Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2493-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2493-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate warming shortens ice durations and alters freeze and break-up patterns in Swedish water bodies
Sofia Hallerbäck
Department of Civil and Environmental Engineering, University of
California, Irvine, CA, USA
Division of Water Resources Engineering, Lund University, Lund, Sweden
Laurie S. Huning
Department of Civil Engineering and Construction Engineering
Management, California State University, Long Beach, CA, USA
Department of Civil and Environmental Engineering, University of
California, Irvine, CA, USA
Charlotte Love
Department of Civil and Environmental Engineering, University of
California, Irvine, CA, USA
Magnus Persson
Division of Water Resources Engineering, Lund University, Lund, Sweden
Katarina Stensen
Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
David Gustafsson
Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Amir AghaKouchak
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of
California, Irvine, CA, USA
Department of Earth System Science, University of California, Irvine, CA, USA
Related authors
No articles found.
Soheil Radfar, Hamed Moftakhari, David F. Muñoz, Avantika Gori, Ferdinand Diermanse, Ning Lin, and Amir AghaKouchak
EGUsphere, https://doi.org/10.5194/egusphere-2025-4623, https://doi.org/10.5194/egusphere-2025-4623, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Flooding in coastal areas often occurs when several mechanisms act together, causing compound flooding. Researchers increasingly use hybrid models that combine numerical models with statistical tools to study these events. Yet, the term “hybrid model” has been used inconsistently. This paper provides a clear definition and classification system, along with examples and technical challenges.
Hossein Abbasizadeh, Petr Maca, Martin Hanel, Mads Troldborg, and Amir AghaKouchak
Hydrol. Earth Syst. Sci., 29, 4761–4790, https://doi.org/10.5194/hess-29-4761-2025, https://doi.org/10.5194/hess-29-4761-2025, 2025
Short summary
Short summary
Here, we represented catchments as networks of variables connected by cause-and-effect relationships. By comparing the performance of statistical and machine learning methods with and without incorporating causal information to predict runoff properties, we showed that causal information can enhance models' robustness by reducing the accuracy drop between the training and testing phases, improving the model's interpretability, and mitigating overfitting issues, especially with small training samples.
Yavar Pourmohamad, John T. Abatzoglou, Erin J. Belval, Erica Fleishman, Karen Short, Matthew C. Reeves, Nicholas Nauslar, Philip E. Higuera, Eric Henderson, Sawyer Ball, Amir AghaKouchak, Jeffrey P. Prestemon, Julia Olszewski, and Mojtaba Sadegh
Earth Syst. Sci. Data, 16, 3045–3060, https://doi.org/10.5194/essd-16-3045-2024, https://doi.org/10.5194/essd-16-3045-2024, 2024
Short summary
Short summary
The FPA FOD-Attributes dataset provides > 300 biological, physical, social, and administrative attributes associated with > 2.3×106 wildfire incidents across the US from 1992 to 2020. The dataset can be used to (1) answer numerous questions about the covariates associated with human- and lightning-caused wildfires and (2) support descriptive, diagnostic, predictive, and prescriptive wildfire analytics, including the development of machine learning models.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Cited articles
Akima, H., Petzold, T., and Maeshler, M.: Interpolation of Irregularly and Regularly Spaced Data, Version 0.6–2, CRAN [code], https://cran.r-project.org/package=akima (last access: 1 September 2020), 16 December 2016.
Alexandersson, H. and Moberg, A.: Homogenization of Swedish
Temperature Data. Part I: Homogeneity Test for Linear Trends,
Int. J. Climatol., 17, 25–34,
https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J, 1997.
Bauer, D.: Constructing confidence sets using rank
statistics, J. Am. Stat. Assoc., 67, 687–690, 1972.
Berger, S. A., Diehl, S., Kunz, T. J., Albrecht, D., Oucible, A. M., and Ritzer, S.:
Light Supply, Plankton Biomass, and
Seston Stoichiometry in a Gradient of Lake Mixing Depths, Limnol.
Oceanogr., 51, 1898–1905, 2006.
Benson, B. J., Magnuson, J. J., Jensen, O. P., Card, V. M., Hodgkins, G., Korhonen, J., Livingstone, D. M., Stewart, K. M.,
Weyhenmeyer, G. A., and Granin, N. G.: Extreme Events, Trends, and
Variability in Northern Hemisphere Lake-Ice Phenology (1855–2005),
Climatic Change, 112, 299–323, 2012.
Beltaos, S. and Prowse, T.: River-Ice Hydrology in a
Shrinking Cryosphere, Hydrol. Process., 23,
122–144, 2009.
Bengtsson, L.: Ice-Covered Lakes: Environment and Climate –
Required Research, Hydrol. Process., 25, 2767–2769, 2011.
Eklund, A.: Isläggning Och Islossning i Svenska Sjöar,
Hydrologi 81, Swedish Meteorological and Hydrological Institute, ISSN 0283-7722, 1999 (in Swedish).
Carpenter, S. R., Cole, J. J., Pace, M. L., Batt, R., Brock, W. A.,
Cline, T., Coloso, J., Hodgsonj, R., Kitchelld, F., Seekelll Smithand, A., Weidel, B.: Early Warnings of Regime Shifts:
a Whole-Ecosystem Experiment, Science, 332, 1079–1082, https://doi.org/10.1126/science.1203672, 2011.
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I.,
Knowler, D. J., Lévêque, C., Naiman, R. J., Preur-Richard, A-H., Soto D, Stiassny, M., and Sullivan, C.:
Freshwater Biodiversity: Importance, Threats, Status and Conservation
Challenges, Biol. Rev., 81,
163–182, 2006.
Duguay, C. R., Flato, G. M., Jeffries, M. O., Ménard, P., Morris, K., and Rouse, W. R.: Ice-Cover Variability on Shallow Lakes at
High Latitudes: Model Simulations and Observations, Hydrol. Process.,
17, 3465–3483, 2003.
Duguay, C. R., Bernier, M., Gauthier, Y., and Kouraev, A.:
Remote Sensing of Lake and River Ice, in: Remote Sensing of the Cryosphere, edited by: Tedesco, M., John Wiley & Sons, Ltd, 273–305, https://doi.org/10.1002/9781118368909.ch12, 2015.
Harris, I. P. D. J., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
High-Resolution Grids of Monthly Climatic Observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2013.
Hodgkins, G. A.: The Importance of Record Length in Estimating the
Magnitude of Climatic Changes: an Example Using 175 Years of Lake Ice-out
Dates in New England, Climatic Change, 119, 705–718, 2013.
Hollander, M. and Wolfe, D.: Nonparametric Statistical Methods, edited by: Goldstein, H., Johnstone, I., Molenberghs, G., Scott, D., Smith, A., Tsay, R., and Weisberg, S., John Wiley & Sons, New York,
27–33 (one-sample), 68–75 (two-sample), 1973.
Jeffries, M. O., Morris, K., and Duguay, C. R.: Floating Ice:
Lake Ice and River Ice, Satellite Image Atlas of Glaciers of the
World-State of the Earth's Cryosphere at the Beginning of the 21st Century:
Glaciers, Global Snow Cover, Floating Ice, and Permafrost and Periglacial
Environments, US Geological Survey Professional Paper, 2012.
Jensen, O. P., Benson, B. J., Magnuson, J. J., Card, V. M.,
Futter, M. N., Soranno, P. A., and Stewart, K. M.: Spatial Analysis
of Ice Phenology Trends across the Laurentian Great Lakes Region during a
Recent Warming Period, Limnol. Oceanogr., 52,
2013–2026, 2007.
Johansson, O. V.: Isförhållandena vid Uleåborg och Torne
älv. Bidrag till kännedom af Finlands natur och folk, Utgifna af
Finska Vetenskap-Societen H. 84, No. 3, 1932 (in Swedish).
Kajander, J.: Cryophenological records from Tornio, Mimeograph Series
of the National Board of Waters and the Environment 552, National Board of
Waters and the Environment, Helsinki, 1995.
Kendall, M. G.: A New Measure of Rank Correlation, Biometrika
30, JSTOR, 30, 81–93, https://doi.org/10.2307/2332226, 1938.
Kjellström, E.: Recent and Future Signatures of Climate Change
in Europe, AMBIO, 33,
193–198, 2004.
Knoll, L. B., Sharma, S., Denfeld, B. A., Flaim, G., Hori, Y., Magnuson, J. J.,
Straile, D., and Weyhenmeyer, G. A.: Consequences of lake and river ice
loss on cultural ecosystem services, Limnol. Oceanogr. Lett., 4, 119–131, https://doi.org/10.1002/lol2.10116, 2019.
Korhonen, J.: Long-term changes in lake ice cover in Finland,
Hydrol. Res., 37, 347–363, 2006.
Korhonen, J.: Long-term changes and variability of the winter and
spring season hydrological regime in Finland, Helsingin yliopisto, http://urn.fi/URN:ISBN:978-951-51-2800-3, last access: 22 February 2019.
Kropáček, J., Maussion, F., Chen, F., Hoerz, S., and Hochschild, V.: Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data, The Cryosphere, 7, 287–301, https://doi.org/10.5194/tc-7-287-2013, 2013.
Latifovic, R. and Pouliot, D.: Analysis of Climate Change
Impacts on Lake Ice Phenology in Canada Using the Historical Satellite Data
Record, Remote Sens. Environ., 106, 492–507, 2007.
Leppäranta, M., Reinart, A., Erm, A., Arst, H., Hussainov, M., and
Sipelgas, L.: Investigation of Ice and Water Properties and under-Ice
Light Fields in Fresh and Brackish Water Bodies, Hydrol. Res., 34, 245–266, 2003.
Leppäranta, M., Heini, A., Jaatinen, E., and Arvola, L.:
The Influence of Ice Season on the Physical and Ecological
Conditions in Lake Vanajanselka, Southern Finland, Water Qual. Res.
J., 47, 287–299, 2012.
Lind, L., Nilsson, C., Polvi, L. E., and Weber, C.:
The Role of Ice Dynamics in Shaping Vegetation in Flowing Waters,
Biol. Rev., 89, 791–804, 2014.
Livingstone, D. M. and Adrian, R.: Modeling the Duration of
Intermittent Ice Cover on a Lake for Climate-Change Studies, Limnol.
Oceanogr., 54, 1709–1722, 2009.
Magnuson, J. J., Webster, K. E., Assel, R. A., Bowser, C. J., Dillon, P. J., Eaton, J. G.,
Evans, H. E., Fee, E., Hall, R., Mortsch, L., Schindler, D., and Quinn, F.: Potential Effects of Climate Changes on Aquatic
Systems: Laurentian Great Lakes and Precambrian Shield Region,
Hydrol. Process., 11, 825–871, 1997.
Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H.,
Livingstone, D. M., Arai, T., Assel, R. A., Barry, R., Card, V., Kuusisto, E., Granin, N., Prowse, T., Stewart K., and Vuglinski, V.:
Historical Trends in Lake and River Ice Cover in the Northern
Hemisphere, Science, 289, 1743–1746, https://doi.org/10.1126/science.289.5485.1743, 2000.
McLeod, A. I.: Kendall: Kendall Rank Correlation and Mann–Kendall Trend Test, Version 2.2.1, CRAN [code], https://CRAN.R-project.org/package=Kendall (last access: 1 September 2020), 2011.
Moberg, A. and Alexandersson, H.: Homogenization of Swedish
Temperature data. PART II: Homogenized Gridded Air Temperature Compared with
a Subset of Global Gridded Air Temperature since 1861, Int. J. Climatol., 17, 35–54, https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<35::AID-JOC104>3.0.CO;2-F, 1997.
Moberg, A. and Bergström, H.: Homogenization of Swedish
temperature data. Part III: the long temperature records from Uppsala and
Stockholm, Int. J. Climatol., 17: 667–699, https://doi.org/10.1002/(SICI)1097-0088(19970615)17:7<667::AID-JOC115>3.0.CO;2-J, 1997.
Parmesan, C. and Yohe, G.: A globally coherent fingerprint of climate
change impacts across natural systems, Nature, 421, p. 37, 2003.
Pithan, F. and Mauritsen, T.: Arctic amplification dominated by
temperature feedbacks in contemporary climate models, Nat. Geosci.,
7, p. 181, 2014.
Post, E., Steinman, B. A., and Mann, M. E.: Acceleration of
phenological advance and warming with latitude over the past
century, Sci. Rep.-UK, 8, 1–8, 2018.
Prowse, T., Alfredsen, K., Beltaos, S., Bonsal, B., Duguay, C.,
Korhola, A., McNamara, J., Pienitz, R., Vincent, W., Vuglinsky V, and Weyhenmeyer, G.: Past and Future Changes in Arctic
Lake and River Ice, AMBIO, 40,
53–62, https://doi.org/10.1007/s13280-011-0216-7, 2011.
Quayle, W. C., Peck, L. S., Peat, H., Ellis-Evans, J. C., and
Harrigan, P. R.: Extreme Responses to Climate Change in Antarctic Lakes,
Science, 295,
645–645, 2002.
Rosborg, I. and Kozisek, F.: Drinking Water Minerals and Mineral Balance, Edn. 2, Springer Nature Switzerland AG 2019, 175 p., https://doi.org/10.1007/978-3-030-18034-8, 2019.
Sharma, S., Magnuson, J. J., Batt, R. D., Winslow, L. A.,
Korhonen, J., and Aono, Y.: Direct Observations of Ice Seasonality
Reveal Changes in Climate over the Past 320–570 Years, Sci. Rep.-UK,
6, 25061, https://doi.org/10.1038/srep25061, 2016.
Sharma, S., Blagrave, K., Magnuson, J. J., O'Reilly, C. M., Oliver, S., Batt,
R. D., Magee, M. R., Straile, D., Weyhenmeyer, G. A., Winslow, L., and Woolway,
R. I.: Widespread loss of lake ice around the Northern Hemisphere in a
warming world, Nat. Clim. Change, 9, p. 227, 2019.
Sharma, S., Richardson, D. C., Woolway, R. I., Imrit, M. A., Bouffard, D.,
Blagrave, K., Daly, J., Filazzola, A., Granin, N., Korhonen, J., Magnuson, J., Marszelewski, W., S. Matsuzaki, S.-I., Perry, W., Robertson, D. M., Rudstam, L. G., Weyhenmeyer, G. A., and Yao, H.: Loss of ice cover, shifting
phenology, and more extreme events in Northern Hemisphere lakes, J. Geophys. Res.-Biogeo., 126,
e2021JG006348, https://doi.org/10.1029/2021JG006348, 2021.
Swedish Metrological and Hydrological Institute (SMHI): SVAR,
Svenskt vattenarktiv, SMHI [data set], https://www.smhi.se/data/hydrologi/svenskt-vattenarkiv (last access: 1 February 2016),
2012.
Swedish Metrological and Hydrological institute (SMHI): Isläggning och
Islossning, SMHI [data set], https://vattenwebb.smhi.se/station/, last access: 1 February 2016.
Takács, K.: Changes in River Ice Regime of the River
Danube, Regulation 1900, In Proceedings of XXVth Conference of the Danubian Countries, 16, ISBN 9789635111510, 2011.
Vautard, R., Gobiet, A., Sobolowski, S.,
Kjellström, E., Stegehuis, A., Watkiss, P., Mendlik, T., Landgren, O.,
Nikulin, G., Teichmann, C., and and Jacob, D.: The European climate under a
2 ∘C global warming, Environ. Res. Lett., 9, 034006, https://doi.org/10.1088/1748-9326/9/3/034006, 2014.
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O.,
Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Reidy Liermann, C., and Davies, P. M.:
Global Threats to Human Water Security and River Biodiversity, Nature,
467, 555–561, 2010.
Watz, J., Bergman, E., Calles, O., Enefalk, Å., Gustafsson, S.,
Hagelin, A., Nilsson, A. P., Norrgård, J., Nyqvist, D., Österling, M., Piccolo, J., Schneider, L., Greenberg, L., and Jonsson, B.: Ice Cover Alters the Behavior
and Stress Level of Brown Trout Salmo Trutta, Behav. Ecol., 26,
820–827, https://doi.org/10.1093/beheco/arv019, 2015.
Watz, J., Bergman, E., Piccolo, J. J., and Greenberg, L.: Ice
Cover Affects the Growth of a Stream-Dwelling Fish, Springer, Oecologia,
181, 299–311, https://doi.org/10.1007/s00442-016-3555-z, 2016.
Weyhenmeyer, G. A., Meili, M., and Livingstone, D. M.:
Nonlinear Temperature Response of Lake Ice Breakup, Geophys. Res.
Lett., 31, L07203, https://doi.org/10.1029/2004GL019530, 2004.
Weyhenmeyer, G. A., Livingstone, D. M., Meili, M., Jensen, O.,
Benson, B., and Magnuson, J. J.: Large Geographical Differences in the
Sensitivity of Ice-Covered Lakes and Rivers in the Northern Hemisphere to
Temperature Changes, Glob. Change Biol., 17,
268–275, 2011.
Short summary
Using unique data, some dating back to the 18th century, we show a significant trend in shorter ice duration, later freeze, and earlier break-up dates across Sweden. In recent observations, the mean ice durations have decreased by 11–28 d and the chance of years with an extremely short ice cover duration (less than 50 d) have increased by 800 %. Results show that even a 1 °C increase in air temperatures can result in a decrease in ice duration in Sweden of around 8–23 d.
Using unique data, some dating back to the 18th century, we show a significant trend in shorter...