Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2527-2022
https://doi.org/10.5194/tc-16-2527-2022
Research article
 | 
27 Jun 2022
Research article |  | 27 Jun 2022

Recovering and monitoring the thickness, density, and elastic properties of sea ice from seismic noise recorded in Svalbard

Agathe Serripierri, Ludovic Moreau, Pierre Boue, Jérôme Weiss, and Philippe Roux

Related authors

An integrated multi-instrument methodology for studying marginal ice zone dynamics and wave-ice interactions
Sebastien Kuchly, Baptiste Auvity, Nicolas Mokus, Matilde Bureau, Paul Nicot, Amaury Fourgeaud, Véronique Dansereau, Antonin Eddi, Stéphane Perrard, Dany Dumont, and Ludovic Moreau
EGUsphere, https://doi.org/10.5194/egusphere-2025-3304,https://doi.org/10.5194/egusphere-2025-3304, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Analysis of microseismicity in sea ice with deep learning and Bayesian inference: application to high-resolution thickness monitoring
Ludovic Moreau, Léonard Seydoux, Jérôme Weiss, and Michel Campillo
The Cryosphere, 17, 1327–1341, https://doi.org/10.5194/tc-17-1327-2023,https://doi.org/10.5194/tc-17-1327-2023, 2023
Short summary
On the Green's function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring
Amandine Sergeant, Małgorzata Chmiel, Fabian Lindner, Fabian Walter, Philippe Roux, Julien Chaput, Florent Gimbert, and Aurélien Mordret
The Cryosphere, 14, 1139–1171, https://doi.org/10.5194/tc-14-1139-2020,https://doi.org/10.5194/tc-14-1139-2020, 2020
Short summary
Observation and explanation of spurious seismic signals emerging in teleseismic noise correlations
Lei Li, Pierre Boué, and Michel Campillo
Solid Earth, 11, 173–184, https://doi.org/10.5194/se-11-173-2020,https://doi.org/10.5194/se-11-173-2020, 2020
Ice bridges and ridges in the Maxwell-EB sea ice rheology
Véronique Dansereau, Jérôme Weiss, Pierre Saramito, Philippe Lattes, and Edmond Coche
The Cryosphere, 11, 2033–2058, https://doi.org/10.5194/tc-11-2033-2017,https://doi.org/10.5194/tc-11-2033-2017, 2017
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Spring 2021 sea ice transport in the southern Beaufort Sea occurred during coastal-lead opening events
MacKenzie E. Jewell, Jennifer K. Hutchings, and Angela C. Bliss
The Cryosphere, 19, 1413–1430, https://doi.org/10.5194/tc-19-1413-2025,https://doi.org/10.5194/tc-19-1413-2025, 2025
Short summary
National Weather Service Alaska Sea Ice Program: gridded ice concentration maps for the Alaskan Arctic
Astrid Pacini, Michael Steele, and Mary-Beth Schreck
The Cryosphere, 19, 1391–1411, https://doi.org/10.5194/tc-19-1391-2025,https://doi.org/10.5194/tc-19-1391-2025, 2025
Short summary
Improving Seasonal Arctic Sea Ice Predictions with the Combination of Machine Learning and Earth System Model
Zikang He, Yiguo Wang, Julien Brajard, Xidong Wang, and Zheqi Shen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4092,https://doi.org/10.5194/egusphere-2024-4092, 2025
Short summary
Estimation of duration and its changes in Lagrangian observations relying on ice floes in the Arctic Ocean utilizing sea ice motion product
Fanyi Zhang, Ruibo Lei, Meng Qu, Na Li, Ying Chen, and Xiaoping Pang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2723,https://doi.org/10.5194/egusphere-2024-2723, 2024
Short summary
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024,https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary

Cited articles

Allard, R. A., Farrell, S. L., Hebert, D. A., Johnston, W. F., Li, L., Kurtz, N. T., Phelps, M. W., Posey, P. G., Tilling, R., Ridout, A., and Wallcraft, A. J.: Utilizing CryoSat-2 sea ice thickness to initialize a coupled ice-ocean modeling system, Adv. Space Res., 62, 1265–1280, 2018. a
Anderson, D.: Preliminary results and review of sea ice elasticity and related studies, Transactions of the Engineering Institute of Canada, 2, 2–8, 1958. a, b
Belter, H. J., Krumpen, T., Hendricks, S., Hoelemann, J., Janout, M. A., Ricker, R., and Haas, C.: Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: comparison to mooring observations, The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020, 2020. a
Campillo, M. and Paul, A.: Long-range correlations in the diffuse seismic coda, Science, 299, 547–549, 2003. a, b
Campillo, M. and Roux, P.: Seismic imaging and monitoring with ambient noise correlations, in: Treatise on Geophysics, edited by: Romanowicz, B. and Dziewonski, A., Treatise on geophysics, 1, 256–271, 2014. a
Download
Short summary
As a result of global warming, the sea ice is disappearing at a much faster rate than predicted by climate models. To better understand and predict its ongoing decline, we deployed 247 geophones on the fast ice in Van Mijen Fjord in Svalbard, Norway, in March 2019. The analysis of these data provided a precise daily evolution of the sea-ice parameters at this location with high spatial and temporal resolution and accuracy. The results obtained are consistent with the observations made in situ.
Share