Articles | Volume 16, issue 12
https://doi.org/10.5194/tc-16-4931-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4931-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An assessment of basal melt parameterisations for Antarctic ice shelves
Clara Burgard
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Nicolas C. Jourdain
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Ronja Reese
Department of Geography and Environmental Sciences, Northumbria University, Newcastle Upon Tyne, UK
Adrian Jenkins
Department of Geography and Environmental Sciences, Northumbria University, Newcastle Upon Tyne, UK
Pierre Mathiot
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Related authors
Justine Caillet, Nicolas C. Jourdain, Pierre Mathiot, Fabien Gillet-Chaulet, Benoit Urruty, Clara Burgard, Charles Amory, Christoph Kittel, and Mondher Chekki
EGUsphere, https://doi.org/10.5194/egusphere-2024-128, https://doi.org/10.5194/egusphere-2024-128, 2024
Short summary
Short summary
Internal climate variability, resulting from processes intrinsic to the climate system, modulates the Antarctic response to climate change, by delaying or offsetting its effects. Using climate and ice-sheet models, we highlight that irreducible internal climate variability significantly enlarges the likely range of Antarctic contribution to sea level rise until 2100. Thus, we recommend considering internal climate variability as a source of uncertainty for future ice-sheet projections.
Abigail Smith, Alexandra Jahn, Clara Burgard, and Dirk Notz
The Cryosphere, 16, 3235–3248, https://doi.org/10.5194/tc-16-3235-2022, https://doi.org/10.5194/tc-16-3235-2022, 2022
Short summary
Short summary
The timing of Arctic sea ice melt each year is an important metric for assessing how sea ice in climate models compares to satellite observations. Here, we utilize a new tool for creating more direct comparisons between climate model projections and satellite observations of Arctic sea ice, such that the melt onset dates are defined the same way. This tool allows us to identify climate model biases more clearly and gain more information about what the satellites are observing.
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2369–2386, https://doi.org/10.5194/tc-14-2369-2020, https://doi.org/10.5194/tc-14-2369-2020, 2020
Short summary
Short summary
The high disagreement between observations of Arctic sea ice makes it difficult to evaluate climate models with observations. We investigate the possibility of translating the model state into what a satellite could observe. We find that we do not need complex information about the vertical distribution of temperature and salinity inside the ice but instead are able to assume simplified distributions to reasonably translate the simulated sea ice into satellite
language.
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2387–2407, https://doi.org/10.5194/tc-14-2387-2020, https://doi.org/10.5194/tc-14-2387-2020, 2020
Short summary
Short summary
The high disagreement between observations of Arctic sea ice inhibits the evaluation of climate models with observations. We develop a tool that translates the simulated Arctic Ocean state into what a satellite could observe from space in the form of brightness temperatures, a measure for the radiation emitted by the surface. We find that the simulated brightness temperatures compare well with the observed brightness temperatures. This tool brings a new perspective for climate model evaluation.
Jonathan Wiskandt and Nicolas Jourdain
EGUsphere, https://doi.org/10.5194/egusphere-2024-2239, https://doi.org/10.5194/egusphere-2024-2239, 2024
Short summary
Short summary
In ocean models, submarine melt of ice shelves is parameterized based on the heat budget at the interface. The heat budget includes the ocean heat transport, the heat conducted into the ice and the heat available for melting. Here we compare three different approaches to estimate the heat conduction. We show that the most accurate approximation is not the one used most, despite it overestimating the melt by up to 25 % and not being computationally more expensive.
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Adrian Jenkins, and Kaitlin A. Naughten
EGUsphere, https://doi.org/10.5194/egusphere-2024-1838, https://doi.org/10.5194/egusphere-2024-1838, 2024
Short summary
Short summary
Glaciers in the Amundsen Sea region of Antarctica have been retreating and losing mass, but their future contribution to global sea level rise remains highly uncertain. We use an ice sheet model and uncertainty quantification methods to evaluate the probable range of mass loss from this region for two future climate scenarios and find that the rate of ice loss until 2100 will likely remain similar to present-day observations, with little sensitivity to climate scenario over this short timeframe.
David Storkey, Pierre Mathiot, Michael J. Bell, Dan Copsey, Catherine Guiavarc'h, Helene T. Hewitt, Jeff Ridley, and Malcolm J. Roberts
EGUsphere, https://doi.org/10.5194/egusphere-2024-1414, https://doi.org/10.5194/egusphere-2024-1414, 2024
Short summary
Short summary
The Southern Ocean is a key region of the world ocean in the context of climate change studies. We show that the HadGEM3 coupled model with intermediate ocean resolution struggles to accurately simulate the Southern Ocean. Increasing the frictional drag that the sea floor exerts on ocean currents, and introducing a representation of unresolved ocean eddies both appear to reduce the large-scale biases in this model.
Catherine Guiavarc'h, Dave Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene T. Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
EGUsphere, https://doi.org/10.5194/egusphere-2024-805, https://doi.org/10.5194/egusphere-2024-805, 2024
Short summary
Short summary
GOSI9 is the new UK’s hierarchy of global ocean and sea ice models. Developed as part of a collaboration between several UK research institutes it will be used for various applications such as weather forecast and climate prediction. The models, based on NEMO, are available at three resolutions 1°, ¼° and 1/12°. GOSI9 improves upon previous version by reducing global temperature and salinity biases and enhancing the representation of the Arctic sea ice and of the Antarctic Circumpolar Current.
Brad Reed, J. A. Mattias Green, Adrian Jenkins, and G. Hilmar Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-673, https://doi.org/10.5194/egusphere-2024-673, 2024
Short summary
Short summary
We use a numerical ice-flow model to simulate the response of a 1940s Pine Island Glacier to changes in melting beneath its ice shelf. A decadal period of warm forcing is sufficient to push the glacier into an unstable, irreversible retreat from its long-term position on a subglacial ridge to an upstream ice plain. This retreat can only be stopped when unrealistic cold forcing is applied. These results show that short warm anomalies can lead to quick and substantial increases in ice flux.
Nicolas C. Jourdain, Charles Amory, Christoph Kittel, and Gaël Durand
EGUsphere, https://doi.org/10.5194/egusphere-2024-58, https://doi.org/10.5194/egusphere-2024-58, 2024
Short summary
Short summary
A mixed statistical-physical approach is used to reproduce the behaviour of a regional climate model. From that, we estimate the contribution of snowfall and melting at the surface of the Antarctic Ice Sheet to changes in global mean sea level. We also investigate the impact of surface melting in a warmer climate on the stability of the Antarctic ice shelves that provide a back stress on the ice flow to the ocean.
Justine Caillet, Nicolas C. Jourdain, Pierre Mathiot, Fabien Gillet-Chaulet, Benoit Urruty, Clara Burgard, Charles Amory, Christoph Kittel, and Mondher Chekki
EGUsphere, https://doi.org/10.5194/egusphere-2024-128, https://doi.org/10.5194/egusphere-2024-128, 2024
Short summary
Short summary
Internal climate variability, resulting from processes intrinsic to the climate system, modulates the Antarctic response to climate change, by delaying or offsetting its effects. Using climate and ice-sheet models, we highlight that irreducible internal climate variability significantly enlarges the likely range of Antarctic contribution to sea level rise until 2100. Thus, we recommend considering internal climate variability as a source of uncertainty for future ice-sheet projections.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
EGUsphere, https://doi.org/10.5194/egusphere-2024-95, https://doi.org/10.5194/egusphere-2024-95, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change arising from ice sheet-ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations, and study how models respond to a range of perturbations in climate and ice-sheet geometry. The 2nd Marine Ice Sheet Ocean Model Intercomparison Project, will continue to lay the groundwork for including ice sheet-ocean interactions in global scale, IPCC class models.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée Slangen
State Planet Discuss., https://doi.org/10.5194/sp-2023-36, https://doi.org/10.5194/sp-2023-36, 2023
Revised manuscript accepted for SP
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scale, to support evidence-based policy and decision making primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Lena Nicola, Ronja Reese, Moritz Kreuzer, Torsten Albrecht, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2583, https://doi.org/10.5194/egusphere-2023-2583, 2023
Short summary
Short summary
We identify potential oceanic gateways to Antarctic grounding lines based on high-resolution bathymetry data and examine the effect of critical access depths on basal melt rates. These gateways manifest the deepest topographic features that connect the deeper open ocean and the ice-shelf cavity. We detect 'prominent' oceanic gateways in some Antarctic regions and estimate an upper limit of melt rate changes in case all warm water masses gain access to the cavities.
Pierre Mathiot and Nicolas C. Jourdain
Ocean Sci., 19, 1595–1615, https://doi.org/10.5194/os-19-1595-2023, https://doi.org/10.5194/os-19-1595-2023, 2023
Short summary
Short summary
How much the Antarctic ice shelf basal melt rate can increase in response to global warming remains an open question. To achieve this, we compared an ocean simulation under present-day atmospheric condition to a one under late 23rd century atmospheric conditions. The ocean response to the perturbation includes a decrease in the production of cold dense water and an increased intrusion of warmer water onto the continental shelves. This induces a substantial increase in ice shelf basal melt rates.
Moritz Kreuzer, Torsten Albrecht, Lena Nicola, Ronja Reese, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2737, https://doi.org/10.5194/egusphere-2023-2737, 2023
Short summary
Short summary
The study investigates how changing sea levels around Antarctica can potentially affect the floating ice shelves. It utilizes numerical models for both the Antarctic Ice Sheet and the solid Earth, investigating features like troughs and sills that control the flow of ocean water onto the continental shelf. The research finds that variations in sea level alone can significantly impact the melting rates of ice shelves.
Emily A. Hill, Benoît Urruty, Ronja Reese, Julius Garbe, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, Ricarda Winkelmann, Mondher Chekki, David Chandler, and Petra M. Langebroek
The Cryosphere, 17, 3739–3759, https://doi.org/10.5194/tc-17-3739-2023, https://doi.org/10.5194/tc-17-3739-2023, 2023
Short summary
Short summary
The grounding lines of the Antarctic Ice Sheet could enter phases of irreversible retreat or advance. We use three ice sheet models to show that the present-day locations of Antarctic grounding lines are reversible with respect to a small perturbation away from their current position. This indicates that present-day retreat of the grounding lines is not yet irreversible or self-enhancing.
Ronja Reese, Julius Garbe, Emily A. Hill, Benoît Urruty, Kaitlin A. Naughten, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, David Chandler, Petra M. Langebroek, and Ricarda Winkelmann
The Cryosphere, 17, 3761–3783, https://doi.org/10.5194/tc-17-3761-2023, https://doi.org/10.5194/tc-17-3761-2023, 2023
Short summary
Short summary
We use an ice sheet model to test where current climate conditions in Antarctica might lead. We find that present-day ocean and atmosphere conditions might commit an irreversible collapse of parts of West Antarctica which evolves over centuries to millennia. Importantly, this collapse is not irreversible yet.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Katherine Hutchinson, Julie Deshayes, Christian Éthé, Clément Rousset, Casimir de Lavergne, Martin Vancoppenolle, Nicolas C. Jourdain, and Pierre Mathiot
Geosci. Model Dev., 16, 3629–3650, https://doi.org/10.5194/gmd-16-3629-2023, https://doi.org/10.5194/gmd-16-3629-2023, 2023
Short summary
Short summary
Bottom Water constitutes the lower half of the ocean’s overturning system and is primarily formed in the Weddell and Ross Sea in the Antarctic due to interactions between the atmosphere, ocean, sea ice and ice shelves. Here we use a global ocean 1° resolution model with explicit representation of the three large ice shelves important for the formation of the parent waters of Bottom Water. We find doing so reduces salt biases, improves water mass realism and gives realistic ice shelf melt rates.
Jeff Polton, James Harle, Jason Holt, Anna Katavouta, Dale Partridge, Jenny Jardine, Sarah Wakelin, Julia Rulent, Anthony Wise, Katherine Hutchinson, David Byrne, Diego Bruciaferri, Enda O'Dea, Michela De Dominicis, Pierre Mathiot, Andrew Coward, Andrew Yool, Julien Palmiéri, Gennadi Lessin, Claudia Gabriela Mayorga-Adame, Valérie Le Guennec, Alex Arnold, and Clément Rousset
Geosci. Model Dev., 16, 1481–1510, https://doi.org/10.5194/gmd-16-1481-2023, https://doi.org/10.5194/gmd-16-1481-2023, 2023
Short summary
Short summary
The aim is to increase the capacity of the modelling community to respond to societally important questions that require ocean modelling. The concept of reproducibility for regional ocean modelling is developed: advocating methods for reproducible workflows and standardised methods of assessment. Then, targeting the NEMO framework, we give practical advice and worked examples, highlighting key considerations that will the expedite development cycle and upskill the user community.
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere, 17, 445–456, https://doi.org/10.5194/tc-17-445-2023, https://doi.org/10.5194/tc-17-445-2023, 2023
Short summary
Short summary
Satellite observations have shown that the Shirase Glacier catchment in East Antarctica has been gaining mass over the past 2 decades, a trend largely attributed to increased snowfall. Our multi-decadal observations of Shirase Glacier show that ocean forcing has also contributed to some of this recent mass gain. This has been caused by strengthening easterly winds reducing the inflow of warm water underneath the Shirase ice tongue, causing the glacier to slow down and thicken.
Paul R. Holland, Gemma K. O'Connor, Thomas J. Bracegirdle, Pierre Dutrieux, Kaitlin A. Naughten, Eric J. Steig, David P. Schneider, Adrian Jenkins, and James A. Smith
The Cryosphere, 16, 5085–5105, https://doi.org/10.5194/tc-16-5085-2022, https://doi.org/10.5194/tc-16-5085-2022, 2022
Short summary
Short summary
The Antarctic Ice Sheet is losing ice, causing sea-level rise. However, it is not known whether human-induced climate change has contributed to this ice loss. In this study, we use evidence from climate models and palaeoclimate measurements (e.g. ice cores) to suggest that the ice loss was triggered by natural climate variations but is now sustained by human-forced climate change. This implies that future greenhouse-gas emissions may influence sea-level rise from Antarctica.
Antony Siahaan, Robin S. Smith, Paul R. Holland, Adrian Jenkins, Jonathan M. Gregory, Victoria Lee, Pierre Mathiot, Antony J. Payne, Jeff K. Ridley, and Colin G. Jones
The Cryosphere, 16, 4053–4086, https://doi.org/10.5194/tc-16-4053-2022, https://doi.org/10.5194/tc-16-4053-2022, 2022
Short summary
Short summary
The UK Earth System Model is the first to fully include interactions of the atmosphere and ocean with the Antarctic Ice Sheet. Under the low-greenhouse-gas SSP1–1.9 (Shared Socioeconomic Pathway) scenario, the ice sheet remains stable over the 21st century. Under the strong-greenhouse-gas SSP5–8.5 scenario, the model predicts strong increases in melting of large ice shelves and snow accumulation on the surface. The dominance of accumulation leads to a sea level fall at the end of the century.
Abigail Smith, Alexandra Jahn, Clara Burgard, and Dirk Notz
The Cryosphere, 16, 3235–3248, https://doi.org/10.5194/tc-16-3235-2022, https://doi.org/10.5194/tc-16-3235-2022, 2022
Short summary
Short summary
The timing of Arctic sea ice melt each year is an important metric for assessing how sea ice in climate models compares to satellite observations. Here, we utilize a new tool for creating more direct comparisons between climate model projections and satellite observations of Arctic sea ice, such that the melt onset dates are defined the same way. This tool allows us to identify climate model biases more clearly and gain more information about what the satellites are observing.
Christoph Kittel, Charles Amory, Stefan Hofer, Cécile Agosta, Nicolas C. Jourdain, Ella Gilbert, Louis Le Toumelin, Étienne Vignon, Hubert Gallée, and Xavier Fettweis
The Cryosphere, 16, 2655–2669, https://doi.org/10.5194/tc-16-2655-2022, https://doi.org/10.5194/tc-16-2655-2022, 2022
Short summary
Short summary
Model projections suggest large differences in future Antarctic surface melting even for similar greenhouse gas scenarios and warming rates. We show that clouds containing a larger amount of liquid water lead to stronger melt. As surface melt can trigger the collapse of the ice shelves (the safety band of the Antarctic Ice Sheet), clouds could be a major source of uncertainties in projections of sea level rise.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1927–1940, https://doi.org/10.5194/tc-16-1927-2022, https://doi.org/10.5194/tc-16-1927-2022, 2022
Short summary
Short summary
We use a numerical model to simulate the flow of a simplified, buttressed Antarctic-type outlet glacier with an attached ice shelf. We find that after a few years of perturbation such a glacier responds much stronger to melting under the ice-shelf shear margins than to melting in the central fast streaming part of the ice shelf. This study explains the underlying physical mechanism which might gain importance in the future if melt rates under the Antarctic ice shelves continue to increase.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Maria Zeitz, Ronja Reese, Johanna Beckmann, Uta Krebs-Kanzow, and Ricarda Winkelmann
The Cryosphere, 15, 5739–5764, https://doi.org/10.5194/tc-15-5739-2021, https://doi.org/10.5194/tc-15-5739-2021, 2021
Short summary
Short summary
With the increasing melt of the Greenland Ice Sheet, which contributes to sea level rise, the surface of the ice darkens. The dark surfaces absorb more radiation and thus experience increased melt, resulting in the melt–albedo feedback. Using a simple surface melt model, we estimate that this positive feedback contributes to an additional 60 % ice loss in a high-warming scenario and additional 90 % ice loss for moderate warming. Albedo changes are important for Greenland’s future ice loss.
Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021, https://doi.org/10.5194/gmd-14-3697-2021, 2021
Short summary
Short summary
We present the technical implementation of a coarse-resolution coupling between an ice sheet model and an ocean model that allows one to simulate ice–ocean interactions at timescales from centuries to millennia. As ice shelf cavities cannot be resolved in the ocean model at coarse resolution, we bridge the gap using an sub-shelf cavity module. It is shown that the framework is computationally efficient, conserves mass and energy, and can produce a stable coupled state under present-day forcing.
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021, https://doi.org/10.5194/tc-15-1501-2021, 2021
Short summary
Short summary
Pine Island Glacier has contributed more to sea-level rise over the past decades than any other glacier in Antarctica. Ice-flow modelling studies have shown that it can undergo periods of rapid mass loss, but no study has shown that these future changes could cross a tipping point and therefore be effectively irreversible. Here, we assess the stability of Pine Island Glacier, quantifying the changes in ocean temperatures required to cross future tipping points using statistical methods.
Christoph Kittel, Charles Amory, Cécile Agosta, Nicolas C. Jourdain, Stefan Hofer, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang, Thierry Fichefet, and Xavier Fettweis
The Cryosphere, 15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021, https://doi.org/10.5194/tc-15-1215-2021, 2021
Short summary
Short summary
The future surface mass balance (SMB) of the Antarctic ice sheet (AIS) will influence the ice dynamics and the contribution of the ice sheet to the sea level rise. We investigate the AIS sensitivity to different warmings using physical and statistical downscaling of CMIP5 and CMIP6 models. Our results highlight a contrasting effect between the grounded ice sheet (where the SMB is projected to increase) and ice shelves (where the future SMB depends on the emission scenario).
Bertie W. J. Miles, Jim R. Jordan, Chris R. Stokes, Stewart S. R. Jamieson, G. Hilmar Gudmundsson, and Adrian Jenkins
The Cryosphere, 15, 663–676, https://doi.org/10.5194/tc-15-663-2021, https://doi.org/10.5194/tc-15-663-2021, 2021
Short summary
Short summary
We provide a historical overview of changes in Denman Glacier's flow speed, structure and calving events since the 1960s. Based on these observations, we perform a series of numerical modelling experiments to determine the likely cause of Denman's acceleration since the 1970s. We show that grounding line retreat, ice shelf thinning and the detachment of Denman's ice tongue from a pinning point are the most likely causes of the observed acceleration.
William H. Lipscomb, Gunter R. Leguy, Nicolas C. Jourdain, Xylar Asay-Davis, Hélène Seroussi, and Sophie Nowicki
The Cryosphere, 15, 633–661, https://doi.org/10.5194/tc-15-633-2021, https://doi.org/10.5194/tc-15-633-2021, 2021
Short summary
Short summary
This paper describes Antarctic climate change experiments in which the Community Ice Sheet Model is forced with ocean warming predicted by global climate models. Generally, ice loss begins slowly, accelerates by 2100, and then continues unabated, with widespread retreat of the West Antarctic Ice Sheet. The mass loss by 2500 varies from about 150 to 1300 mm of equivalent sea level rise, based on the predicted ocean warming and assumptions about how this warming drives melting beneath ice shelves.
Marion Donat-Magnin, Nicolas C. Jourdain, Christoph Kittel, Cécile Agosta, Charles Amory, Hubert Gallée, Gerhard Krinner, and Mondher Chekki
The Cryosphere, 15, 571–593, https://doi.org/10.5194/tc-15-571-2021, https://doi.org/10.5194/tc-15-571-2021, 2021
Short summary
Short summary
We simulate the West Antarctic climate in 2100 under increasing greenhouse gases. Future accumulation over the ice sheet increases, which reduces sea level changing rate. Surface ice-shelf melt rates increase until 2100. Some ice shelves experience a lot of liquid water at their surface, which indicates potential ice-shelf collapse. In contrast, no liquid water is found over other ice shelves due to huge amounts of snowfall that bury liquid water, favouring refreezing and ice-shelf stability.
Jan De Rydt, Ronja Reese, Fernando S. Paolo, and G. Hilmar Gudmundsson
The Cryosphere, 15, 113–132, https://doi.org/10.5194/tc-15-113-2021, https://doi.org/10.5194/tc-15-113-2021, 2021
Short summary
Short summary
We used satellite observations and numerical simulations of Pine Island Glacier, West Antarctica, between 1996 and 2016 to show that the recent increase in its flow speed can only be reproduced by computer models if stringent assumptions are made about the material properties of the ice and its underlying bed. These assumptions are not commonly adopted in ice flow modelling, and our results therefore have implications for future simulations of Antarctic ice flow and sea level projections.
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Short summary
The study investigates precipitation changes in the Alps, using observations and a 7 km resolution climate simulation over 1900–2010. An increase in mean precipitation is found in winter over the Alps, whereas a drying occurred in summer in the surrounding plains. A general increase in the daily annual maximum of precipitation is evidenced (20 to 40 % per century), suggesting an increase in extreme events that is significant only when considering long time series, typically 50 to 80 years.
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Hélène Seroussi, Christopher M. Little, and Sophie Nowicki
The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, https://doi.org/10.5194/tc-14-3111-2020, 2020
Short summary
Short summary
To predict the future Antarctic contribution to sea level rise, we need to use ice sheet models. The Ice Sheet Model Intercomparison Project for AR6 (ISMIP6) builds an ensemble of ice sheet projections constrained by atmosphere and ocean projections from the 6th Coupled Model Intercomparison Project (CMIP6). In this work, we present and assess a method to derive ice shelf basal melting in ISMIP6 from the CMIP6 ocean outputs, and we give examples of projected melt rates.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Ronja Reese, Anders Levermann, Torsten Albrecht, Hélène Seroussi, and Ricarda Winkelmann
The Cryosphere, 14, 3097–3110, https://doi.org/10.5194/tc-14-3097-2020, https://doi.org/10.5194/tc-14-3097-2020, 2020
Short summary
Short summary
We compare 21st century projections of Antarctica's future sea-level contribution simulated with the Parallel Ice Sheet Model submitted to ISMIP6 with projections following the LARMIP-2 protocol based on the same model configuration. We find that (1) a preceding historic simulation increases mass loss by 5–50 % and that (2) the order of magnitude difference in the ice loss in our experiments following the two protocols can be explained by the translation of ocean forcing to sub-shelf melting.
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2369–2386, https://doi.org/10.5194/tc-14-2369-2020, https://doi.org/10.5194/tc-14-2369-2020, 2020
Short summary
Short summary
The high disagreement between observations of Arctic sea ice makes it difficult to evaluate climate models with observations. We investigate the possibility of translating the model state into what a satellite could observe. We find that we do not need complex information about the vertical distribution of temperature and salinity inside the ice but instead are able to assume simplified distributions to reasonably translate the simulated sea ice into satellite
language.
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2387–2407, https://doi.org/10.5194/tc-14-2387-2020, https://doi.org/10.5194/tc-14-2387-2020, 2020
Short summary
Short summary
The high disagreement between observations of Arctic sea ice inhibits the evaluation of climate models with observations. We develop a tool that translates the simulated Arctic Ocean state into what a satellite could observe from space in the form of brightness temperatures, a measure for the radiation emitted by the surface. We find that the simulated brightness temperatures compare well with the observed brightness temperatures. This tool brings a new perspective for climate model evaluation.
Sophie Nowicki, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Patrick Alexander, Xylar S. Asay-Davis, Alice Barthel, Thomas J. Bracegirdle, Richard Cullather, Denis Felikson, Xavier Fettweis, Jonathan M. Gregory, Tore Hattermann, Nicolas C. Jourdain, Peter Kuipers Munneke, Eric Larour, Christopher M. Little, Mathieu Morlighem, Isabel Nias, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Luke D. Trusel, Michiel R. van den Broeke, and Roderik van de Wal
The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, https://doi.org/10.5194/tc-14-2331-2020, 2020
Short summary
Short summary
This paper describes the experimental protocol for ice sheet models taking part in the Ice Sheet Model Intercomparion Project for CMIP6 (ISMIP6) and presents an overview of the atmospheric and oceanic datasets to be used for the simulations. The ISMIP6 framework allows for exploring the uncertainty in 21st century sea level change from the Greenland and Antarctic ice sheets.
Alice Barthel, Cécile Agosta, Christopher M. Little, Tore Hattermann, Nicolas C. Jourdain, Heiko Goelzer, Sophie Nowicki, Helene Seroussi, Fiammetta Straneo, and Thomas J. Bracegirdle
The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, https://doi.org/10.5194/tc-14-855-2020, 2020
Short summary
Short summary
We compare existing coupled climate models to select a total of six models to provide forcing to the Greenland and Antarctic ice sheet simulations of the Ice Sheet Model Intercomparison Project (ISMIP6). We select models based on (i) their representation of current climate near Antarctica and Greenland relative to observations and (ii) their ability to sample a diversity of projected atmosphere and ocean changes over the 21st century.
Marion Donat-Magnin, Nicolas C. Jourdain, Hubert Gallée, Charles Amory, Christoph Kittel, Xavier Fettweis, Jonathan D. Wille, Vincent Favier, Amine Drira, and Cécile Agosta
The Cryosphere, 14, 229–249, https://doi.org/10.5194/tc-14-229-2020, https://doi.org/10.5194/tc-14-229-2020, 2020
Short summary
Short summary
Modeling the interannual variability of the surface conditions over Antarctic glaciers is important for the identification of climate trends and climate predictions and to assess models. We simulate snow accumulation and surface melting in the Amundsen sector (West Antarctica) over 1979–2017. For all the glaciers, the interannual variability of summer snow accumulation and surface melting is driven by two distinct mechanisms related to variations in the Amundsen Sea Low strength and position.
Lionel Favier, Nicolas C. Jourdain, Adrian Jenkins, Nacho Merino, Gaël Durand, Olivier Gagliardini, Fabien Gillet-Chaulet, and Pierre Mathiot
Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019, https://doi.org/10.5194/gmd-12-2255-2019, 2019
Short summary
Short summary
The melting at the base of floating ice shelves is the main driver of the Antarctic ice sheet current retreat. Here, we use an ideal set-up to assess a wide range of melting parameterisations depending on oceanic properties with regard to a new ocean–ice-sheet coupled model, published here for the first time. A parameterisation that depends quadratically on thermal forcing in both a local and a non-local way yields the best results and needs to be further assessed with more realistic set-ups.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Chen Cheng, Adrian Jenkins, Paul R. Holland, Zhaomin Wang, Chengyan Liu, and Ruibin Xia
The Cryosphere, 13, 265–280, https://doi.org/10.5194/tc-13-265-2019, https://doi.org/10.5194/tc-13-265-2019, 2019
Short summary
Short summary
The sub-ice platelet layer (SIPL) under fast ice is most prevalent in McMurdo Sound, Antarctica. Using a modified plume model, we investigated the responses of SIPL thickening rate and frazil concentration to variations in ice shelf water supercooling in McMurdo Sound. It would be key to parameterizing the relevant process in more complex three-dimensional, primitive equation ocean models, which relies on the knowledge of the suspended frazil size spectrum within the ice–ocean boundary layer.
Ronja Reese, Ricarda Winkelmann, and G. Hilmar Gudmundsson
The Cryosphere, 12, 3229–3242, https://doi.org/10.5194/tc-12-3229-2018, https://doi.org/10.5194/tc-12-3229-2018, 2018
Short summary
Short summary
Accurately representing grounding-line flux is essential for modelling the evolution of the Antarctic Ice Sheet. Currently, in some large-scale ice-flow modelling studies a condition on ice flux across grounding lines is imposed using an analytically motivated parameterisation. Here we test this expression for Antarctic grounding lines and find that it provides inaccurate and partly unphysical estimates of ice flux for the highly buttressed ice streams.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-109, https://doi.org/10.5194/tc-2018-109, 2018
Revised manuscript not accepted
Ronja Reese, Torsten Albrecht, Matthias Mengel, Xylar Asay-Davis, and Ricarda Winkelmann
The Cryosphere, 12, 1969–1985, https://doi.org/10.5194/tc-12-1969-2018, https://doi.org/10.5194/tc-12-1969-2018, 2018
Short summary
Short summary
Floating ice shelves surround most of Antarctica and ocean-driven melting at their bases is a major reason for its current sea-level contribution. We developed a simple model based on a box model approach that captures the vertical ocean circulation generally present in ice-shelf cavities and allows simulating melt rates in accordance with physical processes beneath the ice. We test the model for all Antarctic ice shelves and find that melt rates and melt patterns agree well with observations.
Werner M. J. Lazeroms, Adrian Jenkins, G. Hilmar Gudmundsson, and Roderik S. W. van de Wal
The Cryosphere, 12, 49–70, https://doi.org/10.5194/tc-12-49-2018, https://doi.org/10.5194/tc-12-49-2018, 2018
Short summary
Short summary
Basal melting of ice shelves is a major factor in the decline of the Antarctic Ice Sheet, which can contribute significantly to sea-level rise. Here, we investigate a new basal melt model based on the dynamics of meltwater plumes. For the first time, this model is applied to all Antarctic ice shelves. The model results in a realistic melt-rate pattern given suitable data for the topography and ocean temperature, making it a promising tool for future simulations of the Antarctic Ice Sheet.
Pierre Mathiot, Adrian Jenkins, Christopher Harris, and Gurvan Madec
Geosci. Model Dev., 10, 2849–2874, https://doi.org/10.5194/gmd-10-2849-2017, https://doi.org/10.5194/gmd-10-2849-2017, 2017
P. Dutrieux, D. G. Vaughan, H. F. J. Corr, A. Jenkins, P. R. Holland, I. Joughin, and A. H. Fleming
The Cryosphere, 7, 1543–1555, https://doi.org/10.5194/tc-7-1543-2013, https://doi.org/10.5194/tc-7-1543-2013, 2013
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, https://doi.org/10.5194/tc-7-375-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Ice Shelf
An analysis of the interaction between surface and basal crevasses in ice shelves
The importance of cloud properties when assessing surface melting in an offline-coupled firn model over Ross Ice shelf, West Antarctica
Coupled ice–ocean interactions during future retreat of West Antarctic ice streams in the Amundsen Sea sector
Responses of the Pine Island and Thwaites glaciers to melt and sliding parameterizations
Extreme melting at Greenland's largest floating ice tongue
The complex basal morphology and ice dynamics of the Nansen Ice Shelf, East Antarctica
Unveiling spatial variability within the Dotson Melt Channel through high-resolution basal melt rates from the Reference Elevation Model of Antarctica
Brief communication: Is vertical shear in an ice shelf (still) negligible?
Change in Antarctic ice shelf area from 2009 to 2019
Predicting ocean-induced ice-shelf melt rates using deep learning
Glaciological history and structural evolution of the Shackleton Ice Shelf system, East Antarctica, over the past 60 years
Surface melt on the Shackleton Ice Shelf, East Antarctica (2003–2021)
The effect of hydrology and crevasse wall contact on calving
On the evolution of an ice shelf melt channel at the base of Filchner Ice Shelf, from observations and viscoelastic modeling
Ongoing grounding line retreat and fracturing initiated at the Petermann Glacier ice shelf, Greenland, after 2016
Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations
Basal melt of the southern Filchner Ice Shelf, Antarctica
Automatic delineation of cracks with Sentinel-1 interferometry for monitoring ice shelf damage and calving
Weakening of the pinning point buttressing Thwaites Glacier, West Antarctica
Ice-shelf ocean boundary layer dynamics from large-eddy simulations
The potential of synthetic aperture radar interferometry for assessing meltwater lake dynamics on Antarctic ice shelves
Two decades of dynamic change and progressive destabilization on the Thwaites Eastern Ice Shelf
Mechanics and dynamics of pinning points on the Shirase Coast, West Antarctica
Evidence for a grounding line fan at the onset of a basal channel under the ice shelf of Support Force Glacier, Antarctica, revealed by reflection seismics
The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula
The 2020 Larsen C Ice Shelf surface melt is a 40-year record high
Diagnosing the sensitivity of grounding-line flux to changes in sub-ice-shelf melting
A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections
Lateral meltwater transfer across an Antarctic ice shelf
Ice shelf rift propagation: stability, three-dimensional effects, and the role of marginal weakening
Getz Ice Shelf melt enhanced by freshwater discharge from beneath the West Antarctic Ice Sheet
Differential interferometric synthetic aperture radar for tide modelling in Antarctic ice-shelf grounding zones
Ice shelf basal melt rates from a high-resolution digital elevation model (DEM) record for Pine Island Glacier, Antarctica
Spatial and temporal variations in basal melting at Nivlisen ice shelf, East Antarctica, derived from phase-sensitive radars
Past and future dynamics of the Brunt Ice Shelf from seabed bathymetry and ice shelf geometry
Maryam Zarrinderakht, Christian Schoof, and Anthony Peirce
The Cryosphere, 18, 3841–3856, https://doi.org/10.5194/tc-18-3841-2024, https://doi.org/10.5194/tc-18-3841-2024, 2024
Short summary
Short summary
The objective of the study is to understand the interactions between surface and basal crevasses by conducting a stability analysis and addressing the implications of the findings for potential calving laws. The study's findings indicate that, while the propagation of one crack in the case of two aligned surface and basal crevasses does not significantly reinforce the propagation of the other, the presence of multiple crevasses on one side enhances stability and decreases crack propagation.
Nicolaj Hansen, Andrew Orr, Xun Zou, Fredrik Boberg, Thomas J. Bracegirdle, Ella Gilbert, Peter L. Langen, Matthew A. Lazzara, Ruth Mottram, Tony Phillips, Ruth Price, Sebastian B. Simonsen, and Stuart Webster
The Cryosphere, 18, 2897–2916, https://doi.org/10.5194/tc-18-2897-2024, https://doi.org/10.5194/tc-18-2897-2024, 2024
Short summary
Short summary
We investigated a melt event over the Ross Ice Shelf. We use regional climate models and a firn model to simulate the melt and compare the results with satellite data. We find that the firn model aligned well with observed melt days in certain parts of the ice shelf. The firn model had challenges accurately simulating the melt extent in the western sector. We identified potential reasons for these discrepancies, pointing to limitations in the models related to representing the cloud properties.
David T. Bett, Alexander T. Bradley, C. Rosie Williams, Paul R. Holland, Robert J. Arthern, and Daniel N. Goldberg
The Cryosphere, 18, 2653–2675, https://doi.org/10.5194/tc-18-2653-2024, https://doi.org/10.5194/tc-18-2653-2024, 2024
Short summary
Short summary
A new ice–ocean model simulates future ice sheet evolution in the Amundsen Sea sector of Antarctica. Substantial ice retreat is simulated in all scenarios, with some retreat still occurring even with no future ocean melting. The future of small "pinning points" (islands of ice that contact the seabed) is an important control on this retreat. Ocean melting is crucial in causing these features to go afloat, providing the link by which climate change may affect this sector's sea level contribution.
Ian Joughin, Daniel Shapero, and Pierre Dutrieux
The Cryosphere, 18, 2583–2601, https://doi.org/10.5194/tc-18-2583-2024, https://doi.org/10.5194/tc-18-2583-2024, 2024
Short summary
Short summary
The Pine Island and Thwaites glaciers are losing ice to the ocean rapidly as warmer water melts their floating ice shelves. Models help determine how much such glaciers will contribute to sea level. We find that ice loss varies in response to how much melting the ice shelves are subjected to. Our estimated losses are also sensitive to how much the friction beneath the glaciers is reduced as it goes afloat. Melt-forced sea level rise from these glaciers is likely to be less than 10 cm by 2300.
Ole Zeising, Niklas Neckel, Nils Dörr, Veit Helm, Daniel Steinhage, Ralph Timmermann, and Angelika Humbert
The Cryosphere, 18, 1333–1357, https://doi.org/10.5194/tc-18-1333-2024, https://doi.org/10.5194/tc-18-1333-2024, 2024
Short summary
Short summary
The 79° North Glacier in Greenland has experienced significant changes over the last decades. Due to extreme melt rates, the ice has thinned significantly in the vicinity of the grounding line, where a large subglacial channel has formed since 2010. We attribute these changes to warm ocean currents and increased subglacial discharge from surface melt. However, basal melting has decreased since 2018, indicating colder water inflow into the cavity below the glacier.
Christine F. Dow, Derek Mueller, Peter Wray, Drew Friedrichs, Alexander L. Forrest, Jasmin B. McInerney, Jamin Greenbaum, Donald D. Blankenship, Choon Ki Lee, and Won Sang Lee
The Cryosphere, 18, 1105–1123, https://doi.org/10.5194/tc-18-1105-2024, https://doi.org/10.5194/tc-18-1105-2024, 2024
Short summary
Short summary
Ice shelves are a key control on Antarctic contribution to sea level rise. We examine the Nansen Ice Shelf in East Antarctica using a combination of field-based and satellite data. We find the basal topography of the ice shelf is highly variable, only partially visible in satellite datasets. We also find that the thinnest region of the ice shelf is altered over time by ice flow rates and ocean melting. These processes can cause fractures to form that eventually result in large calving events.
Ann-Sofie Priergaard Zinck, Bert Wouters, Erwin Lambert, and Stef Lhermitte
The Cryosphere, 17, 3785–3801, https://doi.org/10.5194/tc-17-3785-2023, https://doi.org/10.5194/tc-17-3785-2023, 2023
Short summary
Short summary
The ice shelves in Antarctica are melting from below, which puts their stability at risk. Therefore, it is important to observe how much and where they are melting. In this study we use high-resolution satellite imagery to derive 50 m resolution basal melt rates of the Dotson Ice Shelf. With the high resolution of our product we are able to uncover small-scale features which may in the future help us to understand the state and fate of the Antarctic ice shelves and their (in)stability.
Chris Miele, Timothy C. Bartholomaus, and Ellyn M. Enderlin
The Cryosphere, 17, 2701–2704, https://doi.org/10.5194/tc-17-2701-2023, https://doi.org/10.5194/tc-17-2701-2023, 2023
Short summary
Short summary
Vertical shear stress (the stress orientation usually associated with vertical gradients in horizontal velocities) is a key component of the stress balance of ice shelves. However, partly due to historical assumptions, vertical shear is often misspoken of today as
negligiblein ice shelf models. We address this miscommunication, providing conceptual guidance regarding this often misrepresented stress. Fundamentally, vertical shear is required to balance thickness gradients in ice shelves.
Julia R. Andreasen, Anna E. Hogg, and Heather L. Selley
The Cryosphere, 17, 2059–2072, https://doi.org/10.5194/tc-17-2059-2023, https://doi.org/10.5194/tc-17-2059-2023, 2023
Short summary
Short summary
There are few long-term, high spatial resolution observations of ice shelf change in Antarctica over the past 3 decades. In this study, we use high spatial resolution observations to map the annual calving front location on 34 ice shelves around Antarctica from 2009 to 2019 using satellite data. The results provide a comprehensive assessment of ice front migration across Antarctica over the last decade.
Sebastian H. R. Rosier, Christopher Y. S. Bull, Wai L. Woo, and G. Hilmar Gudmundsson
The Cryosphere, 17, 499–518, https://doi.org/10.5194/tc-17-499-2023, https://doi.org/10.5194/tc-17-499-2023, 2023
Short summary
Short summary
Future ice loss from Antarctica could raise sea levels by several metres, and key to this is the rate at which the ocean melts the ice sheet from below. Existing methods for modelling this process are either computationally expensive or very simplified. We present a new approach using machine learning to mimic the melt rates calculated by an ocean model but in a fraction of the time. This approach may provide a powerful alternative to existing methods, without compromising on accuracy or speed.
Sarah S. Thompson, Bernd Kulessa, Adrian Luckman, Jacqueline A. Halpin, Jamin S. Greenbaum, Tyler Pelle, Feras Habbal, Jingxue Guo, Lenneke M. Jong, Jason L. Roberts, Bo Sun, and Donald D. Blankenship
The Cryosphere, 17, 157–174, https://doi.org/10.5194/tc-17-157-2023, https://doi.org/10.5194/tc-17-157-2023, 2023
Short summary
Short summary
We use satellite imagery and ice penetrating radar to investigate the stability of the Shackleton system in East Antarctica. We find significant changes in surface structures across the system and observe a significant increase in ice flow speed (up to 50 %) on the floating part of Scott Glacier. We conclude that knowledge remains woefully insufficient to explain recent observed changes in the grounded and floating regions of the system.
Dominic Saunderson, Andrew Mackintosh, Felicity McCormack, Richard Selwyn Jones, and Ghislain Picard
The Cryosphere, 16, 4553–4569, https://doi.org/10.5194/tc-16-4553-2022, https://doi.org/10.5194/tc-16-4553-2022, 2022
Short summary
Short summary
We investigate the variability in surface melt on the Shackleton Ice Shelf in East Antarctica over the last 2 decades (2003–2021). Using daily satellite observations and the machine learning approach of a self-organising map, we identify nine distinct spatial patterns of melt. These patterns allow comparisons of melt within and across melt seasons and highlight the importance of both air temperatures and local controls such as topography, katabatic winds, and albedo in driving surface melt.
Maryam Zarrinderakht, Christian Schoof, and Anthony Peirce
The Cryosphere, 16, 4491–4512, https://doi.org/10.5194/tc-16-4491-2022, https://doi.org/10.5194/tc-16-4491-2022, 2022
Short summary
Short summary
Iceberg calving is the reason for more than half of mass loss in both Greenland and Antarctica and indirectly contributes to sea-level rise. Our study models iceberg calving by linear elastic fracture mechanics and uses a boundary element method to compute crack tip propagation. This model handles the contact condition: preventing crack faces from penetrating into each other and enabling the derivation of calving laws for different forms of hydrological forcing.
Angelika Humbert, Julia Christmann, Hugh F. J. Corr, Veit Helm, Lea-Sophie Höyns, Coen Hofstede, Ralf Müller, Niklas Neckel, Keith W. Nicholls, Timm Schultz, Daniel Steinhage, Michael Wolovick, and Ole Zeising
The Cryosphere, 16, 4107–4139, https://doi.org/10.5194/tc-16-4107-2022, https://doi.org/10.5194/tc-16-4107-2022, 2022
Short summary
Short summary
Ice shelves are normally flat structures that fringe the Antarctic continent. At some locations they have channels incised into their underside. On Filchner Ice Shelf, such a channel is more than 50 km long and up to 330 m high. We conducted field measurements of basal melt rates and found a maximum of 2 m yr−1. Simulations represent the geometry evolution of the channel reasonably well. There is no reason to assume that this type of melt channel is destabilizing ice shelves.
Romain Millan, Jeremie Mouginot, Anna Derkacheva, Eric Rignot, Pietro Milillo, Enrico Ciraci, Luigi Dini, and Anders Bjørk
The Cryosphere, 16, 3021–3031, https://doi.org/10.5194/tc-16-3021-2022, https://doi.org/10.5194/tc-16-3021-2022, 2022
Short summary
Short summary
We detect for the first time a dramatic retreat of the grounding line of Petermann Glacier, a major glacier of the Greenland Ice Sheet. Using satellite data, we also observe a speedup of the glacier and a fracturing of the ice shelf. This sequence of events is coherent with ocean warming in this region and suggests that Petermann Glacier has initiated a phase of destabilization, which is of prime importance for the stability and future contribution of the Greenland Ice Sheet to sea level rise.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1927–1940, https://doi.org/10.5194/tc-16-1927-2022, https://doi.org/10.5194/tc-16-1927-2022, 2022
Short summary
Short summary
We use a numerical model to simulate the flow of a simplified, buttressed Antarctic-type outlet glacier with an attached ice shelf. We find that after a few years of perturbation such a glacier responds much stronger to melting under the ice-shelf shear margins than to melting in the central fast streaming part of the ice shelf. This study explains the underlying physical mechanism which might gain importance in the future if melt rates under the Antarctic ice shelves continue to increase.
Ole Zeising, Daniel Steinhage, Keith W. Nicholls, Hugh F. J. Corr, Craig L. Stewart, and Angelika Humbert
The Cryosphere, 16, 1469–1482, https://doi.org/10.5194/tc-16-1469-2022, https://doi.org/10.5194/tc-16-1469-2022, 2022
Short summary
Short summary
Remote-sensing-derived basal melt rates of ice shelves are of great importance due to their capability to cover larger areas. We performed in situ measurements with a phase-sensitive radar on the southern Filchner Ice Shelf, showing moderate melt rates and low small-scale spatial variability. The comparison with remote-sensing-based melt rates revealed large differences caused by the estimation of vertical strain rates from remote sensing velocity fields that modern fields can overcome.
Ludivine Libert, Jan Wuite, and Thomas Nagler
The Cryosphere, 16, 1523–1542, https://doi.org/10.5194/tc-16-1523-2022, https://doi.org/10.5194/tc-16-1523-2022, 2022
Short summary
Short summary
Open fractures are important to monitor because they weaken the ice shelf structure. We propose a novel approach using synthetic aperture radar (SAR) interferometry for automatic delineation of ice shelf cracks. The method is applied to Sentinel-1 images of Brunt Ice Shelf, Antarctica, and the propagation of the North Rift, which led to iceberg calving in February 2021, is traced. It is also shown that SAR interferometry is more sensitive to rifting than SAR backscatter and optical imagery.
Christian T. Wild, Karen E. Alley, Atsuhiro Muto, Martin Truffer, Ted A. Scambos, and Erin C. Pettit
The Cryosphere, 16, 397–417, https://doi.org/10.5194/tc-16-397-2022, https://doi.org/10.5194/tc-16-397-2022, 2022
Short summary
Short summary
Thwaites Glacier has the potential to significantly raise Antarctica's contribution to global sea-level rise by the end of this century. Here, we use satellite measurements of surface elevation to show that its floating part is close to losing contact with an underwater ridge that currently acts to stabilize. We then use computer models of ice flow to simulate the predicted unpinning, which show that accelerated ice discharge into the ocean follows the breakup of the floating part.
Carolyn Branecky Begeman, Xylar Asay-Davis, and Luke Van Roekel
The Cryosphere, 16, 277–295, https://doi.org/10.5194/tc-16-277-2022, https://doi.org/10.5194/tc-16-277-2022, 2022
Short summary
Short summary
This study uses ocean modeling at ultra-high resolution to study the small-scale ocean mixing that controls ice-shelf melting. It offers some insights into the relationship between ice-shelf melting and ocean temperature far from the ice base, which may help us project how fast ice will melt when ocean waters entering the cavity warm. This study adds to a growing body of research that indicates we need a more sophisticated treatment of ice-shelf melting in coarse-resolution ocean models.
Weiran Li, Stef Lhermitte, and Paco López-Dekker
The Cryosphere, 15, 5309–5322, https://doi.org/10.5194/tc-15-5309-2021, https://doi.org/10.5194/tc-15-5309-2021, 2021
Short summary
Short summary
Surface meltwater lakes have been observed on several Antarctic ice shelves in field studies and optical images. Meltwater lakes can drain and refreeze, increasing the fragility of the ice shelves. The combination of synthetic aperture radar (SAR) backscatter and interferometric information (InSAR) can provide the cryosphere community with the possibility to continuously assess the dynamics of the meltwater lakes, potentially helping to facilitate the study of ice shelves in a changing climate.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Holly Still and Christina Hulbe
The Cryosphere, 15, 2647–2665, https://doi.org/10.5194/tc-15-2647-2021, https://doi.org/10.5194/tc-15-2647-2021, 2021
Short summary
Short summary
Pinning points, locations where floating ice shelves run aground, modify ice flow and thickness. We use a model to quantify the Ross Ice Shelf and tributary ice stream response to a group of pinning points. Ice stream sensitivity to pinning points is conditioned by basal drag, and thus basal properties, upstream of the grounding line. Without the pinning points, a redistribution of resistive stresses supports faster flow and increased mass flux but with a negligible change in total ice volume.
Coen Hofstede, Sebastian Beyer, Hugh Corr, Olaf Eisen, Tore Hattermann, Veit Helm, Niklas Neckel, Emma C. Smith, Daniel Steinhage, Ole Zeising, and Angelika Humbert
The Cryosphere, 15, 1517–1535, https://doi.org/10.5194/tc-15-1517-2021, https://doi.org/10.5194/tc-15-1517-2021, 2021
Short summary
Short summary
Support Force Glacier rapidly flows into Filcher Ice Shelf of Antarctica. As we know little about this glacier and its subglacial drainage, we used seismic energy to map the transition area from grounded to floating ice where a drainage channel enters the ocean cavity. Soft sediments close to the grounding line are probably transported by this drainage channel. The constant ice thickness over the steeply dipping seabed of the ocean cavity suggests a stable transition and little basal melting.
Alison F. Banwell, Rajashree Tri Datta, Rebecca L. Dell, Mahsa Moussavi, Ludovic Brucker, Ghislain Picard, Christopher A. Shuman, and Laura A. Stevens
The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021, https://doi.org/10.5194/tc-15-909-2021, 2021
Short summary
Short summary
Ice shelves are thick floating layers of glacier ice extending from the glaciers on land that buttress much of the Antarctic Ice Sheet and help to protect it from losing ice to the ocean. However, the stability of ice shelves is vulnerable to meltwater lakes that form on their surfaces during the summer. This study focuses on the northern George VI Ice Shelf on the western side of the AP, which had an exceptionally long and extensive melt season in 2019/2020 compared to the previous 31 seasons.
Suzanne Bevan, Adrian Luckman, Harry Hendon, and Guomin Wang
The Cryosphere, 14, 3551–3564, https://doi.org/10.5194/tc-14-3551-2020, https://doi.org/10.5194/tc-14-3551-2020, 2020
Short summary
Short summary
In February 2020, along with record-breaking high temperatures in the region, satellite images showed that the surface of the largest remaining ice shelf on the Antarctic Peninsula was experiencing a lot of melt. Using archived satellite data we show that this melt was greater than any in the past 40 years. The extreme melt followed unusual weather patterns further north, highlighting the importance of long-range links between the tropics and high latitudes and the impact on ice-shelf stability.
Tong Zhang, Stephen F. Price, Matthew J. Hoffman, Mauro Perego, and Xylar Asay-Davis
The Cryosphere, 14, 3407–3424, https://doi.org/10.5194/tc-14-3407-2020, https://doi.org/10.5194/tc-14-3407-2020, 2020
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Hélène Seroussi, Christopher M. Little, and Sophie Nowicki
The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, https://doi.org/10.5194/tc-14-3111-2020, 2020
Short summary
Short summary
To predict the future Antarctic contribution to sea level rise, we need to use ice sheet models. The Ice Sheet Model Intercomparison Project for AR6 (ISMIP6) builds an ensemble of ice sheet projections constrained by atmosphere and ocean projections from the 6th Coupled Model Intercomparison Project (CMIP6). In this work, we present and assess a method to derive ice shelf basal melting in ISMIP6 from the CMIP6 ocean outputs, and we give examples of projected melt rates.
Rebecca Dell, Neil Arnold, Ian Willis, Alison Banwell, Andrew Williamson, Hamish Pritchard, and Andrew Orr
The Cryosphere, 14, 2313–2330, https://doi.org/10.5194/tc-14-2313-2020, https://doi.org/10.5194/tc-14-2313-2020, 2020
Short summary
Short summary
A semi-automated method is developed from pre-existing work to track surface water bodies across Antarctic ice shelves over time, using data from Sentinel-2 and Landsat 8. This method is applied to the Nivlisen Ice Shelf for the 2016–2017 melt season. The results reveal two large linear meltwater systems, which hold 63 % of the peak total surface meltwater volume on 26 January 2017. These meltwater systems migrate towards the ice shelf front as the melt season progresses.
Bradley Paul Lipovsky
The Cryosphere, 14, 1673–1683, https://doi.org/10.5194/tc-14-1673-2020, https://doi.org/10.5194/tc-14-1673-2020, 2020
Short summary
Short summary
Ice shelves promote the stability of marine ice sheets and therefore reduce the ice sheet contribution to sea level rise. Ice shelf rifts are through-cutting fractures that jeopardize this stabilizing tendency. Here, I carry out the first-ever 3D modeling of ice shelf rifts. I find that the overall ice shelf geometry – particularly the ice shelf margins – alters rift stability. This work paves the way to a more realistic depiction of rifting in ice sheet models.
Wei Wei, Donald D. Blankenship, Jamin S. Greenbaum, Noel Gourmelen, Christine F. Dow, Thomas G. Richter, Chad A. Greene, Duncan A. Young, SangHoon Lee, Tae-Wan Kim, Won Sang Lee, and Karen M. Assmann
The Cryosphere, 14, 1399–1408, https://doi.org/10.5194/tc-14-1399-2020, https://doi.org/10.5194/tc-14-1399-2020, 2020
Short summary
Short summary
Getz Ice Shelf is the largest meltwater source from Antarctica of the Southern Ocean. This study compares the relative importance of the meltwater production of Getz from both ocean and subglacial sources. We show that basal melt rates are elevated where bathymetric troughs provide pathways for warm Circumpolar Deep Water to enter the Getz Ice Shelf cavity. In particular, we find that subshelf melting is enhanced where subglacially discharged fresh water flows across the grounding line.
Christian T. Wild, Oliver J. Marsh, and Wolfgang Rack
The Cryosphere, 13, 3171–3191, https://doi.org/10.5194/tc-13-3171-2019, https://doi.org/10.5194/tc-13-3171-2019, 2019
Short summary
Short summary
In Antarctica, ocean tides control the motion of ice sheets near the coastline as well as melt rates underneath the floating ice. By combining the spatial advantage of rare but highly accurate satellite images with the temporal advantage of tide-prediction models, vertical displacement of floating ice due to ocean tides can now be predicted accurately. This allows the detailed study of ice-flow dynamics in areas that matter the most to the stability of Antarctica's ice sheets.
David E. Shean, Ian R. Joughin, Pierre Dutrieux, Benjamin E. Smith, and Etienne Berthier
The Cryosphere, 13, 2633–2656, https://doi.org/10.5194/tc-13-2633-2019, https://doi.org/10.5194/tc-13-2633-2019, 2019
Short summary
Short summary
We produced an 8-year, high-resolution DEM record for Pine Island Glacier (PIG), a site of substantial Antarctic mass loss in recent decades. We developed methods to study the spatiotemporal evolution of ice shelf basal melting, which is responsible for ~ 60 % of PIG mass loss. We present shelf-wide basal melt rates and document relative melt rates for kilometer-scale basal channels and keels, offering new indirect observations of ice–ocean interaction beneath a vulnerable ice shelf.
Katrin Lindbäck, Geir Moholdt, Keith W. Nicholls, Tore Hattermann, Bhanu Pratap, Meloth Thamban, and Kenichi Matsuoka
The Cryosphere, 13, 2579–2595, https://doi.org/10.5194/tc-13-2579-2019, https://doi.org/10.5194/tc-13-2579-2019, 2019
Short summary
Short summary
In this study, we used a ground-penetrating radar technique to measure melting at high precision under Nivlisen, an ice shelf in central Dronning Maud Land, East Antarctica. We found that summer-warmed ocean surface waters can increase melting close to the ice shelf front. Our study shows the use of and need for measurements in the field to monitor Antarctica's coastal margins; these detailed variations in basal melting are not captured in satellite data but are vital to predict future changes.
Dominic A. Hodgson, Tom A. Jordan, Jan De Rydt, Peter T. Fretwell, Samuel A. Seddon, David Becker, Kelly A. Hogan, Andrew M. Smith, and David G. Vaughan
The Cryosphere, 13, 545–556, https://doi.org/10.5194/tc-13-545-2019, https://doi.org/10.5194/tc-13-545-2019, 2019
Short summary
Short summary
The Brunt Ice Shelf in Antarctica is home to Halley VIa, the latest in a series of six British research stations that have occupied the ice shelf since 1956. A recent rapid growth of rifts in the Brunt Ice Shelf signals the onset of its largest calving event since records began. Here we consider whether this calving event will lead to a new steady state for the ice shelf or an unpinning from the bed, which could predispose it to accelerated flow or collapse.
Cited articles
Adcroft, A. and Campin, J.: Rescaled height coordinates for accurate
representation of free-surface flows in ocean circulation models, Ocean
Model., 7, 269–284, https://doi.org/10.1016/j.ocemod.2003.09.003, 2004. a
Adusumilli, S., Fricker, H., Medley, B., Padman, L., and Siegfried, M.:
Interannual variations in meltwater input to the Southern Ocean from
Antarctic ice shelves, Nat. Geosci., 13, 616–620,
https://doi.org/10.1038/s41561-020-0616-z, 2020. a, b
Álvarez-Solas, J., Montoya, M., Ritz, C., Ramstein, G., Charbit, S., Dumas, C., Nisancioglu, K., Dokken, T., and Ganopolski, A.: Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes, Clim. Past, 7, 1297–1306, https://doi.org/10.5194/cp-7-1297-2011, 2011. a
Amante, C. and Eakins, B.: ETOPO1 Global Relief Model converted to PanMap layer
format, NOAA-National Geophysical Data Center [data set], https://doi.org/10.1594/PANGAEA.769615,
2009. a
Arzeno, I., Beardsley, R., Limeburner, R., Owens, B., Padman, L., Springer, S.,
Stewart, C., and Williams, M.: Ocean variability contributing to basal melt
rate near the ice front of Ross Ice Shelf, Antarctica, J. Geophys.
Res.-Oceans, 119, 4214–4233, https://doi.org/10.1002/2014JC009792, 2014. a
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b
Asay-Davis, X., Jourdain, N., and Nakayama, Y.: Developments in Simulating and
Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice
Sheet, Current Climate Change Reports, 3, 316–329,
https://doi.org/10.1007/s40641-017-0071-0, 2017. a
Barthel, A., Agosta, C., Little, C. M., Hattermann, T., Jourdain, N. C., Goelzer, H., Nowicki, S., Seroussi, H., Straneo, F., and Bracegirdle, T. J.: CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica, The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, 2020. a
Beadling, R., Russell, J., Stouffer, R., Mazloff, M., Talley, L., Goodman, P.,
Sallée, J., Hewitt, H., Hyder, P., and Pandde, A.: Representation of
Southern Ocean Properties across Coupled Model Intercomparison Project
Generations: CMIP3 to CMIP6, J. Climate, 33, 6555–6581,
https://doi.org/10.1175/JCLI-D-19-0970.1, 2020. a
Beckmann, A. and Goosse, H.: A parameterization of ice shelf–ocean
interaction for climate models, Ocean Model., 5, 157–170,
https://doi.org/10.1016/S1463-5003(02)00019-7, 2003. a, b, c
Bett, D. T., Holland, P. R., Naveira Garabato, A. C., Jenkins, A., Dutrieux, P., Kimura,
S., and Fleming, A.: The Impact of the Amundsen Sea Freshwater Balance on
Ocean Melting of the West Antarctic Ice Sheet, J. Geophys.
Res.-Oceans, 125, e2020JC016305, https://doi.org/10.1029/2020JC016305, 2020. a
Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The
elastic–viscous–plastic method revisited, Ocean Model., 71, 2–12,
https://doi.org/10.1016/j.ocemod.2013.05.013, 2013. a
Branch, M., Coleman, T., and Li, Y.: A Subspace, Interior, and Conjugate
Gradient Method for Large-Scale Bound-Constrained Minimization Problems,
SIAM J. Sci. Comput., 21, 1–23,
https://doi.org/10.1137/S1064827595289108, 1999. a
Bricaud, C., Le Sommer, J., Madec, G., Calone, C., Deshayes, J., Ethe, C., Chanut, J., and Levy, M.: Multi-grid algorithm for passive tracer transport in the NEMO ocean circulation model: a case study with the NEMO OGCM (version 3.6), Geosci. Model Dev., 13, 5465–5483, https://doi.org/10.5194/gmd-13-5465-2020, 2020. a
Bull, C. Y. S., Jenkins, A., Jourdain, N. C., Vaňková, I., Holland, P. R., Mathiot, P.,
Hausmann, U., and Sallée, J. B.: Remote Control of Filchner‐Ronne Ice Shelf
Melt Rates by the Antarctic Slope Current, J. Geophys. Res.-Oceans, 126, e2020JC016550, https://doi.org/10.1029/2020JC016550, 2021. a, b
Burgard, C., Jourdain, N. C., Reese, R., Jenkins, A., and Mathiot, P.: An assessment of basal melt parameterisations for Antarctic ice shelves, Zenodo [data set], https://doi.org/10.5281/zenodo.7308352, 2022. a
Cunningham, S., Alderson, S., and Kin, B.: Transport and variability of the
Antarctic Circumpolar Current in Drake Passage, J. Geophys.
Res., 108, 8084, https://doi.org/10.1029/2001JC001147, 2003. a, b
Dai, A. and Trenberth, K. E.: Estimates of Freshwater Discharge from
Continents: Latitudinal and Seasonal Variations, J.
Hydrometeorol., 3, 660–687,
https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2, 2002. a
Dask Development Team: Dask: Library for dynamic task scheduling,
https://dask.org (last access: December 2022), 2016. a
DeConto, R. and Pollard, D.: Contribution of Antarctica to past and future
sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016. a, b, c, d
de Lavergne, C., Madec, G., Le Sommer, J., Nurser, A., and Naveira Garabato,
A.: The Impact of a Variable Mixing Efficiency on the Abyssal Overturning,
J. Phys. Oceanogr., 46, 663–681,
https://doi.org/10.1175/JPO-D-14-0259.1, 2016. a
De Rydt, J. and Gudmundsson, G.: Coupled ice shelf-ocean modeling and complex
grounding line retreat from a seabed ridge, J. Geophys. Res.-Earth, 121, 865–880, https://doi.org/10.1002/2015JF003791, 2016. a
De Rydt, J., Holland, P., Dutrieux, P., and Jenkins, A.: Geometric and
oceanographic controls on melting beneath Pine Island Glacier, J.
Geophys. Res.-Oceans, 119, 2420–2438, 2014. a
Dinniman, M., Asay-Davis, X., Galton-Fenzi, B., Holland, P., Jenkins, A., and
Timmermann, R.: Modeling Ice Shelf/Ocean Interaction in Antarctica: A Review,
Oceanography, 29, 144–153, https://doi.org/10.5670/oceanog.2016.106, 2016. a, b, c
Dufour, C. O., Le Sommer, J., Zika, J. D., Gehlen, M., Orr, J. C., Mathiot, P., and
Barnier, B.: Standing and transient eddies in the response of the Southern
Ocean meridional overturning to the Southern annular mode, J.
Climate, 25, 6958–6974, https://doi.org/10.1175/JCLI-D-11-00309.1, 2012. a, b, c, d
Dussin, R., Molines, J. M., and Barnier, B.: Definition of the interannual
experiment ORCA025.L75-GRD100, 1958–2010, MEOM – LEGI – CNRS LEGI-DRA-12-04-2012, https://www.drakkar-ocean.eu/publications/reports/orca025-grd100-report-dussin (last access: December 2022), 2012. a
Dutrieux, P., Vaughan, D. G., Corr, H. F. J., Jenkins, A., Holland, P. R., Joughin, I., and Fleming, A. H.: Pine Island glacier ice shelf melt distributed at kilometre scales, The Cryosphere, 7, 1543–1555, https://doi.org/10.5194/tc-7-1543-2013, 2013. a
Dutrieux, P., De Rydt, J., Jenkins, A., Holland, P., Ha, H., Lee, S., Steig,
E., Ding, Q., Abrahamsen, E., and Schröder, M.: Strong Sensitivity of
Pine Island Ice-Shelf Melting to Climatic Variability, Science, 343,
174–178, https://doi.org/10.1126/science.1244341, 2014. a, b
Edwards, T. and the ISMIP6 Team: Projected land ice contributions to
twenty-first-century sea level rise, Nature, 593, 74–82,
https://doi.org/10.1038/s41586-021-03302-y, 2021. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., Gillet-Chaulet, F., and Mathiot, P.: Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) , Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l
Gagliardini, O., Durand, G., Zwinger, T., Hindmarsh, R. C. A., and Le Meur, E.:
Coupling of ice-shelf melting and buttressing is a key process in ice-sheets
dynamics, Geophys. Res. Lett., 37, L14501, https://doi.org/10.1029/2010GL043334, 2010. a
Garcia, H. E., Boyer, T. P., Baranova, O. K., Locarnini, R. A., Mishonov, A. V., Grodsky, A.,
Paver, C. R., Weathers, K. W., Smolyar, I. V., Reagan, J. R., Seidov, D., and Zweng, M. M.:
World Ocean Atlas 2018: Product Documentation, Technical Editor: Mishonov, A., https://www.ncei.noaa.gov/products/world-ocean-atlas (last access: December 2022), 2019. a
Gent, P. and McWilliams, J.: Isopycnal Mixing in Ocean Circulation Models,
J. Phys. Oceanogr., 20, 150–155,
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2, 1990. a
Gouretski, V. V. and Koltermann, K. P.: WOCE Global Hydrographic Climatology, A
Technical Report, edited by: Bundesamt für Seeschifffahrt und Hydrographie, Berichte des Bundesamtes für Seeschifffahrt und Hydrographie Nr. 35/2004, ISSN 0946-6010, 2004. a
Goutorbe, B., Poort, J., Lucazeau, F., and Raillard, S.: Global heat flow
trends resolved from multiple geological and geophysical proxies, Geophys.
J. Int., 187, 1405–1419,
https://doi.org/10.1111/j.1365-246X.2011.05228.x, 2011. a
Gudmundsson, G. H., Krug, J., Durand, G., Favier, L., and Gagliardini, O.: The stability of grounding lines on retrograde slopes, The Cryosphere, 6, 1497–1505, https://doi.org/10.5194/tc-6-1497-2012, 2012. a
Harris, C., Millman, K., van der Walt, S., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N., Kern, R., Picus,
M., Hoyer, S., van Kerkwijk, M., Brett, M., Haldane, A., del Río, J.,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T.,
Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T.: Array programming
with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hausmann, U., Sallée, J. B., Jourdain, N. C., Mathiot, P., Rousset, C., Madec, G.,
Deshayes, J., and Hattermann, T.: The Role of Tides in Ocean-Ice Shelf
Interactions in the Southwestern Weddell Sea, J. Geophys.
Res.-Oceans, 125, e2019JC015847, https://doi.org/10.1029/2019JC015847, 2020. a, b
Heuzé, C.: Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 models, Ocean Sci., 17, 59–90, https://doi.org/10.5194/os-17-59-2021, 2021. a, b
Hill, E. A., Rosier, S. H. R., Gudmundsson, G. H., and Collins, M.: Quantifying the potential future contribution to global mean sea level from the Filchner–Ronne basin, Antarctica, The Cryosphere, 15, 4675–4702, https://doi.org/10.5194/tc-15-4675-2021, 2021. a
Hoffman, M., Asay-Davis, X., Price, S., Fyke, J., and Perego, M.: Effect of
Subshelf Melt Variability on Sea Level Rise Contribution From Thwaites
Glacier, Antarctica, J. Geophys. Res.-Earth, 124,
2798–2822, https://doi.org/10.1029/2019JF005155, 2019. a, b
Holland, P., Jenkins, A., and Holland, D.: The Response of Ice Shelf Basal
Melting to Variations in Ocean Temperature, J. Climate, 21,
2558–2572, https://doi.org/10.1175/2007JCLI1909.1, 2008. a, b, c
Holland, P. R.: The transient response of ice shelf melting to ocean change,
J. Phys. Oceanogr., 47, 2101–2114,
https://doi.org/10.1175/JPO-D-17-0071.1, 2017. a, b
Howard, S. L., Padman, L., and Erofeeva, S.: CATS2008: Circum-Antarctic Tidal
Simulation version 2008, U.S. Antarctic Program (USAP) Data Center [data set], https://doi.org/10.15784/601235, 2019. a
Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays and datasets in
Python, Journal of Open Research Software, 5, p. 10, https://doi.org/10.5334/jors.148, 2017. a
Huot, P.-V., Fichefet, T., Jourdain, N., Mathiot, P., Rousset, C., Kittel, C.,
and Fettweis, X.: Influence of ocean tides and ice shelves on ocean–ice
interactions and dense shelf water formation in the D’Urville Sea,
Antarctica, Ocean Model., 162, 101794,
https://doi.org/10.1016/j.ocemod.2021.101794, 2021. a
IHO and BODC IOC: Centenary Edition of the GEBCO Digital Atlas, published on
CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the
International Hydrographic Organization as part of the General Bathymetric
Chart of the Oceans; British Oceanographic Dat, organization as part of the
General Bathymetric Chart of the Oceans, British Oceanographic Data Centre,
Liverpool, UK [data set], 2003. a
Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A., and Frolich, R. M.: Melting of
ice shelves and the mass balance of Antarctica, J. Glaciol., 38, 375–387,
https://doi.org/10.1017/S0022143000002252, 1992. a, b, c
Jacobs, S., Jenkins, A., Giulivi, C., and Dutrieux, P.: Stronger ocean
circulation and increased melting under Pine Island Glacier ice shelf, Nat.
Geosci., 4, 519–523, https://doi.org/10.1038/ngeo1188, 2011. a
Jenkins, A.: A one-dimensional model of ice shelf-ocean interaction, J.
Geophys. Res.-Oceans, 96, 20671–20677, https://doi.org/10.1029/91JC01842,
1991. a, b
Jenkins, A., Nicholls, K., and Corr, H.: Observation and Parameterization of
Ablation at the Base of Ronne Ice Shelf, Antarctica, J. Phys.
Oceanogr., 40, 2298–2311, https://doi.org/10.1175/2010JPO4317.1, 2010. a
Joughin, I., Shapero, D., Dutrieux, P., and Smith, B.: Ocean-induced melt
volume directly paces ice loss from Pine Island Glacier, Science Advances,
7, eabi5738, https://doi.org/10.1126/sciadv.abi5738, 2021. a
Jourdain, N., Mathiot, P., Merino, N., Durand, G., Le Sommer, J., Dutrieux, P.,
Spence, P., and Madec, G.: Ocean circulation and sea-ice thinning induced by
melting ice shelves in the Amundsen Sea, J. Geophys. Res., 122, 2550–2573,
https://doi.org/10.1002/2016JC012509, 2017. a, b, c
Jourdain, N., Molines, J.-M., Le Sommer, J., Mathiot, P., Chanut, J.,
de Lavergne, C., and Madec, G.: Simulating or prescribing the influence of
tides on the Amundsen Sea ice shelves, Ocean Model., 133, 44–55,
https://doi.org/10.1016/j.ocemod.2018.11.001, 2019. a, b, c
Jourdain, N. C., Asay-Davis, X., Hattermann, T., Straneo, F., Seroussi, H., Little, C. M., and Nowicki, S.: A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections, The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.: The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan, Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, 2018. a
Khazendar, A., Rignot, E., Schroeder, D. M., Seroussi, H., Schodlok, M. P., Scheuchl,
B., Mouginot, J., Sutterley, T. C., and Velicogna, I.: Rapid submarine ice
melting in the grounding zones of ice shelves in West Antarctica, Nat.
Commun., 7, 13243, https://doi.org/10.1038/ncomms13243, 2016. a, b
Kimmritz, M., Danilov, S., and Losch, M.: The adaptive EVP method for solving
the sea ice momentum equation, Ocean Model., 101, 59–67,
https://doi.org/10.1016/j.ocemod.2016.03.004, 2016. a
Klatt, O., Fahrbach, E., Hoppema, M., and Rohardt, G.: The transport of the
Weddell Gyre across the Prime Meridian, Deep-Sea Res. Pt. II, 52, 513–528, https://doi.org/10.1016/j.dsr2.2004.12.015,
2005. a, b
Kraft, D. A.: A software package for sequential quadratic programming, edited by: Wiss. Berichtswesen d. DFVLR, Tech.
Rep. DFVLR-FB 88-28, DLR German Aerospace Center – Institute for Flight
Mechanics, Koln, Germany, 88–28, 1988. a
Kreuzer, M., Reese, R., Huiskamp, W. N., Petri, S., Albrecht, T., Feulner, G., and Winkelmann, R.: Coupling framework (1.0) for the PISM (1.1.4) ice sheet model and the MOM5 (5.1.0) ocean model via the PICO ice shelf cavity model in an Antarctic domain, Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021, 2021. a
Large, W. and Yeager, S.: The global climatology of an interannually varying
air–sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009. a
Lazeroms, W. M. J., Jenkins, A., Gudmundsson, G. H., and van de Wal, R. S. W.: Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes, The Cryosphere, 12, 49–70, https://doi.org/10.5194/tc-12-49-2018, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Lipscomb, W. H., Leguy, G. R., Jourdain, N. C., Asay-Davis, X., Seroussi, H., and Nowicki, S.: ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the Community Ice Sheet Model, The Cryosphere, 15, 633–661, https://doi.org/10.5194/tc-15-633-2021, 2021. a
Little, C. M., Gnanadesikan, A., and Oppenheimer, M.: How ice shelf morphology
controls basal melting, J. Geophys. Res.-Oceans, 114, C12007,
https://doi.org/10.1029/2008JC005197, 2009. a
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E.,
Reagan, J. R., Seidov, D., Weathers, K. W., Paver, C. R., and Smolyar, I. V.: World Ocean
Atlas 2018, Volume 1: Temperature, Technical Editor: Mishonov, A., NOAA Atlas NESDIS 81, 52 pp., 2018. a
Marsh, R., Ivchenko, V. O., Skliris, N., Alderson, S., Bigg, G. R., Madec, G., Blaker, A. T., Aksenov, Y., Sinha, B., Coward, A. C., Le Sommer, J., Merino, N., and Zalesny, V. B.: NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution, Geosci. Model Dev., 8, 1547–1562, https://doi.org/10.5194/gmd-8-1547-2015, 2015. a, b
Martin, M. A., Winkelmann, R., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet, The Cryosphere, 5, 727–740, https://doi.org/10.5194/tc-5-727-2011, 2011. a
Mathiot, P., Goosse, H., Fichefet, T., Barnier, B., and Gallée, H.: Modelling the seasonal variability of the Antarctic Slope Current, Ocean Sci., 7, 455–470, https://doi.org/10.5194/os-7-455-2011, 2011. a
Mazloff, M., Heimbach, P., and Wunsch, C.: An eddy-permitting Southern Ocean
state estimate, J. Phys. Oceanogr., 40, 880–899,
https://doi.org/10.1175/2009JPO4236.1, 2010. a, b
Megann, A., Storkey, D., Aksenov, Y., Alderson, S., Calvert, D., Graham, T., Hyder, P., Siddorn, J., and Sinha, B.: GO5.0: the joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications, Geosci. Model Dev., 7, 1069–1092, https://doi.org/10.5194/gmd-7-1069-2014, 2014. a
Merino, N., Le Sommer, J., Durand, G., Jourdain, N., Madec, G., Mathiot, P.,
and Tournadre, J.: Antarctic icebergs melt over the Southern Ocean:
Climatology and impact on sea ice, Ocean Model., 104, 99–110,
https://doi.org/10.1016/j.ocemod.2016.05.001, 2016. a
Michel, R., Linick, T., and Williams, P.: Tritium and carbon-14 distributions
in seawater from under the Ross Ice Shelf Project ice hole, Science, 203,
445–446, 1979. a
Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 2,
NASA National Snow and Ice
Data Center Distributed Active Archive Center, Boulder, Colorado USA [data set], https://doi.org/10.5067/E1QL9HFQ7A8M, 2020. a, b, c
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G.,
Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum,
J., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A.,
Jokat, W., Karlsson, N., Lee, W., Matsuoka, K., Millan, R., Mouginot, J.,
Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H.,
Smith, E., Steinhage, D., Sun, B., van den Broeke, M., van Ommen, T., van
Wessem, M., and Young, D.: Deep glacial troughs and stabilizing ridges
unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci.,
13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020. a, b, c
Morlighem, M., Goldberg, D., Dias dos Santos, T., Lee, J., and Sagebaum, M.:
Mapping the Sensitivity of the Amundsen Sea Embayment to Changes in External
Forcings Using Automatic Differentiation, Geophys. Res. Lett., 48, e2021GL095440,
https://doi.org/10.1029/2021GL095440, 2021. a
Mouginot, J., Rignot, E., and Scheuchl, B.: Sustained increase in ice discharge
from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013,
Geophys. Res. Lett., 41, 1576–1584, https://doi.org/10.1002/2013GL059069,
2014. a
Nakayama, Y., Timmermann, R., Schröder, M., and Hellmer, H. H.: On the
difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen
Sea continental shelf, Ocean Model., 84, 26–34,
https://doi.org/10.1016/j.ocemod.2014.09.007, 2014. a
Naughten, K. A., Jenkins, A., Holland, P. R., Mugford, R. I., Nicholls, K. W., and Munday,
D. R.: Modeling the Influence of the Weddell Polynya on the Filchner–Ronne
Ice Shelf Cavity, J. Climate, 32, 5289–5303, https://doi.org/10.1175/JCLI-D-19-0203.1,
2019. a
NEMO Sea Ice Working Group: Sea Ice modelling Integrated Initiative (SI3) –
The NEMO sea ice engine, Scientific Notes of Climate Modelling Center, vol. 31, Institut Pierre-Simon Laplace, https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/SI3/manual/pdf/SI3_manual.pdf (last access: December 2022),
2019. a
NEMO Team: NEMO ocean engine, Zenodo [code], https://doi.org/10.5281/zenodo.1464816, 2019. a
Nicholls, K. W. and Østerhus, S.: Interannual variability and ventilation
timescales in the ocean cavity beneath Filchner-Ronne Ice Shelf, Antarctica,
J. Geophys. Res.-Oceans, 109, C04014, https://doi.org/10.1029/2003JC002149, 2004. a
Nowicki, S., Goelzer, H., Seroussi, H., Payne, A. J., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Alexander, P., Asay-Davis, X. S., Barthel, A., Bracegirdle, T. J., Cullather, R., Felikson, D., Fettweis, X., Gregory, J. M., Hattermann, T., Jourdain, N. C., Kuipers Munneke, P., Larour, E., Little, C. M., Morlighem, M., Nias, I., Shepherd, A., Simon, E., Slater, D., Smith, R. S., Straneo, F., Trusel, L. D., van den Broeke, M. R., and van de Wal, R.: Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models, The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, 2020. a, b
Olbers, D. and Hellmer, H.: A box model of circulation and melting in ice shelf
caverns, Ocean Dynam., 60, 141–153, https://doi.org/10.1007/s10236-009-0252-z, 2010. a
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay,
J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise
and Implications for Low-Lying Islands, Coasts and Communities, chapter 4, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 321–445, https://doi.org/10.1017/9781009157964.006,
2019. a
Padman, L., Erofeeva, S., and Fricker, H.: Improving Antarctic tide models by
assimilation of ICESat laser altimetry over ice shelves, Geophys. Res.
Lett., 35, L22504, https://doi.org/10.1029/2008GL035592, 2008. a
Paolo, F., Fricker, H., and Padman, L.: Volume loss from Antarctic ice shelves
is accelerating, Science, 348, 327–331, https://doi.org/10.1126/science.aaa0940, 2015. a
Purich, A. and England, M. H.: Historical and Future Projected Warming of
Antarctic Shelf Bottom Water in CMIP6 Models, Geophys. Res. Lett.,
48, e2021GL092752, https://doi.org/10.1029/2021GL092752, 2021. a
Reese, R., Gudmundsson, G., Levermann, A., and Winkelmann, R.: The far reach
of ice-shelf thinning in Antarctica, Nat. Clim. Change, 8, 53–57,
https://doi.org/10.1038/s41558-017-0020-x, 2018b. a, b, c
Reese, R., Levermann, A., Albrecht, T., Seroussi, H., and Winkelmann, R.: The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model, The Cryosphere, 14, 3097–3110, https://doi.org/10.5194/tc-14-3097-2020, 2020. a, b
Reese, R., Garbe, J., Hill, E. A., Urruty, B., Naughten, K. A., Gagliardini, O., Durand, G., Gillet-Chaulet, F., Chandler, D., Langebroek, P. M., and Winkelmann, R.: The stability of present-day Antarctic grounding lines – Part B: Possible commitment of regional collapse under current climate, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2022-105, in review, 2022. a, b
Richter, O., Gwyther, D. E., King, M. A., and Galton-Fenzi, B. K.: The impact of tides on Antarctic ice shelf melting, The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022, 2022. a
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and
Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res.
Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140, 2014. a
Roberts, D., Bahn, V., Ciuti, S., Boyce, M., Elith, J., Guillera-Arroita, G.,
Hauenstein, S., Lahoz-Monfort, J., Schröder, B., Thuiller, W., Warton,
D., Wintle, B., Hartig, F., and Dormann, C.: Cross-validation strategies for
data with temporal, spatial, hierarchical, or phylogenetic structure,
Ecography, 40, 913–929, https://doi.org/10.1111/ecog.02881, 2017. a
Roquet, F., Madec, G., McDougall, T., and Barker, P.: Accurate polynomial
expressions for the density and specific volume of seawater using the TEOS-10
standard, Ocean Model., 90, 29–43, https://doi.org/10.1016/j.ocemod.2015.04.002,
2015. a
Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., and Vivier, F.: The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities, Geosci. Model Dev., 8, 2991–3005, https://doi.org/10.5194/gmd-8-2991-2015, 2015. a
Scheuchl, B., Mouginot, J., Rignot, E., Morlighem, M., and Khazendar, A.:
Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica,
measured with Sentinel-1a radar interferometry data, Geophys. Res.
Lett., 43, 8572–8579, https://doi.org/10.1002/2016GL069287, 2016. a
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res., 112, F03S28, https://doi.org/10.1029/2006JF000664, 2007. a
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot,
E., and Khazendar, A.: Continued retreat of Thwaites Glacier, West
Antarctica, controlled by bed topography and ocean circulation, J.
Geophys. Res.-Earth, 44, 6191–6199,
https://doi.org/10.1002/2017GL072910, 2017. a
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020. a
Shean, D. E., Joughin, I. R., Dutrieux, P., Smith, B. E., and Berthier, E.: Ice shelf basal melt rates from a high-resolution digital elevation model (DEM) record for Pine Island Glacier, Antarctica, The Cryosphere, 13, 2633–2656, https://doi.org/10.5194/tc-13-2633-2019, 2019. a, b, c
Shen, Q., Wang, K., Shum, C., Jiang, L., Hsu, H., and Dong, J.: Recent
high-resolution Antarctic ice velocity maps reveal increased mass loss in
Wilkes Land, East Antarctica, Scientific Reports, 8, 4477,
https://doi.org/10.1038/s41598-018-22765-0, 2018. a
Silvano, A., Rintoul, S., and Herraiz-Borreguero, L.: Ocean-Ice Shelf
Interaction in East Antarctica, Oceanography, 29, 130–143,
https://doi.org/10.5670/oceanog.2016.105, 2016. a, b, c
Stern, A., Adcroft, A., and Sergienko, O.: The effects of Antarctic iceberg
calving-size distribution in a global climate model, J. Geophys. Res.-Oceans,
121, 5773–5788, https://doi.org/10.1002/2016JC011835, 2016. a
Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W., Calvert, D., Graham, T., Hewitt, H. T., Hyder, P., Kuhlbrodt, T., Rae, J. G. L., and Sinha, B.: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions, Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, 2018. a, b, c, d, e
Taylor, K., Stouffer, R., and Meehl, G.: An Overview of CMIP5 and the
Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
The IMBIE Team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017,
Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a
Tsujino, H., Urakawa, S., Nakano, H., Small, R., Kim, W., Yeager, S.,
Danabasoglu, G., Suzuki, T., Bamber, J., Bentsen, M., Böning, C., Bozec, A.,
Chassignet, E., Curchitser, E., Boeira Dias, F., Durack, P., Griffies, S.,
Harada, Y., Ilicak, M., Josey, S., Kobayashi, C., Kobayashi, S., Komuro, Y.,
Large, W., Le Sommer, J., Marsland, S., Masina, S., Scheinert, M., Tomita,
H., Valdivieso, M., and Yamazaki, D.: JRA-55 based surface dataset for
driving ocean–sea-ice models (JRA55-do), Ocean Model., 130, 79–139,
https://doi.org/10.1016/j.ocemod.2018.07.002, 2018. a
Virtanen, P., Gommers, R., Oliphant, T., Haberland, M., Reddy, T., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt,
S., Brett, M., Wilson, J., Millman, K., Mayorov, N., Nelson, A., Jones, E.,
Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, E.,
VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I.,
Quintero, E., Harris, C., Archibald, A., Ribeiro, A., Pedregosa, F., van
Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Weertman, J.: Stability of the Junction of an Ice Sheet and an Ice Shelf,
J. Glaciol., 13, 3–11, https://doi.org/10.3189/S0022143000023327, 1974. a
Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description, The Cryosphere, 5, 715–726, https://doi.org/10.5194/tc-5-715-2011, 2011. a
Wouters, B., Martin-Español, A., Helm, V., Flament, T., van Wessem, J.,
Ligtenberg, S., van den Broeke, M., and Bamber, J.: Dynamic thinning of
glaciers on the Southern Antarctic Peninsula, Science, 348, 899–903,
https://doi.org/10.1126/science.aaa5727, 2015. a
Zalesak, S. T.: Fully multidimensional flux-corrected transport algorithms for
fluids, J. Comput. Phys., 31, 335–362,
https://doi.org/10.1016/0021-9991(79)90051-2, 1979.
a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(12248 KB) - Full-text XML
Short summary
The ocean-induced melt at the base of the floating ice shelves around Antarctica is one of the largest uncertainty factors in the Antarctic contribution to future sea-level rise. We assess the performance of several existing parameterisations in simulating basal melt rates on a circum-Antarctic scale, using an ocean simulation resolving the cavities below the shelves as our reference. We find that the simple quadratic slope-independent and plume parameterisations yield the best compromise.
The ocean-induced melt at the base of the floating ice shelves around Antarctica is one of the...