Dansereau, V., Weiss, J., Saramito, P., and Lattes, P.: A Maxwell elasto-brittle rheology for sea ice modelling, The Cryosphere, 10, 1339–1359,
https://doi.org/10.5194/tc-10-1339-2016, 2016.
a
De Verdière, Y. C.: Mathematical models for passive imaging I: general
background, arXiv preprint math-ph/0610043, 2006. a
Gouédard, P., Roux, P., Campillo, M., and Verdel, A.: Convergence of the
two-point correlation function toward the Green’s function in the context
of a seismic-prospecting data set, Geophysics, 73, V47–V53, 2008. a
Gradon, C., Moreau, L., Roux, P., and Ben-Zion, Y.: Analysis of surface and
seismic sources in dense array data with match field processing and Markov
chain Monte Carlo sampling, Geophys. J. Int., 218,
1044–1056, 2019. a
Høyland, K. V.: Ice thickness, growth and salinity in Van Mijenfjorden,
Svalbard, Norway, Polar Res., 28, 339–352, 2009.
a,
b
Hunkins, K.: Seismic studies of sea ice, J. Geophys. Res., 65,
3459–3472, 1960. a
Kwok, R.: Satellite remote sensing of sea-ice thickness and kinematics: a
review, J. Glaciol., 56, 1129–1140, 2010. a
Lamb, H.: On waves in an elastic plate, P. Roy. Soc.
Lond. A,
93, 114–128, 1917. a
Lindsay, R. and Schweiger, A.: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations, The Cryosphere, 9, 269–283,
https://doi.org/10.5194/tc-9-269-2015, 2015.
a
Lobkis, O. I. and Weaver, R. L.: On the emergence of the Green's function in
the correlations of a diffuse field, J. Acoust. Soc.
Am., 110, 3011–3017, 2001. a
Marchenko, A., Morozov, E., Ivanov, A., Elizarova, T., and Frey, D.: Ice
thickening caused by freezing of tidal jet, Russian Journal of Earth
Sciences, 21, 5,
https://doi.org/10.2205/2021ES000761, 2021.
a
Marsan, D., Weiss, J., Larose, E., and Métaxian, J.-P.: Sea-ice thickness
measurement based on the dispersion of ice swell, J. Acoust. Soc. Am., 131, 80–91, 2012. a
Marsan, D., Weiss, J., Moreau, L., Gimbert, F., Doble, M., Larose, E., and
Grangeon, J.: Characterizing horizontally-polarized shear and infragravity
vibrational modes in the Arctic sea ice cover using correlation methods, J. Acoust. Soc. Am., 145, 1600–1608, 2019. a
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E.: Equation of state calculations by fast computing machines,
J. Chem. Phys., 21, 1087–1092, 1953. a
Moreau, L., Hunter, A. J., Velichko, A., and Wilcox, P. D.: 3-D reconstruction
of sub-wavelength scatterers from the measurement of scattered fields in
elastic waveguides, IEEE T. Ultrason. Ferr., 61, 1864–1879, 2014a.
a,
b
Moreau, L., Minonzio, J.-G., Foiret, J., Bossy, E., Talmant, M., and Laugier,
P.: Accurate measurement of guided modes in a plate using a bidirectional
approach, J. Acoust. Soc. Am., 135, EL15–EL21,
2014b. a
Moreau, L., Lachaud, C., Théry, R., Predoi, M. V., Marsan, D., Larose, E.,
Weiss, J., and Montagnat, M.: Monitoring ice thickness and elastic properties
from the measurement of leaky guided waves: A laboratory experiment, J. Acoust. Soc. Am., 142, 2873–2880, 2017.
a,
b
Moreau, L., Boué, P., Serripierri, A., Weiss, J., Hollis, D., Pondaven, I., Vial, B., Garambois,
S., Larose, É., Helmstetter, A., Stehly, L., Hillers, G., and Gilbert, O.: Sea ice thickness and
elastic properties from the analysis of multimodal guided wave propagation measured with a
passive seismic array, J. Geophys. Res.-Oceans, 125, e2019JC015709,
https://doi.org/10.1029/2019JC015709, 2020a.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k
Moreau, L., Weiss, J., and Marsan, D.: Accurate estimations of sea-ice
thickness and elastic properties from seismic noise recorded with a minimal
number of geophones: from thin landfast ice to thick pack ice, J. Geophys. Res.-Oceans, 125, e2020JC016492,
https://doi.org/10.1029/2020JC016492, 2020b.
a,
b
Morozov, E., Muzylev, S., Shestov, A., and Marchenko, A.: Short-Period Internal
Waves under an Ice Cover in Van Mijen Fjord, Svalbard, Adv.
Meteorol., 2011, 1–6,
https://doi.org/10.1155/2011/573269, 2011.
a
Mu, L., Losch, M., Yang, Q., Ricker, R., Losa, S. N., and Nerger, L.:
Arctic-wide sea ice thickness estimates from combining satellite remote
sensing data and a dynamic ice-ocean model with data assimilation during the
CryoSat-2 period, J. Geophys. Res.-Oceans, 123, 7763–7780,
2018. a
Petty, A. A., Kurtz, N. T., Kwok, R., Markus, T., and Neumann, T. A.: Winter
Arctic sea ice thickness from ICESat-2 freeboards, J. Geophys. Res.-Oceans, 125, e2019JC015764,
https://doi.org/10.1029/2019JC015764, 2020.
a
Rampal, P., Weiss, J., Dubois, C., and Campin, J.-M.: IPCC climate models do
not capture Arctic sea ice drift acceleration: Consequences in terms of
projected sea ice thinning and decline, J. Geophys. Res.-Oceans, 116,
https://doi.org/10.1029/2011JC007110, 2011.
a
Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation, The Cryosphere, 8, 1607–1622,
https://doi.org/10.5194/tc-8-1607-2014, 2014.
a
Romeyn, R., Hanssen, A., Ruud, B. O., and Johansen, T. A.: Sea ice thickness from air-coupled flexural waves, The Cryosphere, 15, 2939–2955,
https://doi.org/10.5194/tc-15-2939-2021, 2021.
a,
b,
c
Rost, S. and Thomas, C.: Array seismology: Methods and applications, Rev.
Geophys., 40, 2–1, 2002.
a,
b
Roux, P., Sabra, K. G., Kuperman, W. A., and Roux, A.: Ambient noise cross
correlation in free space: Theoretical approach, J. Acoust. Soc. Am., 117, 79–84, 2005. a
Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W., and Fehler, M. C.:
Extracting time-domain Green's function estimates from ambient seismic noise,
Geophys. Res. Lett., 32,
https://doi.org/10.1029/2004GL021862, 2005.
a,
b
Screen, J. A. and Deser, C.: Pacific Ocean variability influences the time of
emergence of a seasonally ice-free Arctic Ocean, Geophys. Res. Lett., 46, 2222–2231, 2019. a
Sergeant, A., Chmiel, M., Lindner, F., Walter, F., Roux, P., Chaput, J., Gimbert, F., and Mordret, A.: On the Green's function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring, The Cryosphere, 14, 1139–1171,
https://doi.org/10.5194/tc-14-1139-2020, 2020.
a
Shapiro, N. M. and Campillo, M.: Emergence of broadband Rayleigh waves from
correlations of the ambient seismic noise, Geophys. Res. Lett., 31,
https://doi.org/10.1029/2004GL019491,
2004.
a,
b,
c
Stein, P. J., Euerle, S. E., and Parinella, J. C.: Inversion of pack ice
elastic wave data to obtain ice physical properties, J. Geophys. Res.-Oceans, 103, 21783–21793, 1998.
a,
b,
c
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic
sea ice decline: Faster than forecast, Geophys. Res. Lett., 34,
https://doi.org/10.1029/2007GL029703,
2007.
a
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland,
M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and
observations, Geophys. Res. Lett., 39,
https://doi.org/10.1029/2012GL052676, 2012.
a
Tarantola, A.: Inverse problem theory and methods for model parameter
estimation, SIAM, 2005. a
Timco, G. and Frederking, R.: A review of sea ice density, Cold Reg. Sci. Tech., 24, 1–6, 1996.
a,
b
Timco, G. and Weeks, W.: A review of the engineering properties of sea ice,
Cold Reg. Sci. Tech., 60, 107–129, 2010. a
Wadhams, P.: Arctic ice cover, ice thickness and tipping points, Ambio, 41,
23–33, 2012. a
Yang, T. and Giellis, G.: Experimental characterization of elastic waves in a
floating ice sheet, J. Acoust. Soc. Am., 96,
2993–3009, 1994. a