Articles | Volume 16, issue 9
https://doi.org/10.5194/tc-16-3801-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3801-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of modeled snow grain size retrievals to solar geometry, snow particle asphericity, and snowpack impurities
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Mark Flanner
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA
Adam Schneider
Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
S. McKenzie Skiles
Department of Geography, University of Utah, Salt Lake City, UT, USA
Related authors
Benjamin E. Smith, Michael Studinger, Tyler Sutterley, Zachary Fair, and Thomas Neumann
The Cryosphere, 19, 975–995, https://doi.org/10.5194/tc-19-975-2025, https://doi.org/10.5194/tc-19-975-2025, 2025
Short summary
Short summary
This study investigates errors (biases) that may result when green lasers are used to measure the elevation of glaciers and ice sheets. These biases are important because if the snow or ice on top of the ice sheet changes, it can make the elevation of the ice appear to change by the wrong amount. We measure these biases over the Greenland Ice Sheet with a laser system on an airplane and explore how the use of satellite data can let us correct for the biases.
Zachary Fair, Carrie Vuyovich, Thomas Neumann, Justin Pflug, David Shean, Ellyn M. Enderlin, Karina Zikan, Hannah Besso, Jessica Lundquist, Cesar Deschamps-Berger, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3992, https://doi.org/10.5194/egusphere-2024-3992, 2025
Short summary
Short summary
Lidar is commonly used to measure snow over global water reservoirs. However, ground-based and airborne lidar surveys are expensive, so satellite-based methods are needed. In this review, we outline the latest research using satellite-based lidar to monitor snow. Best practices for lidar-based snow monitoring are given, as is a discussion on challenges in this field of research.
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020, https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Short summary
Ice on glaciers and ice sheets may melt and pond on ice surfaces in summer months. Detection and observation of these meltwater ponds is important for understanding glaciers and ice sheets, and satellite imagery has been used in previous work. However, image-based methods struggle with deep water, so we used data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and the Airborne Topographic Mapper (ATM) to demonstrate the potential for lidar depth monitoring.
Benjamin E. Smith, Michael Studinger, Tyler Sutterley, Zachary Fair, and Thomas Neumann
The Cryosphere, 19, 975–995, https://doi.org/10.5194/tc-19-975-2025, https://doi.org/10.5194/tc-19-975-2025, 2025
Short summary
Short summary
This study investigates errors (biases) that may result when green lasers are used to measure the elevation of glaciers and ice sheets. These biases are important because if the snow or ice on top of the ice sheet changes, it can make the elevation of the ice appear to change by the wrong amount. We measure these biases over the Greenland Ice Sheet with a laser system on an airplane and explore how the use of satellite data can let us correct for the biases.
Zachary Fair, Carrie Vuyovich, Thomas Neumann, Justin Pflug, David Shean, Ellyn M. Enderlin, Karina Zikan, Hannah Besso, Jessica Lundquist, Cesar Deschamps-Berger, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3992, https://doi.org/10.5194/egusphere-2024-3992, 2025
Short summary
Short summary
Lidar is commonly used to measure snow over global water reservoirs. However, ground-based and airborne lidar surveys are expensive, so satellite-based methods are needed. In this review, we outline the latest research using satellite-based lidar to monitor snow. Best practices for lidar-based snow monitoring are given, as is a discussion on challenges in this field of research.
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024, https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
Short summary
Accurate knowledge of firn grain size is crucial for many ice sheet research applications. Unfortunately, collecting detailed measurements of firn grain size is difficult. We demonstrate that scanning firn cores with a near-infrared imager can quickly produce high-resolution maps of both grain size and ice layer distributions. We map grain size and ice layer stratigraphy in 14 firn cores from Greenland and document changes to grain size and ice layer content from the extreme melt summer of 2012.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Chloe A. Whicker, Mark G. Flanner, Cheng Dang, Charles S. Zender, Joseph M. Cook, and Alex S. Gardner
The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, https://doi.org/10.5194/tc-16-1197-2022, 2022
Short summary
Short summary
Snow and ice surfaces are important to the global climate. Current climate models use measurements to determine the reflectivity of ice. This model uses physical properties to determine the reflectivity of snow, ice, and darkly pigmented impurities that reside within the snow and ice. Therefore, the modeled reflectivity is more accurate for snow/ice columns under varying climate conditions. This model paves the way for improvements in the portrayal of snow and ice within global climate models.
Christopher Donahue, S. McKenzie Skiles, and Kevin Hammonds
The Cryosphere, 16, 43–59, https://doi.org/10.5194/tc-16-43-2022, https://doi.org/10.5194/tc-16-43-2022, 2022
Short summary
Short summary
The amount of water within a snowpack is important information for predicting snowmelt and wet-snow avalanches. From within a controlled laboratory, the optimal method for measuring liquid water content (LWC) at the snow surface or along a snow pit profile using near-infrared imagery was determined. As snow samples melted, multiple models to represent wet-snow reflectance were assessed against a more established LWC instrument. The best model represents snow as separate spheres of ice and water.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Joachim Meyer, McKenzie Skiles, Jeffrey Deems, Kat Boremann, and David Shean
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-281, https://doi.org/10.5194/hess-2021-281, 2021
Revised manuscript not accepted
Short summary
Short summary
Seasonally accumulated snow in the mountains forms a natural water reservoir which is challenging to measure in the rugged and remote terrain. Here, we use overlapping aerial images that model surface elevations using software to map snow depth by calculating the difference in surface elevations between two dates, one with snow and one without. Results demonstrate the utility of aerial images to improve our ability to capture the amount of water held as snow in remote and inaccessible locations.
Joachim Meyer, S. McKenzie Skiles, Jeffrey Deems, Kat Bormann, and David Shean
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-34, https://doi.org/10.5194/tc-2021-34, 2021
Manuscript not accepted for further review
Short summary
Short summary
Snow that accumulates seasonally in mountains forms a natural water reservoir and is difficult to measure in the rugged and remote landscapes. Here, we use modern software that models surface elevations from overlapping aerial images to map snow depth by calculating the difference in surface elevations between two dates, one with snow and one without. Results demonstrate the potential value of aerial images for understanding the amount of water held as snow in remote and inaccessible locations.
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020, https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Short summary
Ice on glaciers and ice sheets may melt and pond on ice surfaces in summer months. Detection and observation of these meltwater ponds is important for understanding glaciers and ice sheets, and satellite imagery has been used in previous work. However, image-based methods struggle with deep water, so we used data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and the Airborne Topographic Mapper (ATM) to demonstrate the potential for lidar depth monitoring.
Cited articles
Balkanski, Y., Schulz, M., Claquin, T., and Guibert, S.: Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81–95, https://doi.org/10.5194/acp-7-81-2007, 2007. a
Cook, J. M., Tedstone, A. J., Williamson, C., McCutcheon, J., Hodson, A. J., Dayal, A., Skiles, M., Hofer, S., Bryant, R., McAree, O., McGonigle, A., Ryan, J., Anesio, A. M., Irvine-Fynn, T. D. L., Hubbard, A., Hanna, E., Flanner, M., Mayanna, S., Benning, L. G., van As, D., Yallop, M., McQuaid, J. B., Gribbin, T., and Tranter, M.: Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet, The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020, 2020. a
Dang, C., Fu, Q., and Warren, S. G.: Effect of snow grain shape on snow
albedo, J. Atmos. Sci., 73, 3573–3583, https://doi.org/10.1175/JAS-D-15-0276.1,
2016. a
Dang, C., Zender, C. S., and Flanner, M. G.: Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces, The Cryosphere, 13, 2325–2343, https://doi.org/10.5194/tc-13-2325-2019, 2019. a
Dozier, J. and Marks, D.: Snow Mapping and Classification from Landsat
Thematic Mapper Data, Ann. Glaciol., 9, 97–103, https://doi.org/10.3189/s026030550000046x,
1987. a
Dozier, J., Green, R. O., Nolin, A. W., and Painter, T. H.: Interpretation of
snow properties from imaging spectrometry, Remote Sens. Environ., 113, S25–S37,
https://doi.org/10.1016/j.rse.2007.07.029, 2009. a
Dumont, M., Brissaud, O., Picard, G., Schmitt, B., Gallet, J.-C., and Arnaud, Y.: High-accuracy measurements of snow Bidirectional Reflectance Distribution Function at visible and NIR wavelengths – comparison with modelling results, Atmos. Chem. Phys., 10, 2507–2520, https://doi.org/10.5194/acp-10-2507-2010, 2010. a
Flanner, M. G.: mflanner/SNICARv3: SNICAR-ADv3 (v3.0), Zenodo [code and data], https://doi.org/10.5281/zenodo.5176213, 2021. a
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day
climate forcing and response from black carbon in snow, J. Geophys. Res.-Atmos., 112, D11202, https://doi.org/10.1029/2006JD008003, 2007. a, b
Flanner, M. G., Arnheim, J. B., Cook, J. M., Dang, C., He, C., Huang, X., Singh, D., Skiles, S. M., Whicker, C. A., and Zender, C. S.: SNICAR-ADv3: a community tool for modeling spectral snow albedo, Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, 2021a. a, b
Flanner, M. G., Arnheim, J., Cook, J. M., Dang, C., He, C., Huang, X., Singh, D., Skiles, S. M., Whicker, S. A., and Zender, C. S.: The Snow, Ice, and Aerosol Radiative Model (SNICAR) version 3, Github [code], https://github.com/mflanner/SNICARv3 (last access: 19 May 2022), 2021b. a
Gao, B. C., Heidebrecht, K. B., and Goetz, A. F.: Derivation of scaled surface
reflectances from AVIRIS data, Remote Sens. Environ., 44, 165–178,
https://doi.org/10.1016/0034-4257(93)90014-O, 1993. a
Grenfell, T. C. and Warren, S. G.: Representation of a nonspherical ice
particle by a collection of independent spheres for scattering and absorption
of radiation, J. Geophys. Res.-Atmos., 104, 31697–31709,
https://doi.org/10.1029/1999JD900496, 1999. a
Grenfell, T. C., Neshyba, S. P., and Warren, S. G.: Representation of a
nonspherical ice particle by a collection of independent spheres for
scattering and absorption of radiation: 3. Hollow columns and plates, 110, D17203,
https://doi.org/10.1029/2005JD005811, 2005. a
He, C., Liou, K., Takano, Y., Yang, P., Qi, L., and Chen, F.: Impact of Grain
Shape and Multiple Black Carbon Internal Mixing on Snow Albedo:
Parameterization and Radiative Effect Analysis, J. Geophys.
Res.-Atmos., 123, 1253–1268, https://doi.org/10.1002/2017JD027752, 2017. a
Kokhanovsky, A. A. and Zege, E. P.: Scattering optics of snow, Appl. Optics, 43, 1589–1602, https://doi.org/10.1364/AO.43.001589, 2004. a
Li, W.: Bidirectional reflectance distribution function of snow: corrections
for the Lambertian assumption in remote sensing applications, Optical
Eng., 46, 066201, https://doi.org/10.1117/1.2746334, 2007. a
Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D.: Influence of grain shape on light penetration in snow, The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, 2013. a
Neshyba, S. P., Grenfell, T. C., and Warren, S. G.: Representation of a
nonspherical ice particle by a collection of independent spheres for
scattering and absorption of radiation: 2. Hexagonal columns and plates,
J. Geophys. Res.-Atmos., 108, 4448, https://doi.org/10.1029/2002jd003302,
2003. a
Nolin, A. W. and Dozier, J.: Estimating snow grain size using AVIRIS data,
Remote Sens. Environ., 44, 231–238, https://doi.org/10.1016/0034-4257(93)90018-S, 1993. a, b
Painter, T. H., Molotch, N. P., Cassidy, M., Flanner, M., and Steffen, K.:
Instruments and methods: Contact spectroscopy for determination of
stratigraphy of snow optical grain size, J. Glaciol., 53, 121–127,
https://doi.org/10.3189/172756507781833947, 2007. a, b
Painter, T. H., Seidel, F. C., Bryant, A. C., McKenzie Skiles, S., and
Rittger, K.: Imaging spectroscopy of albedo and radiative forcing by
light-absorbing impurities in mountain snow, J. Geophys. Res.-Atmos., 118, 9511–9523, https://doi.org/10.1002/jgrd.50520, 2013. a
Picard, G., Domine, F., Krinner, G., Arnaud, L., and Lefebvre, E.: Inhibition
of the positive snow-albedo feedback by precipitation in interior
Antarctica, Nat. Clim. Change, 2, 795–798, https://doi.org/10.1038/nclimate1590, 2012. a
Picard, G., Dumont, M., Lamare, M., Tuzet, F., Larue, F., Pirazzini, R., and Arnaud, L.: Spectral albedo measurements over snow-covered slopes: theory and slope effect corrections, The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-2020, 2020. a, b
Polashenski, C. M., Dibb, J. E., Flanner, M. G., Chen, J. Y., Courville, Z. R.,
Lai, A. M., Schauer, J. J., Shafer, M. M., and Bergin, M.: Neither dust nor
black carbon causing apparent albedo decline in Greenland's dry snow zone:
Implications for MODIS C5 surface reflectance, Geophys. Res. Lett., 42, 9319–9327,
https://doi.org/10.1002/2015GL065912, 2015. a, b
Schneider, A., Flanner, M., De Roo, R., and Adolph, A.: Monitoring of snow surface near-infrared bidirectional reflectance factors with added light-absorbing particles, The Cryosphere, 13, 1753–1766, https://doi.org/10.5194/tc-13-1753-2019, 2019. a, b, c, d
Seidel, F. C., Rittger, K., Skiles, S. M., Molotch, N. P., and Painter, T. H.: Case study of spatial and temporal variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from imaging spectroscopy, The Cryosphere, 10, 1229–1244, https://doi.org/10.5194/tc-10-1229-2016, 2016. a, b, c
Skiles, S. M. K. and Painter, T.: Daily evolution in dust and black carbon
content, snow grain size, and snow albedo during snowmelt, Rocky Mountains,
Colorado, J. Glaciol., 63, 118–132, https://doi.org/10.1017/jog.2016.125, 2017. a
Skiles, S. M. K. and Painter, T. H.: Toward Understanding Direct Absorption
and Grain Size Feedbacks by Dust Radiative Forcing in Snow With Coupled Snow
Physical and Radiative Transfer Modeling, Water Resour. Res., 55, 7362–7378,
https://doi.org/10.1029/2018WR024573, 2019. a
Skiles, S. M. K., Painter, T., and Okin, G. S.: A method to retrieve the
spectral complex refractive index and single scattering optical properties of
dust deposited in mountain snow, J. Glaciol., 63, 133–147,
https://doi.org/10.1017/jog.2016.126, 2017. a, b, c, d
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically stable
algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Optics, 27, 2502–2509,
https://doi.org/10.1364/ao.27.002502, 1988. a
Sturm, M. and Benson, C. S.: Vapor transport, grain growth and depth-hoar
development in the subarctic snow, J. Glaciol., 43, 42–59,
https://doi.org/10.3189/s0022143000002793, 1997. a
Tuzet, F., Dumont, M., Lafaysse, M., Picard, G., Arnaud, L., Voisin, D., Lejeune, Y., Charrois, L., Nabat, P., and Morin, S.: A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow, The Cryosphere, 11, 2633–2653, https://doi.org/10.5194/tc-11-2633-2017, 2017. a
van de Hulst, H. C.: Asymptotic fitting, a method for solving anisotropic
transfer problems in thick layers, J. Computat. Phys., 3, 291–306,
https://doi.org/10.1016/0021-9991(68)90023-5, 1968. a
Ward, J. L., Flanner, M. G., Bergin, M., Dibb, J. E., Polashenski, C. M., Soja,
A. J., and Thomas, J. L.: Modeled Response of Greenland Snowmelt to the
Presence of Biomass Burning-Based Absorbing Aerosols in the Atmosphere and
Snow, J. Geophys. Res.-Atmos., 123, 6122–6141,
https://doi.org/10.1029/2017JD027878, 2018. a
Warren, S. G.: Optical Properties of Snow, Rev. Geophys. Space
Phys., 20, 67–89, https://doi.org/10.1029/RG020i001p00067, 1982. a
Wiscombe, W. J. and Warren, S. G.: A model for the spectral albedo of snow. I:
pure snow., J. Atmos. Sci., 37, 2712–2733,
https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2, 1980. a
Yang, P., Bi, L., Baum, B. A., Liou, K.-N., Kattawar, G. W., Mishchenko, M. I.,
and Cole, B.: Spectrally Consistent Scattering, Absorption, and Polarization
Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 µm,
J. Atmos. Sci., 70, 330–347,
https://doi.org/10.1175/JAS-D-12-039.1, 2013. a
Short summary
Snow grain size is important to determine the age and structure of snow, but it is difficult to measure. Snow grain size can be found from airborne and spaceborne observations by measuring near-infrared energy reflected from snow. In this study, we use the SNICAR radiative transfer model and a Monte Carlo model to examine how snow grain size measurements change with snow structure and solar zenith angle. We show that improved understanding of these variables improves snow grain size precision.
Snow grain size is important to determine the age and structure of snow, but it is difficult to...