Articles | Volume 16, issue 5
Research article
31 May 2022
Research article |  | 31 May 2022

Recent contrasting behaviour of mountain glaciers across the European High Arctic revealed by ArcticDEM data

Jakub Małecki

Related authors

Accelerating retreat and high-elevation thinning of glaciers in central Spitsbergen
Jakub Małecki
The Cryosphere, 10, 1317–1329,,, 2016
Short summary

Related subject area

Discipline: Glaciers | Subject: Mass Balance Obs
Central Asia's spatiotemporal glacier response ambiguity due to data inconsistencies and regional simplifications
Martina Barandun and Eric Pohl
The Cryosphere Discuss.,,, 2022
Revised manuscript accepted for TC
Short summary
Characteristics of mountain glaciers in the northern Japanese Alps
Kenshiro Arie, Chiyuki Narama, Ryohei Yamamoto, Kotaro Fukui, and Hajime Iida
The Cryosphere, 16, 1091–1106,,, 2022
Short summary
Assimilating near-real-time mass balance stake readings into a model ensemble using a particle filter
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040,,, 2021
Short summary
Geodetic point surface mass balances: a new approach to determine point surface mass balances on glaciers from remote sensing measurements
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276,,, 2021
Short summary
Applying artificial snowfall to reduce the melting of the Muz Taw Glacier, Sawir Mountains
Feiteng Wang, Xiaoying Yue, Lin Wang, Huilin Li, Zhencai Du, Jing Ming, and Zhongqin Li
The Cryosphere, 14, 2597–2606,,, 2020
Short summary

Cited articles

Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., and Ingvaldsen, R. B.: Quantifying the influence of atlantic heat on Barents Sea ice variability and retreat, J. Climate, 25, 4736–4743,, 2012. 
Asbjørnsen, H., Årthun, M., Skagseth, Ø., and Eldevik, T.: Mechanisms underlying recent Arctic Atlantification, Geophys. Res. Lett., 47, e2020GL088036,, 2020. 
Bamber, J., Krabill, W., Raper, V., and Dowdeswell, J.: Anomalous recent growth of part of a large Arctic ice cap: Austfonna, Svalbard, Geophys. Res. Lett., 31, L12402,, 2004. 
Barr, I., Dokukin, M., Kougkoulos, I., Livingstone, S., Lovell, H., Małecki, J., and Muraviev, A.: Using ArcticDEM to analyse the dimensions and dynamics of debris-covered glaciers in Kamchatka, Russia, Geosciences, 8, 216,, 2018. 
Barton, B. I., Lenn, Y., and Lique, C.: Observed Atlantification of the Barents Sea causes the polar front to limit the expansion of winter sea ice, J. Phys. Oceanogr., 48, 1849–1866,, 2018. 
Short summary
This study presents a snapshot of the recent state of small mountain glaciers across the European High Arctic, where severe climate warming has been occurring over the past years. The analysis revealed that this class of ice mass might melt away from many study sites within the coming two to five decades even without further warming. Glacier changes were, however, very variable in space, and some glaciers have been gaining mass, but the exact drivers behind this phenomenon are unclear.