Articles | Volume 16, issue 9
https://doi.org/10.5194/tc-16-3451-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3451-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Large-eddy simulations of the ice-shelf–ocean boundary layer near the ice front of Nansen Ice Shelf, Antarctica
Ji Sung Na
Division of Glacial Environment Research, Korea Polar Research Institute, Incheon, 21990, South Korea
Taekyun Kim
Department of Earth and Marine Science, Jeju National University, Jeju, 63243, South Korea
Division of Glacial Environment Research, Korea Polar Research Institute, Incheon, 21990, South Korea
Seung-Tae Yoon
School of Earth System Sciences, Kyungpook National University, Daegu, 41566, South Korea
Won Sang Lee
Division of Glacial Environment Research, Korea Polar Research Institute, Incheon, 21990, South Korea
Sukyoung Yun
Division of Glacial Environment Research, Korea Polar Research Institute, Incheon, 21990, South Korea
Jiyeon Lee
Division of Glacial Environment Research, Korea Polar Research Institute, Incheon, 21990, South Korea
Related authors
Hyunjae Chung, Jikang Park, Mijin Park, Yejin Kim, Unyoung Chun, Sukyoung Yun, Won Sang Lee, Hyun A. Choi, Ji Sung Na, Seung-Tae Yoon, and Won Young Lee
Biogeosciences, 21, 5199–5217, https://doi.org/10.5194/bg-21-5199-2024, https://doi.org/10.5194/bg-21-5199-2024, 2024
Short summary
Short summary
Understanding how marine animals adapt to variations in marine environmental conditions is paramount. In this paper, we investigated the influence of changes in seawater and light conditions on the seasonal foraging behavior of Weddell seals in the Ross Sea, Antarctica. Our findings could serve as a baseline and establish a foundational understanding for future research, particularly concerning the impact of marine environmental changes on the ecosystem of the Ross Sea Marine Protected Area.
Liv Cornelissen, Sukyoung Yun, Jasmin McInerney, Brett Grant, Fiona Elliot, Seung-Tae Yoon, Christopher J. Zappa, Won Sang Lee, and Craig Stevens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-540, https://doi.org/10.5194/essd-2025-540, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a decade-long mooring time series from southern Terra Nova Bay, Ross Sea, begun in December 2014 as the “DITx” array. Three sites around the Drygalski Ice Tongue record temperature, salinity, pressure, and currents. The data highlight seasonal cycles and variability, informing studies of water mass formation, ice–ocean interactions, glaciology, and regional ecosystems.
Shenjie Zhou, Pierre Dutrieux, Claudia F. Giulivi, Adrian Jenkins, Alessandro Silvano, Christopher Auckland, E. Povl Abrahamsen, Michael P. Meredith, Irena Vaňková, Keith W. Nicholls, Peter E. D. Davis, Svein Østerhus, Arnold L. Gordon, Christopher J. Zappa, Tiago S. Dotto, Theodore A. Scambos, Kathyrn L. Gunn, Stephen R. Rintoul, Shigeru Aoki, Craig Stevens, Chengyan Liu, Sukyoung Yun, Tae-Wan Kim, Won Sang Lee, Markus Janout, Tore Hattermann, Julius Lauber, Elin Darelius, Anna Wåhlin, Leo Middleton, Pasquale Castagno, Giorgio Budillon, Karen J. Heywood, Jennifer Graham, Stephen Dye, Daisuke Hirano, and Una Kim Miller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-54, https://doi.org/10.5194/essd-2025-54, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We created the first standardised dataset of in-situ ocean measurements time series from around Antarctica collected since 1970s. This includes temperature, salinity, pressure, and currents recorded by instruments deployed in icy, challenging conditions. Our analysis highlights the dominance of tidal currents and separates these from other patterns to study regional energy distribution. This unique dataset offers a foundation for future research on Antarctic ocean dynamics and ice interactions.
Christian T. Wild, Reinhard Drews, Niklas Neckel, Joohan Lee, Sihyung Kim, Hyangsun Han, Won Sang Lee, Veit Helm, Sebastian Harry Reid Rosier, Oliver J. Marsh, and Wolfgang Rack
EGUsphere, https://doi.org/10.5194/egusphere-2024-3593, https://doi.org/10.5194/egusphere-2024-3593, 2024
Short summary
Short summary
The stability of the Antarctic Ice Sheet depends on how resistance along the sides of large glaciers slows down the flow of ice into the ocean. We present a method to map ice strength using the effect of ocean tides on floating ice shelves. Incorporating weaker ice in shear zones improves the accuracy of model predictions compared to satellite observations. This demonstrates the untapped potential of radar satellites to map ice stiffness in the most critical areas for ice sheet stability.
Hyunjae Chung, Jikang Park, Mijin Park, Yejin Kim, Unyoung Chun, Sukyoung Yun, Won Sang Lee, Hyun A. Choi, Ji Sung Na, Seung-Tae Yoon, and Won Young Lee
Biogeosciences, 21, 5199–5217, https://doi.org/10.5194/bg-21-5199-2024, https://doi.org/10.5194/bg-21-5199-2024, 2024
Short summary
Short summary
Understanding how marine animals adapt to variations in marine environmental conditions is paramount. In this paper, we investigated the influence of changes in seawater and light conditions on the seasonal foraging behavior of Weddell seals in the Ross Sea, Antarctica. Our findings could serve as a baseline and establish a foundational understanding for future research, particularly concerning the impact of marine environmental changes on the ecosystem of the Ross Sea Marine Protected Area.
Chris Pierce, Christopher Gerekos, Mark Skidmore, Lucas Beem, Don Blankenship, Won Sang Lee, Ed Adams, Choon-Ki Lee, and Jamey Stutz
The Cryosphere, 18, 1495–1515, https://doi.org/10.5194/tc-18-1495-2024, https://doi.org/10.5194/tc-18-1495-2024, 2024
Short summary
Short summary
Water beneath glaciers in Antarctica can influence how the ice slides or melts. Airborne radar can detect this water, which looks bright in radar images. However, common techniques cannot identify the water's size or shape. We used a simulator to show how the radar image changes based on the bed material, size, and shape of the waterbody. This technique was applied to a suspected waterbody beneath Thwaites Glacier. We found it may be consistent with a series of wide, flat canals or a lake.
In-Woo Park, Emilia Kyung Jin, Mathieu Morlighem, and Kang-Kun Lee
The Cryosphere, 18, 1139–1155, https://doi.org/10.5194/tc-18-1139-2024, https://doi.org/10.5194/tc-18-1139-2024, 2024
Short summary
Short summary
This study conducted 3D thermodynamic ice sheet model experiments, and modeled temperatures were compared with 15 observed borehole temperature profiles. We found that using incompressibility of ice without sliding agrees well with observed temperature profiles in slow-flow regions, while incorporating sliding in fast-flow regions captures observed temperature profiles. Also, the choice of vertical velocity scheme has a greater impact on the shape of the modeled temperature profile.
Christine F. Dow, Derek Mueller, Peter Wray, Drew Friedrichs, Alexander L. Forrest, Jasmin B. McInerney, Jamin Greenbaum, Donald D. Blankenship, Choon Ki Lee, and Won Sang Lee
The Cryosphere, 18, 1105–1123, https://doi.org/10.5194/tc-18-1105-2024, https://doi.org/10.5194/tc-18-1105-2024, 2024
Short summary
Short summary
Ice shelves are a key control on Antarctic contribution to sea level rise. We examine the Nansen Ice Shelf in East Antarctica using a combination of field-based and satellite data. We find the basal topography of the ice shelf is highly variable, only partially visible in satellite datasets. We also find that the thinnest region of the ice shelf is altered over time by ice flow rates and ocean melting. These processes can cause fractures to form that eventually result in large calving events.
Cited articles
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.:
Interannual variations in meltwater input to the Southern Ocean from
Antarctic ice shelves, Nat. Geosci., 13, 616–620
https://doi.org/10.1038/s41561-020-0616-z, 2020.
Arzeno, I. B., Beardsley, R. C., Limeburner, R., Owens, B., Padman, L.,
Springer, S. R., Stewart, C. R., and Williams, M. J.: Ocean variability
contributing to basal melt rate near the ice front of Ross Ice Shelf,
Antarctica, J. Geophys. Res.-Oceans, 119, 4214–4233,
https://doi.org/10.1002/2014JC009792, 2014.
Beckmann, A. and Goosse, H.: A parameterization of ice shelf–ocean interaction for climate models, Ocean Model., 5, 157–170, https://doi.org/10.1016/S1463-5003(02)00019-7, 2003.
Begeman, C. B., Tulaczyk, S. M., Marsh, O. J., Mikucki, J. A., Stanton, T.
P., Hodson, T. O., Siegfried, M. R., Powell, R. D., Christianson, K., and
King, M. A.: Ocean Stratification and Low Melt Rates at the Ross Ice Shelf
Grounding Zone, J. Geophys. Res.-Oceans, 123, 7438–7452,
https://doi.org/10.1029/2018JC013987, 2018.
Briscolini, M., and Santangelo, P.: Development of the mask method for
incompressible unsteady flows, J. Comput. Phys., 84,
57–75, https://doi.org/10.1016/0021-9991(89)90181-2, 1989.
Carsey, F. D. and Garwood Jr., R. W.: Identification of modeled ocean plumes
in Greenland Gyre ERS-1 SAR data, Geophys. Res. Lett., 20, 2207–2210,
https://doi.org/10.1029/93GL01954, 1993.
Coleman, G. N., Ferziger, J. H., and Spalart, P. R.: A numerical study of the
turbulent Ekman layer, J. Fluid Mech., 213, 313–348,
https://doi.org/10.1017/S0022112090002348, 1990.
Davis, P. E. and Nicholls, K. W.: Turbulence observations beneath larsen C
ice shelf, Antarctica, J. Geophys. Res.-Oceans, 124, 5529–5550,
https://doi.org/10.1029/2019JC015164, 2019.
Denbo, D. W. and Skyllingstad E. D.: An ocean large-eddy simulation model
with application to deep convection in the Greenland Sea, J. Geophys.
Res., 101, 1095–1110, https://doi.org/10.1029/95JC02828, 1996.
Derbyshire, S. H.: Nieuwstadt's stable boundary layer revisited, Q. J.
Roy. Meteor. Soc., 116, 127–158, 1990.
Dinniman, M. S., Asay-Davis, X. S., Galton-Fenzi, B. K., Holland, P. R.,
Jenkins, A., and Timmermann, R.: Modeling ice shelf/ocean interaction in
Antarctica: A review, Oceanography, 29, 144–153,
https://doi.org/10.5670/oceanog.2016.106, 2016.
Galton-Fenzi, B. K., Hunter, J. R., Coleman, R., Marsland, S. J., and Warner, R.
C.: Modeling the basal melting and marine ice accretion of the Amery Ice
Shelf, J. Geophys. Res.-Oceans, 117, 1 C09031,
https://doi.org/10.1029/2012JC008214, 2012.
Garabato, A. C. N., Forryan, A., Dutrieux, P., Brannigan, L., Biddle, L. C.,
Heywood, K. J., Jeknins, A., Firing, Y. L., and Kimura, S.: Vigorous lateral
export of the meltwater outflow from beneath an Antarctic ice
shelf, Nature, 542, 219–222, https://doi.org/10.1038/nature20825, 2017.
Gao, X., Dong, C., Liang, J., Yang, J., Li, G., Wang, D. and McWilliams, J.
C.: Convective instability-induced mixing and its parameterization using
large eddy simulation, Ocean Model., 137, 40–51,
https://doi.org/10.1016/j.ocemod.2019.03.008, 2019.
Gayen, B., Griffiths, R. W., and Kerr, R. C.: Simulation of convection at a
vertical ice face dissolving into saline water, J. Fluid Mech., 798,
284–298, https://doi.org/10.1017/jfm.2016.315, 2016.
Glendening, J. W.: Horizontally integrated atmospheric heat flux from an
Arctic lead, J. Geophys. Res., 100, 4613–4621, https://doi.org/10.1029/94JC02424, 1995.
Google Earth 9.2.0: 6 November 2017, Terra Nova Bay, Antarctica, S, E, elevation 47M,
http://www.earth.google.com, last access: 19 June 2020.
Guest, P. S.: Inside Katabatic Winds Over the Terra Nova Bay Polynya: 1.
Atmospheric Jet and Surface Conditions, J. Geophys. Res.-Atmos., 126, e2021JD034904,
https://doi.org/10.1029/2021JD034902, 2021.
Gwyther, D. E., Cougnon, E. A., Galton-Fenzi, B. K., Roberts, J. L., Hunter,
J. R., and Dinniman, M. S.: Modelling the response of ice shelf basal
melting to different ocean cavity environmental regimes, Ann. Glaciol.,
57, 131–141, https://doi.org/10.1017/aog.2016.31, 2016.
Hattermann, T., Nøst, O. A., Lilly, J. M., and Smedsrud, L. H: Two years
of oceanic observations below the Fimbul Ice Shelf, Antarctica, Geophys.
Res. Letters, 39, L12605, https://doi.org/10.1029/2012GL051012, 2012.
Heorton, H. D., Radia, N., and Feltham, D. L.: A model of sea ice formation
in leads and polynyas, J. Phys. Oceanogr., 47, 1701–1718,
https://doi.org/10.1175/JPO-D-16-0224.1, 2017.
Hewitt, I. J.: Subglacial Plumes, Annu. Rev. Fluid Mech., 52,
145–169, https://doi.org/10.1146/annurev-fluid-010719-060252, 2020.
Holland, D. M. and Jenkins, A.: Modeling thermodynamic ice–ocean
interactions at the base of an ice shelf, J. Phys. Oceanogr., 29,
1787–1800, https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999.
Holland, D. M., Nicholls, K. W., and Basinski, A.: The Southern Ocean and its
interaction with the Antarctic Ice Sheet, Science, 367, 1326–1330,
https://doi.org/10.1126/science.aaz5491, 2020.
Horgan, H. J., Walker, R. T., Anandakrishnan, S., and Alley, R. B.: Surface
elevation changes at the front of the Ross Ice Shelf: Implications for basal
melting, J. Geophys. Res.-Oceans, 116, C02005, https://doi.org/10.1029/2010JC006192,
2011.
Irwin, J. S.: A theoretical variation of the wind profile power-law exponent
as a function of surface roughness and stability, Atmos. Environ.,
13, 191–194, https://doi.org/10.1016/0004-6981(79)90260-9, 1979.
Jackett, D. R., Mc Dougall, T. J., Feistel, R., Wright, D. G., Griffies, S.
M.: Algortihms for density, potential temperature, conservative
temperature, and the freezing temperature of seawater, J. Atmos. Ocean. Tech., 23, 1709–1728, https://doi.org/10.1175/JTECH1946.1, 2006.
Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A., and Frolich, R.
M.: Melting of ice shelves and the mass balance of Antarctica, J. Glaciol.,
38, 375–387, https://doi.org/10.3189/S0022143000002252, 1992.
Jenkins, A.: A simple model of the ice shelf–ocean boundary layer and
current, J. Phys. Oceanogr., 46, 1785–1803, https://doi.org/10.1175/JPO-D-15-0194.1, 2016.
Jenkins, A., Dutrieux, P., Jacobs, S. S., McPhail, S. D., Perrett, J. R.,
Webb, A. T., and White, D.: Observations beneath Pine Island Glacier in West
Antarctica and implications for its retreat, Nat. Geosci., 3, 468–472,
https://doi.org/10.1038/ngeo890, 2010.
Joughin, I., Alley, R. B., and Holland, D. M.: Ice-Sheet Response to Oceanic
Forcing, Science, 338, 1172–1176, https://doi.org/10.1126/science.1226481, 2012.
Kikumoto, H., Ooka, R., Sugawara, H., and Lim, J.: Observational study of
power-law approximation of wind profiles within an urban boundary layer for
various wind conditions, J. Wind Eng. Ind. Aerod., 164, 13–21,
https://doi.org/10.1016/j.jweia.2017.02.003, 2017.
Kimura, S., Nicholls, K. W., and Venables, E.: Estimation of ice shelf melt
rate in the presence of a thermohaline staircase. J. Phys. Oceanogr., 45,
133–148, https://doi.org/10.1175/JPO-D-14-0106.1, 2015.
Li, B. R., Wang, M. M., Lu, X. Y., Wan, Z. H., and Song, H. E.: Effect of
Salinity on Sea Ice Motion, Therm. Sci., 22, 1563–1570,
https://doi.org/10.2298/TSCI1804563L, 2018.
Liu, Y., Moore, J. C., Cheng, X., Gladstone, R. M., Bassis, J. N.,
Liu, H., Wen, J., and Hui, F.: Ocean-driven thinning enhances iceberg calving and retreat of
Antarctic ice shelves, P. Natl. Acad. Sci. USA, 112, 3263–3268,
https://doi.org/10.1073/pnas.1415137112, 2015.
Malyarenko, A., Robinson, N. J., Williams, M. J. M., and Langhorne, P. J.: A wedge mechanism for summer surface water inflow into the Ross Ice Shelf cavity, J. Geophys. Res., 124, 1196–1214, https://doi.org/10.1029/2018JC014594, 2019.
Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M. O., Sühring, M., and Raasch, S.: The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives, Geosci. Model Dev., 8, 2515–2551, https://doi.org/10.5194/gmd-8-2515-2015, 2015.
Matsumura, Y. and Ohshima, K. I.: Lagrangian modelling of frazil ice in the
ocean, Ann. Glaciol., 56, 373–382, https://doi.org/10.3189/2015AoG69A657, 2015.
McConnochie, C. D. and Kerr, R. C.: Dissolution of a sloping solid surface
by turbulent compositional convection, J. Fluid Mech, 846, 563–577,
https://doi.org/10.1017/jfm.2018.282, 2018.
McPhee, M. G., Maykut, G. A., and Morison, J. H.: Dynamics and thermodynamics
of the ice/upper ocean system in the marginal ice zone of the Greenland
Sea, J. Geophys. Res., 92, 7017–7031, https://doi.org/10.1029/JC092iC07p07017, 1987.
Mondal, M., Gayen, B., and Kerr, R.: Ablation of sloping ice faces into
polar seawater, J. Fluid Mech., 863, 545–571, https://doi.org/10.1017/jfm.2018.970, 2019.
Noh, Y., Goh, G., Raasch, S., and Gryschka, M.: Formation of a diurnal
thermocline in the ocean mixed layer simulated by LES, J. Phys. Oceanogr.,
39, 1244–1257, https://doi.org/10.1175/2008JPO4032.1, 2009.
Pope, S. B.: Turbulent flows, Cambridge university press, 2000.
Raasch, S. and Schröter, M.: PALM – a large-eddy simulation model
performing on massively parallel computers, Meteorol. Z., 10, 363–372,
https://doi.org/10.1127/0941-2948/2001/0010-0363, 2001.
Ramudu, E., Gelderloos, R., Yang, D., Meneveau, C., and Gnanadesikan, A.:
Large eddy simulation of heat entrainment under arctic sea ice, J. Geophys.
Res.-Oceans, 123, 287–304, https://doi.org/10.1002/2017JC013267, 2018.
Rees Jones, D. W. and Wells, A. J.: Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes, The Cryosphere, 12, 25–38, https://doi.org/10.5194/tc-12-25-2018, 2018.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-shelf melting
around Antarctica, Science, 341, 266–270,
https://doi.org/10.1126/science.1235798, 2013.
Rygg, K., Alendal, G., and Haugan, P. M.: Flow over a rounded backward-facing
step, using az-coordinate model and a σ-coordinate model, Ocean
Dynam., 61, 1681–1696, https://doi.org/10.1007/s10236-011-0434-3, 2011.
SeaBird Electronics, Inc.: Seasoft V2: SBE data processing (User's Manual,
Bellevue, Washington, USA, 1–174, 2014.
Sharqawy, M. H., Lienhard, J. H., and Zubair, S. M.: Thermophysical
properties of seawater: a review of existing correlations and data,
Desalin. Water Treat., 16, 354–380,
https://doi.org/10.5004/dwt.2010.1079, 2010.
Skyllingstad, E. D. and Denbo, D. W.: Turbulence beneath sea ice and leads:
a coupled sea ice/large eddy simulation study, J. Geophys. Res., 106,
2477–2497, https://doi.org/10.1029/1999JC000091, 2001.
Smedsrud, L. H. and Jenkins, A.: Frazil ice formation in an ice shelf water
plume, J. Geophys. Res., 109, C03025,
https://doi.org/10.1029/2003JC001851, 2004.
Smethie Jr., W. M. and Jacobs, S. S.: Circulation and melting under the Ross
Ice Shelf: estimates from evolving CFC, salinity and temperature fields in
the Ross Sea, Deep-Sea Res. Pt. I, 52, 959–978, https://doi.org/10.1016/j.dsr.2004.11.016, 2005.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo,
F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K.,
Markus, T., Neumann, T., Siegfried, M. R., and Zwally, H. J.: Pervasive ice
sheet mass loss reflects competing ocean and atmosphere processes, Science,
eaaz5845, https://doi.org/10.1126/science.aaz5845, 2020.
Stevens, C., Lee, W. S., Fusco, G., Yun, S., Grant, B., Robinson, N., and
Hwang, C. Y.: The influence of the Drygalski Ice Tongue on the local ocean,
Ann. Glaciol., 58, 51–59, https://doi.org/10.1017/aog.2017.4, 2017.
The PALM model system: https://palm.muk.uni-hannover.de/trac, last access: 30 August 2022.
Thompson, L., Smith, M., Thomson, J., Stammerjohn, S., Ackley, S., and Loose, B.: Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica, The Cryosphere, 14, 3329–3347, https://doi.org/10.5194/tc-14-3329-2020, 2020.
Thurnherr, A. M.: How to Process LADCP Data with the LDEO Software, Columbia University, 2014.
Vreugdenhil, C. A. and Taylor, J. R.: Stratification effects in the
turbulent boundary layer beneath a melting ice shelf: Insights from resolved
large-eddy simulations, J. Phys. Oceanogr., 49, 1905–1925,
https://doi.org/10.1175/JPO-D-18-0252.1, 2019.
Wicker, L. J. and Skamarock, W. C.: Time-splitting methods for elastic
models using forward time schemes, Mon. Weather Rev., 130, 2088–2097,
https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2,
2002.
Wray, P. A.: Spatial analysis of the Nansen ice shelf basal channel, using
ice penetrating radar, Master's thesis, University of Waterloo, 2019.
Yoon, S.-T., Lee, W. S., Stevens, C., Jendersie, S., Nam, S., Yun, S., Hwang, C. Y., Jang, G. I., and Lee, J.: Variability in high-salinity shelf water production in the Terra Nova Bay polynya, Antarctica, Ocean Sci., 16, 373–388, https://doi.org/10.5194/os-16-373-2020, 2020.
Short summary
Beneath the Antarctic ice shelf, sub-ice-shelf plume flow that can cause turbulent mixing exists. In this study, we investigate how this flow affects ocean dynamics and ice melting near the ice front. Our results obtained by validated simulation show that higher turbulence intensity results in vigorous ice melting due to the high heat entrainment. Moreover, this flow with meltwater created by this flow highly affects the ocean overturning circulations near the ice front.
Beneath the Antarctic ice shelf, sub-ice-shelf plume flow that can cause turbulent mixing...