Articles | Volume 16, issue 7
https://doi.org/10.5194/tc-16-2927-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2927-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Predictability of Arctic sea ice drift in coupled climate models
Simon Felix Reifenberg
CORRESPONDING AUTHOR
Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
now at: MARUM – Center for Marine Environmental Science & Institute of Environmental Physics, University of Bremen, Bremen, Germany
Helge Friedrich Goessling
Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
Related authors
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Tatiana Klimiuk, Patrick Ludwig, Antonio Sanchez-Benitez, Helge F. Goessling, Peter Braesicke, and Joaquim G. Pinto
Earth Syst. Dynam., 16, 239–255, https://doi.org/10.5194/esd-16-239-2025, https://doi.org/10.5194/esd-16-239-2025, 2025
Short summary
Short summary
Our study examines potential changes in heatwaves in central Europe due to global warming, using the 2019 summer heatwave as an example. By producing high-resolution storylines, we provide insights into how future heatwaves might spread, how they might persist for longer, and where stronger or weaker temperature increases may occur. This research helps us understand regional thermodynamic responses and highlights the importance of local strategies to protect communities from future heat events.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Klaus Dethloff, Wieslaw Maslowski, Stefan Hendricks, Younjoo J. Lee, Helge F. Goessling, Thomas Krumpen, Christian Haas, Dörthe Handorf, Robert Ricker, Vladimir Bessonov, John J. Cassano, Jaclyn Clement Kinney, Robert Osinski, Markus Rex, Annette Rinke, Julia Sokolova, and Anja Sommerfeld
The Cryosphere, 16, 981–1005, https://doi.org/10.5194/tc-16-981-2022, https://doi.org/10.5194/tc-16-981-2022, 2022
Short summary
Short summary
Sea ice thickness anomalies during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) winter in January, February and March 2020 were simulated with the coupled Regional Arctic climate System Model (RASM) and compared with CryoSat-2/SMOS satellite data. Hindcast and ensemble simulations indicate that the sea ice anomalies are driven by nonlinear interactions between ice growth processes and wind-driven sea-ice transports, with dynamics playing a dominant role.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Cited articles
Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A.,
Russell, C., Law, S., Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J.,
Tietsche, S., Sarojini, B. B., Blanchard-Wrigglesworth, E., Aksenov, Y.,
Downie, R., and Shuckburgh, E.: Seasonal Arctic sea ice forecasting with
probabilistic deep learning, Nat. Commun., 12, 5124,
https://doi.org/10.1038/s41467-021-25257-4, 2021. a
Barber, D. G., Babb, D. G., Ehn, J. K., Chan, W., Matthes, L., Dalman, L. A.,
Campbell, Y., Harasyn, M. L., Firoozy, N., Theriault, N., Lukovich, J. V.,
Zagon, T., Papakyriakou, T., Capelle, D. W., Forest, A., and Gariepy, A.:
Increasing Mobility of High Arctic Sea Ice Increases Marine Hazards Off the
East Coast of Newfoundland, Geophys. Res. Lett., 45, 2370–2379,
https://doi.org/10.1002/2017GL076587, 2018. a
Collins, M.: Climate predictability on interannual to decadal time scales: the
initial value problem, Clim. Dynam., 19, 671–692,
https://doi.org/10.1007/s00382-002-0254-8, 2002. a, b, c
Cruz-García, R., Guemas, V., Chevallier, M., and Massonnet, F.: Seasonal
Arctic sea ice forecasting with probabilistic deep learning, Clim.
Dynam., 53, 427–440, https://doi.org/10.1007/s00382-018-4592-6,
2019. a
Dawson, J., Pizzolato, L., Howell, S. E., Copland, L., and Johnston, M. E.:
Temporal and Spatial Patterns of Ship Traffic in the Canadian Arctic from
1990 to 2015, Arctic, 71, 15–26, 2018. a
Day, J. J., Hawkins, E., and Tietsche, S.: Will Arctic sea ice thickness
initialization improve seasonal forecast skill?, Geophys. Res. Lett., 41,
7566–7575, https://doi.org/10.1002/2014GL061694, 2014. a, b, c
Day, J. J., Tietsche, S., Collins, M., Goessling, H. F., Guemas, V., Guillory, A., Hurlin, W. J., Ishii, M., Keeley, S. P. E., Matei, D., Msadek, R., Sigmond, M., Tatebe, H., and Hawkins, E.: The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set version 1, Geosci. Model Dev., 9, 2255–2270, https://doi.org/10.5194/gmd-9-2255-2016, 2016. a, b, c, d, e
DelSole, T., Yan, X., Dirmeyer, P. A., Fennessy, M., and Altshuler, E.:
Changes in Seasonal Predictability due to Global Warming, J.
Climate, 27, 300–311, https://doi.org/10.1175/JCLI-D-13-00026.1, 2014. a
de Vos, M., Barnes, M., Biddle, L. C., Swart, S., Ramjukadh, C.-L., and Vichi,
M.: Evaluating numerical and free-drift forecasts of sea ice drift during a
Southern Ocean research expedition: An operational perspective, J.
Oper. Oceanogr., 1–17, https://doi.org/10.1080/1755876X.2021.1883293,
2021. a
Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao,
M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M. D., Austin, J.,
Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T.,
Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T. R.,
Langenhorst, A. R., Lee, H.-C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly,
P. C. D., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V.,
Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer, R. J.,
Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F.: The Dynamical
Core, Physical Parameterizations, and Basic Simulation Characteristics of the
Atmospheric Component AM3 of the GFDL Global Coupled Model CM3, J.
Climate, 24, 3484–3519, https://doi.org/10.1175/2011JCLI3955.1, 2011. a
Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., Hermanson, L., and
Robinson, N.: Do seasonal-to-decadal climate predictions underestimate the
predictability of the real world?, Geophys. Res. Lett., 41,
5620–5628, https://doi.org/10.1002/2014GL061146, 2014. a
Gascard, J.-C., Riemann-Campe, K., Gerdes, R., Schyberg, H., Randriamampianina,
R., Karcher, M., Zhang, J., and Rafizadeh, M.: Future sea ice conditions and
weather forecasts in the Arctic: Implications for Arctic shipping, Ambio,
46, 355–367, https://doi.org/10.1007/s13280-017-0951-5, 2017. a
Goessling, H., Tietsche, S., Day, J., Hawkins, E., and Jung, T.: Predictability
of the Arctic sea ice edge, Geophys. Res. Lett., 43, 1642–1650,
https://doi.org/10.1002/2015GL067232, 2016. a
Goessling, H. F. and Jung, T.: A probabilistic verification score for
contours: Methodology and application to Arctic ice-edge forecasts,
Q. J. Roy. Meteor. Soc., 144, 735–743,
https://doi.org/10.1002/qj.3242, 2018. a
Goessling, H. F. and Reifenberg, S. F.: spheRlab, GitHub [code], https://github.com/FESOM/spheRlab, last access: 15 July 2022. a
Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W., Downes, S. M.,
Farneti, R., Gnanadesikan, A., Hurlin, W. J., Lee, H.-C., Liang, Z., Palter,
J. B., Samuels, B. L., Wittenberg, A. T., Wyman, B. L., Yin, J., and Zadeh,
N.: The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and Sea
Ice Simulations, J. Climate, 24, 3520–3544,
https://doi.org/10.1175/2011JCLI3964.1, 2011. a
Grumbine, R. W.: Virtual Floe Ice Drift Forecast Model Intercomparison,
Weather Forecast., 13, 886–890,
https://doi.org/10.1175/1520-0434(1998)013<0886:VFIDFM>2.0.CO;2, 1998. a
Grumbine, R. W.: Long Range Sea Ice Drift Model Verification, MMAB Tech. Note
315, 2013. a
Hawkins, E., Tietsche, S., Day, J. J., Melia, N., Haines, K., and Keeley, S.:
Aspects of designing and evaluating seasonal-to-interannual Arctic sea-ice
prediction systems, Q. J. Roy. Meteor. Soc.,
142, 672–683, https://doi.org/10.1002/qj.2643, 2016. a
Hebert, D. A., Allard, R. A., Metzger, E. J., Posey, P. G., Preller, R. H.,
Wallcraft, A. J., Phelps, M. W., and Smedstad, O. M.: Short-term sea ice
forecasting: An assessment of ice concentration and ice drift forecasts using
the U.S. Navy's Arctic Cap Nowcast/Forecast System, J. Geophys.
Res.-Oceans, 120, 8327–8345,
https://doi.org/10.1002/2015JC011283, 2015. a
Hoskins, B.: The potential for skill across the range of the seamless
weather-climate prediction problem: a stimulus for our science, Q.
J. Roy. Meteor. Soc., 139, 573–584,
https://doi.org/10.1002/qj.1991, 2013. a
Johns, T. C., Durman, C. F., Banks, H. T., Roberts, M. J., McLaren,
A. J., Ridley, J. K., Senior, C. A., Williams, K. D., Jones, A.,
Rickard, G. J., Cusack, S., Ingram, W. J., Crucifix, M., Sexton,
D. M. H., Joshi, M. M., Dong, B.-W., Spencer, H., Hill, R. S. R.,
Gregory, J. M., Keen, A. B., Pardaens, A. K., Lowe, J. A.,
Bodas-Salcedo, A., Stark, S., and Searl, Y.: The New Hadley Centre
Climate Model (HadGEM1): Evaluation of Coupled Simulations, J.
Climate, 19, 1327, https://doi.org/10.1175/JCLI3712.1, 2006. a
Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H., and Monge-Sanz, B. M.: SEAS5: the new ECMWF seasonal forecast system, Geosci. Model Dev., 12, 1087–1117, https://doi.org/10.5194/gmd-12-1087-2019, 2019. a
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the
ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean
component of the MPI-Earth system model, J. Adv. Model.
Earth Sy., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013. a
Leppäranta, M.: The Drift of Sea Ice, Springer-Verlag Berlin Heidelberg, UK, 2nd
Edn., https://doi.org/10.1007/978-3-642-04683-4, 2011. a
Lorenz, E. N.: The predictability of a flow which possesses many scales of
motion, Tellus, 21, 289–307, https://doi.org/10.1111/j.2153-3490.1969.tb00444.x,
1969. a
Lorenz, E. N.: Climatic Predictability, in: The Physical Bases of Climate
and Climate Modelling, World Meteorological Organization, GARP Publications Series- No. 16, 132–136,
1975. a
Melia, N., Haines, K., and Hawkins, E.: Sea ice decline and 21st century
trans-Arctic shipping routes, Geophys. Res. Lett., 43, 9720–9728,
https://doi.org/10.1002/2016GL069315, 2016. a
Mudryk, L. R., Dawson, J., Howell, S. E. L., Derksen, C., Zagon, T. A., and
Brady, M.: Impact of 1, 2 and 4 ∘C of global warming on ship
navigation in the Canadian Arctic, Nat. Clim. Change, 11, 673–679,
https://doi.org/10.1038/s41558-021-01087-6, 2021. a
Murphy, A. H. and Winkler, R. L.: Diagnostic verification of probability
forecasts, Int. J. Forecast., 7, 435–455, 1992. a
Nansen, F.: The Oceanography of the North Polar Basin: Norwegian North Polar
Expedition 1893–1896, Scientific Results, 3, 9, 1902. a
Nicolaus, M., Perovich, D. K., Spreen, G., Granskog, M. A., von Albedyll, L.,
Angelopoulos, M., Anhaus, P., Arndt, S., Belter, H. J., Bessonov, V.,
Birnbaum, G., Brauchle, J., Calmer, R., Cardellach, E., Cheng, B.,
Clemens-Sewall, D., Dadic, R., Damm, E., de Boer, G., Demir, O., Dethloff,
K., Divine, D. V., Fong, A. A., Fons, S., Frey, M. M., Fuchs, N., Gabarró,
C., Gerland, S., Goessling, H. F., Gradinger, R., Haapala, J., Haas, C.,
Hamilton, J., Hannula, H.-R., Hendricks, S., Herber, A., Heuzé, C.,
Hoppmann, M., Høyland, K. V., Huntemann, M., Hutchings, J. K., Hwang, B.,
Itkin, P., Jacobi, H.-W., Jaggi, M., Jutila, A., Kaleschke, L., Katlein, C.,
Kolabutin, N., Krampe, D., Kristensen, S. S., Krumpen, T., Kurtz, N.,
Lampert, A., Lange, B. A., Lei, R., Light, B., Linhardt, F., Liston, G. E.,
Loose, B., Macfarlane, A. R., Mahmud, M., Matero, I. O., Maus, S.,
Morgenstern, A., Naderpour, R., Nandan, V., Niubom, A., Oggier, M., Oppelt,
N., Pätzold, F., Perron, C., Petrovsky, T., Pirazzini, R., Polashenski, C.,
Rabe, B., Raphael, I. A., Regnery, J., Rex, M., Ricker, R., Riemann-Campe,
K., Rinke, A., Rohde, J., Salganik, E., Scharien, R. K., Schiller, M.,
Schneebeli, M., Semmling, M., Shimanchuk, E., Shupe, M. D., Smith, M. M.,
Smolyanitsky, V., Sokolov, V., Stanton, T., Stroeve, J., Thielke, L.,
Timofeeva, A., Tonboe, R. T., Tavri, A., Tsamados, M., Wagner, D. N.,
Watkins, D., Webster, M., and Wendisch, M.: Overview of the MOSAiC
expedition: Snow and sea ice, Elementa, 10, 000046,
https://doi.org/10.1525/elementa.2021.000046, 2022. a
Notz, D., Haumann, F. A., Haak, H., Jungclaus, J. H., and Marotzke, J.: Arctic
sea-ice evolution as modeled by Max Planck Institute for Meteorology's Earth
system model, J. Adv. Model. Earth Sy., 5, 173–194,
https://doi.org/10.1002/jame.20016, 2013. a
Olason, E. and Notz, D.: Drivers of variability in Arctic sea-ice drift speed,
J. Geophys. Res.-Oceans, 119, 5755–5775,
https://doi.org/10.1002/2014JC009897, 2014. a
Palerme, C. and Müller, M.: Calibration of sea ice drift forecasts using random forest algorithms, The Cryosphere, 15, 3989–4004, https://doi.org/10.5194/tc-15-3989-2021, 2021. a
PAME: The Increase in Arctic Shipping 2013–2019: Arctic Shipping Status
Report (ASSR) #1, Protection of the Marine Environment (PAME),
https://pame.is/projects/arctic-marine-shipping/arctic-shipping-status-reports (last access: 15 July 2022),
2020. a
Posey, P. G., Metzger, E. J., Wallcraft, A. J., Preller, R. H., Smedstad, O. M., and Phelps, M. W.: Validation of the 1/12 Arctic Cap Nowcast/Forecast System (ACNFS), NRL Report NRL/MR/7320-10-9287, 2010. a
Rabatel, M., Rampal, P., Carrassi, A., Bertino, L., and Jones, C. K. R. T.: Impact of rheology on probabilistic forecasts of sea ice trajectories: application for search and rescue operations in the Arctic, The Cryosphere, 12, 935–953, https://doi.org/10.5194/tc-12-935-2018, 2018. a
Rampal, P., Weiss, J., Marsan, D., and Bourgoin, M.: Arctic sea ice velocity
field: General circulation and turbulent-like fluctuations, J.
Geophys. Res.-Oceans, 114, C10014, https://doi.org/10.1029/2008JC005227, 2009. a
Rampal, P., Bouillon, S., Ólason, E., and Morlighem, M.: neXtSIM: a new Lagrangian sea ice model, The Cryosphere, 10, 1055–1073, https://doi.org/10.5194/tc-10-1055-2016, 2016. a
Schweiger, A. J. and Zhang, J.: Accuracy of short-term sea ice drift forecasts
using a coupled ice-ocean model, J. Geophys. Res.-Oceans,
120, 7827–7841, https://doi.org/10.1002/2015JC011273, 2015. a
Shaffrey, L. C., Stevens, I., Norton, W. A., Roberts, M. J., Vidale, P. L.,
Harle, J. D., Jrrar, A., Stevens, D. P., Woodage, M. J., Demory, M. E.,
Donners, J., Clark, D. B., Clayton, A., Cole, J. W., Wilson, S. S.,
Connolley, W. M., Davies, T. M., Iwi, A. M., Johns, T. C., King, J. C., New,
A. L., Slingo, J. M., Slingo, A., Steenman-Clark, L., and Martin, G. M.:
U.K. HiGEM: The New U.K. High-Resolution Global Environment Model—Model
Description and Basic Evaluation, J. Climate, 22, 1861–1896,
https://doi.org/10.1175/2008JCLI2508.1, 2009. a
Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S.,
Dethloff, K., Dorn, W., Fieg, K., Goessling, H. F., Handorf, D., Harig, S.,
Hiller, W., Juricke, S., Losch, M., Schröter, J., and Sein, D.
V., and Wang, Q.: Towards multi-resolution global climate modeling with
ECHAM6–FESOM. Part I: model formulation and mean climate, Clim. Dynam.,
44, 757–780, https://doi.org/10.1007/s00382-014-2290-6, 2015. a
SIMIP Community: Arctic Sea Ice in CMIP6, Geophys. Res. Lett., 47, e2019GL086749,
https://doi.org/10.1029/2019GL086749, 2020. a
Smith, L. C. and Stephenson, S. R.: New Trans-Arctic shipping routes navigable
by midcentury, P. Natl. Acad. Sci. USA, 110,
E1191–E1195, https://doi.org/10.1073/pnas.1214212110, 2013. a
Spreen, G., Kwok, R., and Menemenlis, D.: Trends in Arctic sea ice drift and
role of wind forcing: 1992–2009, Geophys. Res. Lett., 38, L19501,
https://doi.org/10.1029/2011GL048970, 2011. a
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland,
M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and
observations, Geophys. Res. Lett., 39, L16502,
https://doi.org/10.1029/2012GL052676, 2012. a
Thorndike, A. S. and Colony, R.: Sea ice motion in response to geostrophic
winds, J. Geophys. Res.-Oceans, 87, 5845–5852,
https://doi.org/10.1029/JC087iC08p05845, 1982.
a
Tietsche, S., Day, J., Guémas, V., Hurlin, W., Keeley, S., Matei, D., Msadek,
R., Collins, M., and Hawkins, E.: Seasonal to interannual Arctic sea ice
predictability in current global climate models, Geophys. Res.
Lett., 41, 1035–1043, https://doi.org/10.1002/2013GL058755, 2014. a, b
Zampieri, L., Goessling, H. F., and Jung, T.: Bright Prospects for Arctic Sea
Ice Prediction on Subseasonal Time Scales, Geophys. Res. Lett., 45,
9731–9738, https://doi.org/10.1029/2018GL079394, 2018. a
Zhang, J., Lindsay, R., Schweiger, A., and Rigor, I.: Recent changes in the
dynamic properties of declining Arctic sea ice: A model study, Geophys.
Res. Lett., 39, 20503, https://doi.org/10.1029/2012GL053545, 2012. a
Short summary
Using model simulations, we analyze the impact of chaotic error growth on Arctic sea ice drift predictions. Regarding forecast uncertainty, our results suggest that it matters in which season and where ice drift forecasts are initialized and that both factors vary with the model in use. We find ice velocities to be slightly more predictable than near-surface wind, a main driver of ice drift. This is relevant for future developments of ice drift forecasting systems.
Using model simulations, we analyze the impact of chaotic error growth on Arctic sea ice drift...