Articles | Volume 16, issue 9
The Cryosphere, 16, 3801–3814, 2022
The Cryosphere, 16, 3801–3814, 2022
Research article
22 Sep 2022
Research article | 22 Sep 2022

Sensitivity of modeled snow grain size retrievals to solar geometry, snow particle asphericity, and snowpack impurities

Zachary Fair et al.

Related authors

Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263,,, 2020
Short summary

Related subject area

Discipline: Snow | Subject: Energy Balance Obs/Modelling
Understanding wind-driven melt of patchy snow cover
Luuk D. van der Valk, Adriaan J. Teuling, Luc Girod, Norbert Pirk, Robin Stoffer, and Chiel C. van Heerwaarden
The Cryosphere, 16, 4319–4341,,, 2022
Short summary
An 11-year record of wintertime snow-surface energy balance and sublimation at 4863 m a.s.l. on the Chhota Shigri Glacier moraine (western Himalaya, India)
Arindan Mandal, Thupstan Angchuk, Mohd Farooq Azam, Alagappan Ramanathan, Patrick Wagnon, Mohd Soheb, and Chetan Singh
The Cryosphere, 16, 3775–3799,,, 2022
Short summary
Metamorphism of snow on Arctic sea ice during the melt season: impact on spectral albedo and radiative fluxes through snow
Gauthier Vérin, Florent Domine, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere, 16, 3431–3449,,, 2022
Short summary
GABLS4 intercomparison of snow models at Dome C in Antarctica
Patrick Le Moigne, Eric Bazile, Anning Cheng, Emanuel Dutra, John M. Edwards, William Maurel, Irina Sandu, Olivier Traullé, Etienne Vignon, Ayrton Zadra, and Weizhong Zheng
The Cryosphere, 16, 2183–2202,,, 2022
Short summary
Divergence of apparent and intrinsic snow albedo over a season at a sub-alpine site with implications for remote sensing
Edward H. Bair, Jeff Dozier, Charles Stern, Adam LeWinter, Karl Rittger, Alexandria Savagian, Timbo Stillinger, and Robert E. Davis
The Cryosphere, 16, 1765–1778,,, 2022
Short summary

Cited articles

Balkanski, Y., Schulz, M., Claquin, T., and Guibert, S.: Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81–95,, 2007. a
Cook, J. M., Tedstone, A. J., Williamson, C., McCutcheon, J., Hodson, A. J., Dayal, A., Skiles, M., Hofer, S., Bryant, R., McAree, O., McGonigle, A., Ryan, J., Anesio, A. M., Irvine-Fynn, T. D. L., Hubbard, A., Hanna, E., Flanner, M., Mayanna, S., Benning, L. G., van As, D., Yallop, M., McQuaid, J. B., Gribbin, T., and Tranter, M.: Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet, The Cryosphere, 14, 309–330,, 2020. a
Dang, C., Fu, Q., and Warren, S. G.: Effect of snow grain shape on snow albedo, J. Atmos. Sci., 73, 3573–3583,, 2016. a
Dang, C., Zender, C. S., and Flanner, M. G.: Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces, The Cryosphere, 13, 2325–2343,, 2019. a
Donahue, C., Skiles, S. M., and Hammonds, K.: In situ effective snow grain size mapping using a compact hyperspectral imager, J. Glaciol., 67, 49-57,, 2020. a, b, c, d, e
Short summary
Snow grain size is important to determine the age and structure of snow, but it is difficult to measure. Snow grain size can be found from airborne and spaceborne observations by measuring near-infrared energy reflected from snow. In this study, we use the SNICAR radiative transfer model and a Monte Carlo model to examine how snow grain size measurements change with snow structure and solar zenith angle. We show that improved understanding of these variables improves snow grain size precision.