Articles | Volume 16, issue 9
https://doi.org/10.5194/tc-16-3867-2022
https://doi.org/10.5194/tc-16-3867-2022
Research article
 | 
29 Sep 2022
Research article |  | 29 Sep 2022

Inverting ice surface elevation and velocity for bed topography and slipperiness beneath Thwaites Glacier

Helen Ockenden, Robert G. Bingham, Andrew Curtis, and Daniel Goldberg

Related authors

The Open Global Glacier Data Assimilation Framework (AGILE) v0.1
Patrick Schmitt, Fabien Maussion, Daniel N. Goldberg, and Philipp Gregor
EGUsphere, https://doi.org/10.5194/egusphere-2025-3401,https://doi.org/10.5194/egusphere-2025-3401, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
biogeodyn-MITgcmIS (v1): a biogeodynamical tool for exploratory climate modelling
Laure Moinat, Florian Franziskakis, Christian Vérard, Daniel N. Goldberg, and Maura Brunetti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2946,https://doi.org/10.5194/egusphere-2025-2946, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Results of the second Ice Shelf – Ocean Model Intercomparison Project (ISOMIP+)
Claire K. Yung, Xylar S. Asay-Davis, Alistair Adcroft, Christopher Y. S. Bull, Jan De Rydt, Michael S. Dinniman, Benjamin K. Galton-Fenzi, Daniel Goldberg, David E. Gwyther, Robert Hallberg, Matthew Harrison, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, James R. Jordan, Nicolas C. Jourdain, Kazuya Kusahara, Gustavo Marques, Pierre Mathiot, Dimitris Menemenlis, Adele K. Morrison, Yoshihiro Nakayama, Olga Sergienko, Robin S. Smith, Alon Stern, Ralph Timmermann, and Qin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-1942,https://doi.org/10.5194/egusphere-2025-1942, 2025
Short summary
Modelling the sensitivity of ice loss to calving front retreat rates in the Amundsen Sea Embayment, West Antarctica
Jowan M. Barnes, G. Hilmar Gudmundsson, Daniel N. Goldberg, and Sainan Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-328,https://doi.org/10.5194/egusphere-2025-328, 2025
Short summary
Totten Ice Shelf history over the past century interpreted from satellite imagery
Bertie W. J. Miles, Tian Li, and Robert G. Bingham
EGUsphere, https://doi.org/10.5194/egusphere-2024-3964,https://doi.org/10.5194/egusphere-2024-3964, 2025
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Brief communication: Sensitivity of Antarctic ice shelf melting to ocean warming across basal melt models
Erwin Lambert and Clara Burgard
The Cryosphere, 19, 2495–2505, https://doi.org/10.5194/tc-19-2495-2025,https://doi.org/10.5194/tc-19-2495-2025, 2025
Short summary
Automatic grounding line delineation of DInSAR interferograms using deep learning
Sindhu Ramanath, Lukas Krieger, Dana Floricioiu, Codruț-Andrei Diaconu, and Konrad Heidler
The Cryosphere, 19, 2431–2455, https://doi.org/10.5194/tc-19-2431-2025,https://doi.org/10.5194/tc-19-2431-2025, 2025
Short summary
The impact of regional-scale upper-mantle heterogeneity on glacial isostatic adjustment in West Antarctica
Erica M. Lucas, Natalya Gomez, and Terry Wilson
The Cryosphere, 19, 2387–2405, https://doi.org/10.5194/tc-19-2387-2025,https://doi.org/10.5194/tc-19-2387-2025, 2025
Short summary
Bathymetry-constrained warm-mode melt estimates derived from analysing oceanic gateways in Antarctica
Lena Nicola, Ronja Reese, Moritz Kreuzer, Torsten Albrecht, and Ricarda Winkelmann
The Cryosphere, 19, 2263–2287, https://doi.org/10.5194/tc-19-2263-2025,https://doi.org/10.5194/tc-19-2263-2025, 2025
Short summary
Satellite data reveal details of glacial isostatic adjustment in the Amundsen Sea Embayment, West Antarctica
Matthias O. Willen, Bert Wouters, Taco Broerse, Eric Buchta, and Veit Helm
The Cryosphere, 19, 2213–2227, https://doi.org/10.5194/tc-19-2213-2025,https://doi.org/10.5194/tc-19-2213-2025, 2025
Short summary

Cited articles

Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods, The Cryosphere, 3, 101–111, https://doi.org/10.5194/tc-3-101-2009, 2009. a
Barnes, J. M., Dias dos Santos, T., Goldberg, D., Gudmundsson, G. H., Morlighem, M., and De Rydt, J.: The transferability of adjoint inversion products between different ice flow models, The Cryosphere, 15, 1975–2000, https://doi.org/10.5194/tc-15-1975-2021, 2021. a, b
Bingham, R. G., Vaughan, D. G., King, E. C., Davies, D., Cornford, S. L., Smith, A. M., Arthern, R. J., Brisbourne, A. M., De Rydt, J., Graham, A. G., Spagnolo, M., Marsh, O. J., and Shean, D. E.: Diverse landscapes beneath Pine Island Glacier influence ice flow, Nat. Commun., 8, 1618, https://doi.org/10.1038/s41467-017-01597-y, 2017. a
Brisbourne, A. M., Smith, A. M., Vaughan, D. G., King, E. C., Davies, D., Bingham, R. G., Smith, E. C., Nias, I. J., and Rosier, S. H. R.: Bed conditions of Pine Island Glacier, West Antarctica, J. Geophys. Res.-Earth, 122, 419–433, https://doi.org/10.1002/2016JF004033, 2017. a
Davies, D., Bingham, R. G., King, E. C., Smith, A. M., Brisbourne, A. M., Spagnolo, M., Graham, A. G. C., Hogg, A. E., and Vaughan, D. G.: How dynamic are ice-stream beds?, The Cryosphere, 12, 1615–1628, https://doi.org/10.5194/tc-12-1615-2018, 2018. a
Download
Short summary
Hills and valleys hidden under the ice of Thwaites Glacier have an impact on ice flow and future ice loss, but there are not many three-dimensional observations of their location or size. We apply a mathematical theory to new high-resolution observations of the ice surface to predict the bed topography beneath the ice. There is a good correlation with ice-penetrating radar observations. The method may be useful in areas with few direct observations or as a further constraint for other methods.
Share