary state of Eq. (29) is denoted by
the vector

u®:= (1, . ¢"). (32)

The nonlinearities of Eq. (30) emerge from the dependence
of the matrices K = K(u) and C = C(u) on u. Note that this
dependence is solely through the third component of u (i.e.,
¢i) which highlights the special role of the density (evolu-
tion).

Next we investigate the linear stability of the fixed
point (32). To this end we make an ansatz,

w=u® g (33)

and investigate the dynamics of the deviation from the sta-
tionary state #® by deriving an equation for #(!) through a
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perturbation expansion of Eq. (30) in first order. This proce-
dure (carried out in detail in Appendix C) yields an equation
for the Fourier modes @V (k) of the perturbation for wave
number k£ which can be written in the form

da ke, 1) =MV (k, 1), (34)

with a wave-number-dependent matrix,
-1 -1 —1
M= —k[CO] KO +ik[c¥] VO +[cO] R (35)

with constant matrix coefficients K@, V©® and C©, The
eigenvalues of My control the behavior of the system in
the vicinity of the stationary state. The matrix My is non-
Hermitian due to the “advection” matrix V(® and the “phase
change” matrix R. Thus these two processes can principally
cause eigenvalues with positive real parts (causing a growth
of perturbations) and nonzero imaginary parts (causing oscil-
latory behavior). In the case of V© =R =0, Eq. (35) pre-
dicts negative eigenvalues for all £ > 0 and no pattern forma-
tion as it should be for simple diffusion equations.

The matrix My can be diagonalized in closed form using
the symbolic algebra software MAPLE and eigenvalues sub-
sequently separated into real and imaginary parts. Evaluat-
ing the eigenvalues with the corresponding parameter values
from Table 1 shows that one of the eigenvalues has positive
real part and nonzero imaginary part indicating a wave insta-
bility. This is controlled by the matrix V© with the coeffi-
cients k1 and D (see Eq. C12 in Appendix C) which charac-
terize the sensitivity of the effective coefficients on density.
Thus the instability originates from the fact that the effective
diffusivity or the effective conductivity of snow depend on
ice volume fraction (or snow density), and it is triggered by
transitions in snow density, i.e., layers.

We can compare the prediction of the stability analysis
with the simulation of the full model for the Gaussian crust
by analyzing the growth of amplitude of Fourier modes for
wave number k through the power spectral density of the
perturbation. To this end we have computed the third com-
ponent of the perturbation vector ugl) = ¢i(z,1) — ¢i(z,0)
as the deviation from the initial, oscillation-free state. The
space—time plot of the perturbation in real space is shown in
Fig. 6a which shows the emergence of the traveling wave.
Discrete time steps are shown in Fig. 6b which displays the
self-amplifying behavior of the density modulation in the
layer-transition region, i.e., at the boundary of the crust. The
power spectrum |zlgl)|2 of the perturbation is computed via
fast Fourier transform and shown in Fig. 6c¢ as a function of
wave number for different times, together with the theoreti-
cally predicted range of instability (eigenvalues with positive
real part and nonzero imaginary part, gray region) derived
from the diagonalization of the matrix M. The comparison
confirms that growing modes are consistently lying in the un-
stable range. This supports our theoretical explanation that
wave-like patterns emerge in regions of high-density gradi-
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Figure 6. Space—time plot of the perturbation field (a), profiles at different time steps (b) and corresponding power spectra (c).

ents as an inherent feature of the coupled heat and mass trans-
port in snow with density-dependent material properties.

7 Sensitivity studies

Finally we conducted a few sensitivity studies to facilitate a
discussion about the relevance of our findings in future snow
modeling.

To confirm that observed wave patterns in the Gaussian
crust are robust against variations of absolute values in tem-
perature gradients and initial crust density, we simulated a
denser Gaussian crust with different values for the tempera-

The Cryosphere, 16, 903-923, 2022

ture gradient. Figure 7a shows that the nonlinear PDE system
essentially obeys time vs. temperature gradient scaling. Vir-
tually the same wave solution is obtained at different physi-
cal times ¢ which scale as ¢ ~ (VT)~!. This test also shows
that for a higher crust density, the density depletion on the
sublimating side is more pronounced.

Second we subjected a smoothly varying density profile
to a temperature gradient of 50 Km~! and conducted a long
simulation over 170 d. The results are shown in Fig. 7b. This
confirms that if the density profile is sufficiently smooth,
even an entire season simulation shows a stable, smooth ad-
vection of the ice phase.
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Figure 7. Simulation of the fully coupled system: (a) time-temperature scaling. (b) Evolution of a smooth initial ice profile and fixed mean
temperature gradient of 50 Km~!. (c) Same as (b) but with homogeneous Neumann BC and impact on depletion of mass at the boundary.

Finally, we mimic the situation of a snowpack over a dry
soil where no vapor can enter the system from below by im-
posing a zero-flux Neumann BC on the vapor equation. The
results are shown in Fig. 7c indicating the order of magnitude
of the expected depletion of the snow mass at the bottom for
purely diffusive vapor transport under the influence of a tem-
perature gradient of 50 Km™! for an entire season.

8 Discussion
8.1 Comparison of published homogenization schemes

We have revisited published models of coupled heat and (dif-
fusive) vapor transport in snow. To investigate their numeri-
cal requirements we have implemented a stand-alone solver
in the open-source software FEniCS for the sake of flexibil-
ity in numerical experiments involving spatial and temporal
resolution, solution strategies, and accuracy.

From a mere physical point of view, our comparison of
Calonne et al. (2014) and Hansen and Foslien (2015) has
shown that both schemes yield similar results as long as
the same parametrizations are used as closure for the PDE
coefficients. The impact of purely diffusive vapor transport
on macroscopic density changes is rather small (Fig. 7), in
agreement with Jafari et al. (2020). Accurate estimates will
certainly rely on the choice for the parametrization of the
transport coefficients which naturally cause differences in the
results (Fig. 1). In homogeneous parts of the snowpack these
differences are small, and larger differences can be expected
at layer transition regions (Fig. 2) where phase changes sen-
sitively react to the underlying homogenized process model
equations.

For the present work, however, the precise numbers were
of minor importance. The primary goal was an assessment of
the nonlinearity that is contained in published vapor homog-
enization schemes and their numerical requirements in view
of previously reported numerical issues (Jafari et al., 2020,
Adams and Brown, 1990, and Hansen and Foslien, 2015).
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While we have certainly challenged the numerical scheme by
predominantly exploring high-temperature and high-density
gradients, the observed time—gradient scaling (Fig. 7) indi-
cates that the underlying nonlinear mechanisms are generally
robust against these details.

8.2 Oscillatory behavior in the numerical solution

We have discovered that both models (Calonne et al., 2014;
Hansen and Foslien, 2015) exhibit oscillations in the numer-
ical solution if they are dynamically coupled to an evolving
ice phase (Eq. 7). From our analysis of different combina-
tions of initial and boundary conditions (Sect. 4) we conclude
that two types of oscillations can occur: node-to-node oscil-
lations (indicating numerical problems) and smooth oscilla-
tions (features of the underlying equations)

In view of numerical problems, we have shown that the
dynamic coupling of the ice phase to heat and mass trans-
port is equivalent to an advection of the ice phase (Sect. 5).
The nonlinear nature of this advection causes a self-amplified
increase in density changes and layer transitions, imposing
special requirements on mesh resolution, time stepping and
potentially shock-capturing schemes (Shu and Osher, 1988)
to avoid oscillations. The fact that node-to-node oscillations
occur on the “outflow” boundary of the ice phase supports
this. In most of our simulations we have imposed a Dirich-
let boundary condition of the vapor phase which is strictly
in equilibrium on the boundary. By virtue of Eq. (23) this
implies that the snow density cannot change directly at the
boundary, while in the interior of the domain the ice is pil-
ing up towards the boundary under the advection (Fig. 4).
This is reminiscent of outflow boundaries in fluid dynamics
for high local Péclet numbers (Donea and Huerta, 2003): the
disagreement between the information transported through
the domain from the cold boundary and the information pre-
scribed on the warm boundary is numerically resolved by
steep node-to-node oscillations (Fig. 3). Similar issues can
arise whenever abrupt changes in the advection velocity can-
not sufficiently be resolved on a given mesh, as in Fig. 5 in
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the middle of the domain. This interpretation of node-to-node
oscillations is supported by the fact that oscillations can be
completely suppressed on the lower boundary by choosing a
boundary condition, Vp, = 8/3T py?V T, for the vapor equa-
tion, which implies a vanishing gradient for the ice profile
at the boundary. Our tests indicated that node-to-node oscil-
lations can be eliminated by choosing a high resolution in
space and time. A more efficient approach might be the uti-
lization of stabilization methods for which our approxima-
tion (Eq. 23) may serve to provide a local advection veloc-
ity of the ice phase which needs to be supplied, for example,
to a streamline upwind Petrov—Galerkin stabilization scheme
(Donea and Huerta, 2003).

After increasing mesh and time resolution to suppress nu-
merical problems, the true solution converges to a smooth,
traveling wave pattern (Figs. 5, 6). As confirmed by the theo-
retical analysis, these oscillations are true features of the non-
linear homogenization equations and are triggered by gradi-
ents in the density (Sect. 6.2). These patterns can only form
when the ice equation is dynamically coupled to the heat
and vapor equation in a mass-conserving way. At the bound-
ary, these physical oscillations are triggered as a consequence
of the Dirichlet boundary condition as explained above: the
competition of a fixed value of ¢; directly on the boundary
for z =0 (implication of the imposed boundary conditions
on the vapor phase for Eq. 7) and the increase in ¢; in the
interior of the domain gives rise to a transition layer at the
boundary with a high-density gradient in the ice phase that
triggers the instability according to the mechanism revealed
in Sect. 6.2. This is again supported by the fact that the phys-
ical oscillations at the boundary can be suppressed by choos-
ing the BC for the vapor equations such that the gradient in
ice volume fraction vanishes. This behavior is reminiscent of
the wave instability triggered by a Dirichlet boundary condi-
tion in a 1D nonlinear reaction—advection—diffusion system
(Vidal-Henriquez et al., 2017) which travels upstream into
the domain.

8.3 Weak layer formation by wave instability?

We have shown that spatial heterogeneities in the density and
ice volume fraction can amplify under the coupled thermody-
namic description in snow. This has been pointed out before
(Adams and Brown, 1990). We have investigated this phe-
nomenon within the idealized scenario of a Gaussian crust
where density gradients self-amplify under the nonlinear ad-
vective dynamics with a subsequent instability and the emer-
gence of wave patterns. The eigenvalues of the linearized
PDE system in our linear stability analysis have revealed the
mechanism: a non-homogeneous density paired with the den-
sity dependence of the effective diffusion coefficients trig-
gers the instability. Pattern formation following an instability
is ubiquitous in nonlinear (diffusion—reaction) PDEs (Cross
and Hohenberg, 1993).
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In the present case, the observed instability may have far-
reaching consequences, which comes as a (surprising) side-
product of our numerical study: as the instability causes
the depletion of density on the sublimating side of a crust
(Fig. 7a), it explains why a low-density (mechanically weak)
layer can form under these conditions. For high-density
crusts, the parameters and model components used here
predict a considerable reduction in the density in a sub-
millimeter layer above the crust (Fig. 7a). This mechanism is
solely a consequence of the continuum description of snow.
We stress that this is different from a previously suggested
reasoning (Colbeck and Jamieson, 2001), and it may occur
as a superimposed effect on additional microstructural con-
trols through near-crust metamorphism (Hammonds et al.,
2015). In the future, it will be therefore important to assess
how this instability is affected by adding mechanical settling,
an evolving microstructure or enhanced mass transport from
convection.

8.4 Open questions
8.4.1 Limits of the homogenization scheme

The present work poses questions on the limits of validity of
the homogenization schemes used that are relevant for a user
of the equations.

First, as detailed in Calonne et al. (2014), the homog-
enized Egs. (1) and (2) are not valid for arbitrary growth
rates. This is a tricky situation since the PDE system exhibits
self-propelled dynamics into a state of fast growth for high-
density gradients, thereby leaving its own range of validity.
However, since the homogenization scheme (Calonne et al.,
2014) does not contain the ice phase, it remains unclear if the
equations used remain valid if a dynamical ice phase were in-
cluded in the first place.

Second, the two-scale homogenization (Calonne et al.,
2014) states assumptions on length scales, on which the de-
scription is meant to be valid. The expansion dictates what
can be considered as homogenous: macroscopic scale which
is sufficiently large against the microstructural length scale.
But what happens if the derived equations contain mathe-
matical features on smaller scales which violate the separa-
tion of scales? We have shown that the wave instability pro-
duces patterns on millimeter to sub-millimeter scales requir-
ing ridiculously small mesh sizes to resolve them, clearly in-
terfering with characteristic length scales of the microstruc-
ture. What is a consistent way of dealing with this situation?
Resolving them numerically and averaging them out? Sup-
pressing them numerically by artificial diffusion? Or does
this behavior signal true multi-scale effects where the as-
sumed “separation of scales” fundamentally breaks down?
Answering these questions appears to be a key demand for
future work on homogenization to provide a robust recipe on
how to use derived equations correctly for applied modeling.
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8.4.2 Discontinuous vs. continuous description of a
stratified snowpack

Any snowpack contains variations in its properties that may
be described either by continuous profiles containing large
gradients (as done here) or by a discontinuous stacking of
layers. We want to point out here that if a continuous de-
scription of density variations were to be replaced by discon-
tinuous layers, the investigated wave problem will not simply
disappear. In a hypothetical discontinuous layer description,
as commonly pursued in snowpack models, the mass con-
tinuity of the ice phase at the layer interface would require
us to derive a dynamic (nonlinear) equation for the migra-
tion of the layer interface on which the continuity of tem-
perature and heat and mass fluxes were to be imposed. From
the continuous description used here, no firm conclusion can
be drawn on the behavior of the interface evolution between
discontinuous, homogeneous layers. We hypothesize though
that the wave instability of the continuous PDE formulation
may translate into an oscillatory instability for the position of
the interface. In view of the mathematical overhead of track-
ing continuity conditions at moving interfaces, we tend to
recommend a continuous description in future snow model-
ing with numerical schemes that cope with arbitrary gradi-
ents in the properties.

8.5 Advantages and disadvantages of the numerical
framework

We have used FEniCS for the stand-alone implementation
to minimize the finite element method implementation effort
while retaining full control of the numerical solution. Overall
FEniCS provides a convenient, modular setup for exchang-
ing PDE coefficients (keff, Deff) or boundary conditions, e.g.,
for more sophisticated exchange of vapor with the soil or the
atmosphere. Alongside our study, we evaluated the FEniCS
framework by comparing numerically different implementa-
tions. These experiences are shared for future reference.

We found that integration by parts in the weak formula-
tion is not only necessary to apply Neumann boundary con-
ditions but also increases the precision, regardless of the or-
der of interpolation polynomials. Operator splitting turned
out to be of limited value, the decrease in precision was not
outweighed by a decrease in numerical complexity. As ex-
pected, a non-dimensionalization of the equations and the
corresponding re-scaling to values of order unity did not im-
pact the solution, as long as solver convergence settings are
adapted. Increasing the polynomial order of the test functions
was equivalent to increasing the mesh resolution with the cor-
responding number of nodes. However, we experienced large
errors if the polynomial order of the variables of the coupled
equations was not the same: solving ¢; in first order and py
and T in second order caused large errors in the entire do-
main and also violation of the Dirichlet boundary condition.
Adding auxiliary algebraic variables (as done here for the
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source terms) can improve the solvability of the system when
convergence settings of the coupled system are adapted. Us-
ing so-called sub-functions in the formulation of the varia-
tional problem for coding modularity can introduce errors.
We encountered deviations between a sub-function value and
its hard-coded counterpart.

While FEniCS has provided an excellent numerical frame-
work for the present study, a clear drawback of FEniCS
would however emerge if mechanical settling was to be con-
sidered as a necessary, future extension. In the presence of
settling, the ice-phase conservation equation is an advection-
dominated problem which is notoriously difficult to solve
on a Eulerian FE mesh without numerical smoothing. Re-
meshing is currently not supported in FEniCS. To this end
we have explored another, fully different numerical route to
enable a flexible coupling of transport and phase changes to
mechanical settling which is presented in Part 2 of this com-
panion paper (Simson et al., 2021).

9 Conclusions

We have shown that the widely accepted form of homoge-
nized vapor transport equations in snow predicts mathemati-
cal features (density waves) with interesting physical impli-
cations (weak layers) which constitute a considerable numer-
ical challenge for future snowpack modeling.

Combining numerical experiments with theoretical con-
siderations we have shown that the wave instability origi-
nates from the dependence of the effective heat and vapor
diffusion coefficients (kefr, Defr) on snow density. Since this
dependence is the most fundamental nonlinearity in coupled
heat and vapor transport in snow, it is unlikely that this ef-
fect will luckily disappear when considering more complex,
nonlinear extensions of the model. The instability is a true
feature of published equations and comes into play when the
ice phase is dynamically coupled to the vapor phase by phase
changes in a mass-conserving way.

The instability is triggered by high-density gradients
which either (pre-)exist in snowpacks in the form of layers
or are generated from the self-amplification of density gra-
dients under the coupled dynamics. This amplification is a
consequence of the effective advection of the ice phase due
to phase changes. This is explained within the derivation of
an approximate, nonlinear and non-local advection equation.
Given the observed (approximate) equivalence between time
and imposed temperature gradient, the system always under-
goes a self-propelled evolution into its own instability. The
instability might be practically irrelevant as long as smooth
density profiles are considered. But the instability will cer-
tainly become relevant if a snowpack model should be appli-
cable to simulate a sublimating side of a crust as a potential
origin of weak layer formation.
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We have outlined open questions and limitations of the
present study related to the homogenization scheme, the nu-
merical scheme and the concept of discontinuous layers.
While the present study required a stand-alone numerical
implementation, it seems to be of key importance that fu-
ture snow models will be flexible enough for conducting ad-
vanced numerical studies. Only then will re-implementations
of stand-alone numerical experiments become obsolete and
the rich, nonlinear behavior of snow be able to be predicted
from a snow model alone.

Appendix A: Parametrizations of the PDE coefficients

For the equilibrium vapor pressure we used the parametriza-
tion from Libbrecht (1999) given by

exp(=T:/T)

, (Al
kgT/mu,0 (A

ot = (ao +ai (T — Tm) +ax(T — Tm)2>

with T, = 273.15K, ap = 3.6636 x 10! Pa, a; = —1.3086 x
108 PaK™!, ay = —3.3793 x 10°PaK 2, T; = 6150K, the
conversion from pressure to density through the ideal gas law
and kT /my,0 =461.3Tkg ' KL,

For the effective heat capacity we used a volume-averaged
formulation given in Calonne et al. (2014):

(pC)eft = 9ipiCi + ¢P202Ca, (A2)

with Cj, C, and p; given in Table 1.

In the Calonne case we used for the effective diffusion pa-
rameters Eq. (12) from Calonne et al. (2011) and the self-
consistent estimate used in Calonne et al. (2014) given by

keit(¢1) = ko + k1 pigh + k2 (pighi), (A3)
Detr(¢1) = Do(3¢i — 1)/2, (A4)

with kg = 0.024, k; = —1.23x 1074, kp = 2.5x 107 and Dy
given in Table 1.

In the Hansen case we used Eqs. (87) and (88) from
Hansen and Foslien (2015) given by

keﬁ(¢i) = ¢i ((1 - ¢i)ka +¢iki) +¢a
kik,

, (A5)
91 (ko + LD ) + (1= g ki
Dett(¢i) = ¢i(1 — ¢i) Do + Pq
kiDo . (A6)

bi (ka + LDOZ”G#) + (1 =ik

and ky, ki, L and Dg given in Table 1.

Appendix B: Analysis of residuals

Due to the lack of an analytical solution for the nonlin-
ear problem, we used the nodal residuals as an indica-
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Figure B1. Results upon lowering the residuals of all equations.
While some pattern is still visible, the order of magnitude is small
enough to assume small errors in the solution as well.

tor for the solution error. FEniCS does not provide ac-
cess to the nodal residuals to verify convergence in the
NonlinearVariationalSolver class. To this end we
recovered the residuals manually by decoupling the equa-
tions and iterating over individually fine-tuned solvers for
each equation. The results are shown in Fig. B1. While in
this solution scheme the residuals are several orders of mag-
nitude smaller than in our regular setup, the onset of the wave
instability remains the same (Fig. B2).

Appendix C: Perturbation expansion of the
heat—vapor—ice system

Carrying out the perturbation expansion of the PDE system
(Eq. 30) around the stationary state (Eq. 31) using the ansatz
(Eq. 33) requires two auxiliary relations which are stated be-
low.

First, for any matrix M = M(u) that depends only on the
third component u (ice volume fraction ¢;) the following
holds:

oM(u)
99;
where (-) denotes the scalar product on the 3D (T, p, ¢) so-
Iution space.

Second, the expansion around the fixed point of an arbi-
trary matrix M = M(u) that depends only on the third com-
ponent u (ice volume fraction ¢;) reads
oM(u)

d¢i
=M 4 (e5-u)MD, (C2)

V:M(u) = (e3 - V;u)

, (ChH

M(u) = M(u(o)) + <e3 . u(l))

u=u®’

where we use the following shorthand notation for the matrix
coefficients:
) _ 0"M(u)

M .
8¢>1” u=u®

(C3)
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Figure B2. Comparison between node-to-node oscillation patterns
for the regular setup and the low-residual setup.

Now we can state the expansion of the PDE system
(Eq. 30) to first order in u as follows:

[c© + (e3 -u(”) CON[0,u® + 8,u™]
0 1 1 2.0 2..(1
_[K( ) 4 (e3 - u MK )] [Vzu< ) 4+ v2u )]
~[(e3- Vo) + (5 Vo) |
KD+ (5 uKP | [V ® + V]
=Ru +RuV + f. (C4)

Equating zero- and first-order terms in u® provides an
equation that is satisfied by the stationary state as it should
be. By collecting terms linear in ") the governing equation
reads

CO3uM — KOy — [(e3 : vzua))] [Ku)]

: [Vzu(o)] —RuV, (C5)
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The advection term can be re-written in the form
KD [V,u® ®e3]V,u), and after multiplying the corre-
sponding matrices we arrive at the final, linear PDE system
with constant coefficients:

COg,u® K(0>Vz2u(1) VOV = RuD, (C6)
with coefficient matrices given by

[ (pC)efr(1,0) 0 0

cO= 0 (1—¢i0) 0 |, (C7)
0 0 1
[ ket (¢i.0) 0 0

KO = 0 Defe(¢io) 0 |, (C8)
0 0 0
_ . -

0 kl HH 0

VO=10 0 ppjilezlo |, (C9)
(0 0 0 ]
_—Loc,ofq Lae 0]

R=| pap® —pie 0 |, (C10)
[ —ap® @ 0]
[ Lap, Trer — Lapy

f = —piep Tret + pia pg* (C11)

O[pfq Tref — Ol,qu
In the latter step we employed the expansions of the diffusion

coefficients around the reference volume fraction ¢; o in the
form

kett = ko + k1(¢i — 91,0,
Dett = Do + D1(¢i — ¢i,0)-

Generally, it seems feasible (though tedious) to carry out
an expansion of Eq. (C6) in a finite domain in terms of the
eigenfunctions of the differential operator satisfying the BC.
This would allow us to incorporate the impact of the BC into
the stability analysis. Since u© already satisfies the origi-
nal Dirichlet conditions, the perturbation #!) must vanish
on the boundaries. However, we limit ourselves here to the
simpler case of a stability analysis in an infinite domain and
take continuous Fourier transforms of Eq. (30) with respect
to z. Denoting the Fourier variable by k we end up with the
final result stated in Eq. (34)

(C12)
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