Articles | Volume 16, issue 4
https://doi.org/10.5194/tc-16-1409-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1409-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of tides on Antarctic ice shelf melting
Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
now at: Physical Oceanography of Polar Seas, Alfred Wegener Institute, Postfach 12 01 61, 27515 Bremerhaven, Germany
David E. Gwyther
Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
Coastal and Regional Oceanography Laboratory, School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
Matt A. King
School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Tasmania 7001, Australia
Benjamin K. Galton-Fenzi
The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Tasmania 7001, Australia
Australian Antarctic Division, Kingston, Tasmania 7050, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
Related authors
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
EGUsphere, https://doi.org/10.5194/egusphere-2024-648, https://doi.org/10.5194/egusphere-2024-648, 2024
Short summary
Short summary
The new coupled ice sheet-ocean model addresses challenges related to horizontal resolution through advanced mesh flexibility, enabled by the use of unstructured grids. We describe the new model, verify its functioning in an idealised setting and demonstrate its advantages in a global-ocean/Antarctic ice sheet domain. The results of this study comprise an important step towards improving predictions of the Antarctic contribution to sea level rise over centennial time scales.
Ole Richter, David E. Gwyther, Benjamin K. Galton-Fenzi, and Kaitlin A. Naughten
Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, https://doi.org/10.5194/gmd-15-617-2022, 2022
Short summary
Short summary
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present-day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. Hence, the model will ultimately help to improve projections of sea level rise and climate change.
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024, https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
Short summary
We introduce an accelerated forcing approach to address timescale discrepancies between the ice sheets and ocean components in coupled modelling by reducing the ocean simulation duration. The approach is evaluated using idealized coupled models, and its limitations in real-world applications are discussed. Our results suggest it can be a valuable tool for process-oriented coupled ice sheet–ocean modelling and downscaling climate simulations with such models.
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024, https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Short summary
Our research delves into the future evolution of Antarctica's Wilkes Subglacial Basin (WSB) and its potential contribution to sea level rise, focusing on how basal melt is implemented at the grounding line in ice flow models. Our findings suggest that these implementation methods can significantly impact the magnitude of future ice loss projections. Under a high-emission scenario, the WSB ice sheet could undergo massive and rapid retreat between 2200 and 2300.
Eric Buchta, Mirko Scheinert, Matt A. King, Terry Wilson, Achraf Koulali, Peter J. Clarke, Demián Gómez, Eric Kendrick, Christoph Knöfel, and Peter Busch
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-355, https://doi.org/10.5194/essd-2024-355, 2024
Preprint under review for ESSD
Short summary
Short summary
For nearly three decades, geodetic GPS measurements in Antarctica have tracked bedrock displacement, vital for understanding geodynamic processes like plate motion and glacial isostatic adjustment (GIA). However, the potential of GPS data has been limited by its partially fragmented availability and unreliable metadata. A new dataset, spanning 1995–2021, offers consistently processed coordinate time series for 286 GPS sites, promising to enhance future geodynamic research.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
EGUsphere, https://doi.org/10.5194/egusphere-2024-648, https://doi.org/10.5194/egusphere-2024-648, 2024
Short summary
Short summary
The new coupled ice sheet-ocean model addresses challenges related to horizontal resolution through advanced mesh flexibility, enabled by the use of unstructured grids. We describe the new model, verify its functioning in an idealised setting and demonstrate its advantages in a global-ocean/Antarctic ice sheet domain. The results of this study comprise an important step towards improving predictions of the Antarctic contribution to sea level rise over centennial time scales.
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza
Geosci. Model Dev., 17, 2359–2386, https://doi.org/10.5194/gmd-17-2359-2024, https://doi.org/10.5194/gmd-17-2359-2024, 2024
Short summary
Short summary
Ocean forecasting relies on the combination of numerical models and ocean observations through data assimilation (DA). Here we assess the performance of two DA systems in a dynamic western boundary current, the East Australian Current, across a common modelling and observational framework. We show that the more advanced, time-dependent method outperforms the time-independent method for forecast horizons of 5 d. This advocates the use of advanced methods for highly variable oceanic regions.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur and if similar diversions could occur elsewhere in Antarctica due to climate change.
David E. Gwyther, Shane R. Keating, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 157–178, https://doi.org/10.5194/gmd-16-157-2023, https://doi.org/10.5194/gmd-16-157-2023, 2023
Short summary
Short summary
Ocean eddies are important for weather, climate, biology, navigation, and search and rescue. Since eddies change rapidly, models that incorporate or assimilate observations are required to produce accurate eddy timings and locations, yet the model accuracy is rarely assessed below the surface. We use a unique type of ocean model experiment to assess three-dimensional eddy structure in the East Australian Current and explore two pathways in which this subsurface structure is being degraded.
David E. Gwyther, Colette Kerry, Moninya Roughan, and Shane R. Keating
Geosci. Model Dev., 15, 6541–6565, https://doi.org/10.5194/gmd-15-6541-2022, https://doi.org/10.5194/gmd-15-6541-2022, 2022
Short summary
Short summary
The ocean current flowing along the southeastern coast of Australia is called the East Australian Current (EAC). Using computer simulations, we tested how surface and subsurface observations might improve models of the EAC. Subsurface observations are particularly important for improving simulations, and if made in the correct location and time, can have impact 600 km upstream. The stability of the current affects model estimates could be capitalized upon in future observing strategies.
Madelaine Rosevear, Benjamin Galton-Fenzi, and Craig Stevens
Ocean Sci., 18, 1109–1130, https://doi.org/10.5194/os-18-1109-2022, https://doi.org/10.5194/os-18-1109-2022, 2022
Short summary
Short summary
Understanding ocean-driven melting of Antarctic ice shelves is critical for predicting future sea level. However, ocean observations from beneath ice shelves are scarce. Here, we present unique ocean and melting data from the Amery Ice Shelf, East Antarctica. We use our observations to evaluate common methods of representing melting in ocean–climate models (melting
parameterisations) and show that these parameterisations overestimate melting when the ocean is warm and/or currents are weak.
Chen Zhao, Rupert Gladstone, Benjamin Keith Galton-Fenzi, David Gwyther, and Tore Hattermann
Geosci. Model Dev., 15, 5421–5439, https://doi.org/10.5194/gmd-15-5421-2022, https://doi.org/10.5194/gmd-15-5421-2022, 2022
Short summary
Short summary
We use a coupled ice–ocean model to explore an oscillation feature found in several contributing models to MISOMIP1. The oscillation is closely related to the discretized grounding line retreat and likely strengthened by the buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and frequent ice–ocean coupling. Our model choices have a non-trivial impact on mean melt and ocean circulation strength, which might be interesting for the coupled ice–ocean community.
Yu Wang, Chen Zhao, Rupert Gladstone, Ben Galton-Fenzi, and Roland Warner
The Cryosphere, 16, 1221–1245, https://doi.org/10.5194/tc-16-1221-2022, https://doi.org/10.5194/tc-16-1221-2022, 2022
Short summary
Short summary
The thermal structure of the Amery Ice Shelf and its spatial pattern are evaluated and analysed through temperature observations from six boreholes and numerical simulations. The simulations demonstrate significant ice warming downstream along the ice flow and a great variation of the thermal structure across the ice flow. We suggest that the thermal structure of the Amery Ice Shelf is unlikely to be affected by current climate changes on decadal timescales.
Grace A. Nield, Matt A. King, Rebekka Steffen, and Bas Blank
Geosci. Model Dev., 15, 2489–2503, https://doi.org/10.5194/gmd-15-2489-2022, https://doi.org/10.5194/gmd-15-2489-2022, 2022
Short summary
Short summary
We present a finite-element model of post-seismic solid Earth deformation built in the software package Abaqus for the purpose of calculating post-seismic deformation in the far field of major earthquakes. The model is benchmarked against an existing open-source post-seismic model demonstrating good agreement. The advantage over existing models is the potential for simple modification to include 3-D Earth structure, non-linear rheologies and alternative or multiple sources of stress change.
Ole Richter, David E. Gwyther, Benjamin K. Galton-Fenzi, and Kaitlin A. Naughten
Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, https://doi.org/10.5194/gmd-15-617-2022, 2022
Short summary
Short summary
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present-day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. Hence, the model will ultimately help to improve projections of sea level rise and climate change.
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Bogdan Matviichuk, Matt King, and Christopher Watson
Solid Earth, 11, 1849–1863, https://doi.org/10.5194/se-11-1849-2020, https://doi.org/10.5194/se-11-1849-2020, 2020
Short summary
Short summary
The Earth deforms as the weight of ocean mass changes with the tides. GPS has been used to estimate displacements of the Earth at tidal periods and then used to understand the properties of the Earth or to test models of ocean tides. However, there are important inaccuracies in these GPS measurements at major tidal periods. We find that combining GPS and GLONASS gives more accurate results for constituents other than K2 and K1; for these, GLONASS or ambiguity resolved GPS are preferred.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Thomas Zwinger, Grace A. Nield, Juha Ruokolainen, and Matt A. King
Geosci. Model Dev., 13, 1155–1164, https://doi.org/10.5194/gmd-13-1155-2020, https://doi.org/10.5194/gmd-13-1155-2020, 2020
Short summary
Short summary
We present a newly developed flat-earth model, Elmer/Earth, for viscoelastic treatment of solid earth deformation under ice loads. Unlike many previous approaches with proprietary software, this model is based on the open-source FEM code Elmer, with the advantage for scientists to apply and alter the model without license constraints. The new-generation full-stress ice-sheet model Elmer/Ice shares the same code base, enabling future coupled ice-sheet–glacial-isostatic-adjustment simulations.
Chad A. Greene, Duncan A. Young, David E. Gwyther, Benjamin K. Galton-Fenzi, and Donald D. Blankenship
The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, https://doi.org/10.5194/tc-12-2869-2018, 2018
Short summary
Short summary
We show that Totten Ice Shelf accelerates each spring in response to the breakup of seasonal landfast sea ice at the ice shelf calving front. The previously unreported seasonal flow variability may have aliased measurements in at least one previous study of Totten's response to ocean forcing on interannual timescales. The role of sea ice in buttressing the flow of the ice shelf implies that long-term changes in sea ice cover could have impacts on the mass balance of the East Antarctic Ice Sheet.
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2637–2652, https://doi.org/10.5194/tc-12-2637-2018, https://doi.org/10.5194/tc-12-2637-2018, 2018
Short summary
Short summary
A combination of computer modelling and observational data were used to infer the resistance to ice flow at the bed of the Fleming Glacier on the Antarctic Peninsula. The model was also used to simulate the distribution of temperature within the ice, which governs the rate at which the ice can deform. This is especially important for glaciers like the Fleming Glacier, which has both regions of rapid deformation and regions of rapid sliding at the bed.
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2653–2666, https://doi.org/10.5194/tc-12-2653-2018, https://doi.org/10.5194/tc-12-2653-2018, 2018
Short summary
Short summary
A combination of computer modelling and observational data were used to infer the resistance to ice flow at the bed of the Fleming Glacier on the Antarctic Peninsula in both 2008 and 2015. The comparison suggests the grounding line retreated by ~ 9 km from 2008 to 2015. The retreat may be enhanced by a positive feedback between friction, melting and sliding at the glacier bed.
Lenneke M. Jong, Rupert M. Gladstone, Benjamin K. Galton-Fenzi, and Matt A. King
The Cryosphere, 12, 2425–2436, https://doi.org/10.5194/tc-12-2425-2018, https://doi.org/10.5194/tc-12-2425-2018, 2018
Short summary
Short summary
We used an ice sheet model to simulate temporary regrounding of a marine ice sheet retreating across a retrograde bedrock slope. We show that a sliding relation incorporating water-filled cavities and the ice overburden pressure at the base allows the temporary regrounding to occur. This suggests that choice of basal sliding relation can be important when modelling grounding line behaviour of regions where potential ice rises and pinning points are present and regrounding could occur.
Sue Cook, Jan Åström, Thomas Zwinger, Benjamin Keith Galton-Fenzi, Jamin Stevens Greenbaum, and Richard Coleman
The Cryosphere, 12, 2401–2411, https://doi.org/10.5194/tc-12-2401-2018, https://doi.org/10.5194/tc-12-2401-2018, 2018
Short summary
Short summary
The growth of fractures on Antarctic ice shelves is important because it controls the amount of ice lost as icebergs. We use a model constructed of multiple interconnected blocks to predict the locations where fractures will form on the Totten Ice Shelf in East Antarctica. The results show that iceberg calving is controlled not only by fractures forming near the front of the ice shelf but also by fractures which formed many kilometres upstream.
Kaitlin A. Naughten, Katrin J. Meissner, Benjamin K. Galton-Fenzi, Matthew H. England, Ralph Timmermann, Hartmut H. Hellmer, Tore Hattermann, and Jens B. Debernard
Geosci. Model Dev., 11, 1257–1292, https://doi.org/10.5194/gmd-11-1257-2018, https://doi.org/10.5194/gmd-11-1257-2018, 2018
Short summary
Short summary
MetROMS and FESOM are two ocean/sea-ice models which resolve Antarctic ice-shelf cavities and consider thermodynamics at the ice-shelf base. We simulate the period 1992–2016 with both models, and with two options for resolution in FESOM, and compare output from the three simulations. Ice-shelf melt rates, sub-ice-shelf circulation, continental shelf water masses, and sea-ice processes are compared and evaluated against available observations.
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Matt A. King, Keith W. Nicholls, Keith Makinson, and Hugh F. J. Corr
Earth Syst. Sci. Data, 9, 849–860, https://doi.org/10.5194/essd-9-849-2017, https://doi.org/10.5194/essd-9-849-2017, 2017
Short summary
Short summary
Tides can affect the flow of ice at hourly to yearly timescales. In some cases the ice responds at a different frequency than is found in the tidal forcing; for example, on Rutford Ice Stream the strongest response is at a fortnightly period. A new compilation of GPS data across the Ronne Ice Shelf and adjoining ice streams shows that this fortnightly modulation in ice flow is found across the entire region. Measurements of this kind can provide insights into ice rheology and basal processes.
Wolfgang Rack, Matt A. King, Oliver J. Marsh, Christian T. Wild, and Dana Floricioiu
The Cryosphere, 11, 2481–2490, https://doi.org/10.5194/tc-11-2481-2017, https://doi.org/10.5194/tc-11-2481-2017, 2017
Short summary
Short summary
Predicting changes of the Antarctic Ice Sheet involves fully understanding ice dynamics at the transition between grounded and floating ice. We map tidal bending of ice by satellite using InSAR, and we use precise GPS measurements with assumptions of tidal elastic bending to better interpret the satellite signal. It allows us to better define the grounding-line position and to refine the shape of tidal flexure profiles.
Riccardo E. M. Riva, Thomas Frederikse, Matt A. King, Ben Marzeion, and Michiel R. van den Broeke
The Cryosphere, 11, 1327–1332, https://doi.org/10.5194/tc-11-1327-2017, https://doi.org/10.5194/tc-11-1327-2017, 2017
Short summary
Short summary
The reduction of ice masses stored on land has made an important contribution to sea-level rise over the last century, as well as changed the Earth's shape. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have varied strongly throughout the last century, which affects the interpretation and extrapolation of recent observations of vertical land motion and sea-level change.
Felicity S. Graham, Jason L. Roberts, Ben K. Galton-Fenzi, Duncan Young, Donald Blankenship, and Martin J. Siegert
Earth Syst. Sci. Data, 9, 267–279, https://doi.org/10.5194/essd-9-267-2017, https://doi.org/10.5194/essd-9-267-2017, 2017
Short summary
Short summary
Antarctic bed topography datasets are interpolated onto low-resolution grids because our observed topography data are sparsely sampled. This has implications for ice-sheet model simulations, especially in regions prone to instability, such as grounding lines, where detailed knowledge of the topography is required. Here, we constructed a high-resolution synthetic bed elevation dataset using observed covariance properties to assess the dependence of simulated ice-sheet dynamics on grid resolution.
Christopher J. Fogwill, Erik van Sebille, Eva A. Cougnon, Chris S. M. Turney, Steve R. Rintoul, Benjamin K. Galton-Fenzi, Graeme F. Clark, E. M. Marzinelli, Eleanor B. Rainsley, and Lionel Carter
The Cryosphere, 10, 2603–2609, https://doi.org/10.5194/tc-10-2603-2016, https://doi.org/10.5194/tc-10-2603-2016, 2016
Short summary
Short summary
Here we report new data from in situ oceanographic surveys and high-resolution ocean modelling experiments in the Commonwealth Bay region of East Antarctica, where in 2010 there was a major reconfiguration of the regional icescape due to the collision of the 97 km long iceberg B09B with the Mertz Glacier tongue. Here we compare post-calving observations with high-resolution ocean modelling which suggest that this reconfiguration has led to the development of a new polynya off Commonwealth Bay.
D. E. Gwyther, B. K. Galton-Fenzi, J. R. Hunter, and J. L. Roberts
Ocean Sci., 10, 267–279, https://doi.org/10.5194/os-10-267-2014, https://doi.org/10.5194/os-10-267-2014, 2014
B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban
The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014, https://doi.org/10.5194/tc-8-743-2014, 2014
Related subject area
Discipline: Ice sheets | Subject: Ocean Interactions
Brief communication: Sea-level projections, adaptation planning, and actionable science
Local forcing mechanisms challenge parameterizations of ocean thermal forcing for Greenland tidewater glaciers
Modelling Antarctic ice shelf basal melt patterns using the one-layer Antarctic model for dynamical downscaling of ice–ocean exchanges (LADDIE v1.0)
Basal melt rates and ocean circulation under the Ryder Glacier ice tongue and their response to climate warming: a high-resolution modelling study
Can rifts alter ocean dynamics beneath ice shelves?
Large-eddy simulations of the ice-shelf–ocean boundary layer near the ice front of Nansen Ice Shelf, Antarctica
Layered seawater intrusion and melt under grounded ice
The Antarctic Coastal Current in the Bellingshausen Sea
Surface emergence of glacial plumes determined by fjord stratification
Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution
Exploring mechanisms responsible for tidal modulation in flow of the Filchner–Ronne Ice Shelf
Melt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciers
Sensitivity of a calving glacier to ice–ocean interactions under climate change: new insights from a 3-D full-Stokes model
Brief communication: PICOP, a new ocean melt parameterization under ice shelves combining PICO and a plume model
Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing
Grounding line migration through the calving season at Jakobshavn Isbræ, Greenland, observed with terrestrial radar interferometry
William H. Lipscomb, David Behar, and Monica Ainhorn Morrison
EGUsphere, https://doi.org/10.5194/egusphere-2024-534, https://doi.org/10.5194/egusphere-2024-534, 2024
Short summary
Short summary
As communities try to adapt to climate change, they look for “actionable science” that can inform decision-making. There are risks in relying on novel results that are not yet accepted by the science community. We propose a practical criterion for determining which scientific claims are actionable. We show how premature acceptance of sea-level rise predictions can lead to confusion and backtracking, and we suggest best practices for communication between scientists and adaptation planners.
Alexander O. Hager, David A. Sutherland, and Donald A. Slater
The Cryosphere, 18, 911–932, https://doi.org/10.5194/tc-18-911-2024, https://doi.org/10.5194/tc-18-911-2024, 2024
Short summary
Short summary
Warming ocean temperatures cause considerable ice loss from the Greenland Ice Sheet; however climate models are unable to resolve the complex ocean processes within fjords that influence near-glacier ocean temperatures. Here, we use a computer model to test the accuracy of assumptions that allow climate and ice sheet models to project near-glacier ocean temperatures, and thus glacier melt, into the future. We then develop new methods that improve accuracy by accounting for local ocean processes.
Erwin Lambert, André Jüling, Roderik S. W. van de Wal, and Paul R. Holland
The Cryosphere, 17, 3203–3228, https://doi.org/10.5194/tc-17-3203-2023, https://doi.org/10.5194/tc-17-3203-2023, 2023
Short summary
Short summary
A major uncertainty in the study of sea level rise is the melting of the Antarctic ice sheet by the ocean. Here, we have developed a new model, named LADDIE, that simulates this ocean-driven melting of the floating parts of the Antarctic ice sheet. This model simulates fine-scale patterns of melting and freezing and requires significantly fewer computational resources than state-of-the-art ocean models. LADDIE can be used as a new tool to force high-resolution ice sheet models.
Jonathan Wiskandt, Inga Monika Koszalka, and Johan Nilsson
The Cryosphere, 17, 2755–2777, https://doi.org/10.5194/tc-17-2755-2023, https://doi.org/10.5194/tc-17-2755-2023, 2023
Short summary
Short summary
Understanding ice–ocean interactions under floating ice tongues in Greenland and Antarctica is a major challenge in climate modelling and a source of uncertainty in future sea level projections. We use a high-resolution ocean model to investigate basal melting and melt-driven circulation under the floating tongue of Ryder Glacier, northwestern Greenland. We study the response to oceanic and atmospheric warming. Our results are universal and relevant for the development of climate models.
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023, https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Short summary
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of rifts on ocean circulation below Antarctic ice shelves has been largely unexplored as ocean models are commonly run at resolutions that are too coarse to resolve the presence of rifts. Our model simulations show that a kilometer-wide rift near the ice-shelf front modulates heat intrusion beneath the ice and inhibits basal melt. These processes are therefore worthy of further investigation.
Ji Sung Na, Taekyun Kim, Emilia Kyung Jin, Seung-Tae Yoon, Won Sang Lee, Sukyoung Yun, and Jiyeon Lee
The Cryosphere, 16, 3451–3468, https://doi.org/10.5194/tc-16-3451-2022, https://doi.org/10.5194/tc-16-3451-2022, 2022
Short summary
Short summary
Beneath the Antarctic ice shelf, sub-ice-shelf plume flow that can cause turbulent mixing exists. In this study, we investigate how this flow affects ocean dynamics and ice melting near the ice front. Our results obtained by validated simulation show that higher turbulence intensity results in vigorous ice melting due to the high heat entrainment. Moreover, this flow with meltwater created by this flow highly affects the ocean overturning circulations near the ice front.
Alexander A. Robel, Earle Wilson, and Helene Seroussi
The Cryosphere, 16, 451–469, https://doi.org/10.5194/tc-16-451-2022, https://doi.org/10.5194/tc-16-451-2022, 2022
Short summary
Short summary
Warm seawater may intrude as a thin layer below glaciers in contact with the ocean. Mathematical theory predicts that this intrusion may extend over distances of kilometers under realistic conditions. Computer models demonstrate that if this warm seawater causes melting of a glacier bottom, it can cause rates of glacier ice loss and sea level rise to be up to 2 times faster in response to potential future ocean warming.
Ryan Schubert, Andrew F. Thompson, Kevin Speer, Lena Schulze Chretien, and Yana Bebieva
The Cryosphere, 15, 4179–4199, https://doi.org/10.5194/tc-15-4179-2021, https://doi.org/10.5194/tc-15-4179-2021, 2021
Short summary
Short summary
The Antarctic Coastal Current (AACC) is an ocean current found along the coast of Antarctica. Using measurements of temperature and salinity collected by instrumented seals, the AACC is shown to be a continuous circulation feature throughout West Antarctica. Due to its proximity to the coast, the AACC's structure influences oceanic melting of West Antarctic ice shelves. These melt rates impact the stability of the West Antarctic Ice Sheet with global implications for future sea level change.
Eva De Andrés, Donald A. Slater, Fiamma Straneo, Jaime Otero, Sarah Das, and Francisco Navarro
The Cryosphere, 14, 1951–1969, https://doi.org/10.5194/tc-14-1951-2020, https://doi.org/10.5194/tc-14-1951-2020, 2020
Short summary
Short summary
Buoyant plumes at tidewater glaciers result from localized subglacial discharges of surface melt. They promote glacier submarine melting and influence the delivery of nutrients to the fjord's surface waters. Combining plume theory with observations, we have found that increased fjord stratification, which is due to larger meltwater content, prevents the vertical growth of the plume and buffers submarine melting. We discuss the implications for nutrient fluxes, CO2 trapping and water export.
Donald A. Slater, Denis Felikson, Fiamma Straneo, Heiko Goelzer, Christopher M. Little, Mathieu Morlighem, Xavier Fettweis, and Sophie Nowicki
The Cryosphere, 14, 985–1008, https://doi.org/10.5194/tc-14-985-2020, https://doi.org/10.5194/tc-14-985-2020, 2020
Short summary
Short summary
Changes in the ocean around Greenland play an important role in determining how much the ice sheet will contribute to global sea level over the coming century. However, capturing these links in models is very challenging. This paper presents a strategy enabling an ensemble of ice sheet models to feel the effect of the ocean for the first time and should therefore result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
The Cryosphere, 14, 17–37, https://doi.org/10.5194/tc-14-17-2020, https://doi.org/10.5194/tc-14-17-2020, 2020
Short summary
Short summary
The flow of ice shelves is now known to be strongly affected by ocean tides, but the mechanism by which this happens is unclear. We use a viscoelastic model to try to reproduce observations of this behaviour on the Filchner–Ronne Ice Shelf in Antarctica. We find that tilting of the ice shelf explains the short-period behaviour, while tidally induced movement of the grounding line (the boundary between grounded and floating ice) explains the more complex long-period response.
David A. Lilien, Ian Joughin, Benjamin Smith, and Noel Gourmelen
The Cryosphere, 13, 2817–2834, https://doi.org/10.5194/tc-13-2817-2019, https://doi.org/10.5194/tc-13-2817-2019, 2019
Short summary
Short summary
We used a number of computer simulations to understand the recent retreat of a rapidly changing group of glaciers in West Antarctica. We found that significant melt underneath the floating extensions of the glaciers, driven by relatively warm ocean water at depth, was likely needed to cause the large retreat that has been observed. If melt continues around current rates, retreat is likely to continue through the coming century and extend beyond the present-day drainage area of these glaciers.
Joe Todd, Poul Christoffersen, Thomas Zwinger, Peter Råback, and Douglas I. Benn
The Cryosphere, 13, 1681–1694, https://doi.org/10.5194/tc-13-1681-2019, https://doi.org/10.5194/tc-13-1681-2019, 2019
Short summary
Short summary
The Greenland Ice Sheet loses 30 %–60 % of its ice due to iceberg calving. Calving processes and their links to climate are not well understood or incorporated into numerical models of glaciers. Here we use a new 3-D calving model to investigate calving at Store Glacier, West Greenland, and test its sensitivity to increased submarine melting and reduced support from ice mélange (sea ice and icebergs). We find Store remains fairly stable despite these changes, but less so in the southern side.
Tyler Pelle, Mathieu Morlighem, and Johannes H. Bondzio
The Cryosphere, 13, 1043–1049, https://doi.org/10.5194/tc-13-1043-2019, https://doi.org/10.5194/tc-13-1043-2019, 2019
Short summary
Short summary
How ocean-induced melt under floating ice shelves will change as ocean currents evolve remains a big uncertainty in projections of sea level rise. In this study, we combine two of the most recently developed melt models to form PICOP, which overcomes the limitations of past models and produces accurate ice shelf melt rates. We find that our model is easy to set up and computationally efficient, providing researchers an important tool to improve the accuracy of their future glacial projections.
Chad A. Greene, Duncan A. Young, David E. Gwyther, Benjamin K. Galton-Fenzi, and Donald D. Blankenship
The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, https://doi.org/10.5194/tc-12-2869-2018, 2018
Short summary
Short summary
We show that Totten Ice Shelf accelerates each spring in response to the breakup of seasonal landfast sea ice at the ice shelf calving front. The previously unreported seasonal flow variability may have aliased measurements in at least one previous study of Totten's response to ocean forcing on interannual timescales. The role of sea ice in buttressing the flow of the ice shelf implies that long-term changes in sea ice cover could have impacts on the mass balance of the East Antarctic Ice Sheet.
Surui Xie, Timothy H. Dixon, Denis Voytenko, Fanghui Deng, and David M. Holland
The Cryosphere, 12, 1387–1400, https://doi.org/10.5194/tc-12-1387-2018, https://doi.org/10.5194/tc-12-1387-2018, 2018
Short summary
Short summary
Time-varying velocity and topography of the terminus of Jakobshavn Isbræ were observed with a terrestrial radar interferometer in three summer campaigns (2012, 2015, 2016). Surface elevation and tidal responses of ice speed suggest a narrow floating zone in early summer, while in late summer the entire glacier is likely grounded. We hypothesize that Jakobshavn Isbræ advances a few km in winter to form a floating zone but loses this floating portion in the subsequent summer through calving.
Cited articles
Arzeno, I. B., Beardsley, R. C., Limeburner, R., Owens, B., Padman, L.,
Springer, S. R., Stewart, C. L., and Williams, M. J. M.: Ocean variability
contributing to basal melt rate near the ice front of Ross Ice Shelf,
Antarctica, J. Geophys. Res.-Oceans, 119, 4214–4233,
https://doi.org/10.1002/2014JC009792, 2014. a
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a
Asay-Davis, X. S., Jourdain, N. C., and Nakayama, Y.: Developments in
Simulating and Parameterizing Interactions Between the Southern
Ocean and the Antarctic Ice Sheet, Current Climate Change Reports, 3,
316–329, https://doi.org/10.1007/s40641-017-0071-0, 2017. a, b, c
Bronselaer, B., Winton, M., Griffies, S. M., Hurlin, W. J., Rodgers, K. B.,
Sergienko, O. V., Stouffer, R. J., and Russell, J. L.: Change in future
climate due to Antarctic meltwater, Nature, 564, 53,
https://doi.org/10.1038/s41586-018-0712-z, 2018. a
Cougnon, E. A., Galton‐Fenzi, B. K., Meijers, A. J. S., and Legrésy, B.:
Modeling interannual dense shelf water export in the region of the Mertz
Glacier Tongue (1992–2007), J. Geophys. Res.-Oceans,
118, 5858–5872, https://doi.org/10.1002/2013JC008790, 2013. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., Rosnay, P. D., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA‐Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of
Barotropic Ocean Tides, J. Atmos. Ocean. Tech.,
19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Foldvik, A., Gammelsrød, T., Slotsvik, N., and Tørresen, T.: Oceanographic
conditions on the Weddell Sea Shelf during the German Antarctic
Expedition 1979/80, Polar Res., 3, 209–226,
https://doi.org/10.3402/polar.v3i2.6953, 1985. a
Foldvik, A., Middleton, J. H., and Foster, T. D.: The tides of the southern
Weddell Sea, Deep-Sea Res. Pt. I, 37,
1345–1362, https://doi.org/10.1016/0198-0149(90)90047-Y, 1990. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Galton-Fenzi, B. K.: Modelling ice-shelf/ocean interaction, PhD, University of
Tasmania, https://eprints.utas.edu.au/19882/ (last access: 19 April 2022), 2009. a
Galton-Fenzi, B. K., Maraldi, C., Coleman, R., and Hunter, J.: The cavity under
the Amery Ice Shelf, East Antarctica, J. Glaciol., 54,
881–887, https://doi.org/10.3189/002214308787779898, 2008. a
Gammelsrod, T. and Slotsvik, N.: Hydrographic and Current Measurements in
the Southern Weddell Sea 1979/80, Polarforschung,
https://epic.awi.de/id/eprint/28128/ (last access: 19 April 2022), 1981. a
Griffiths, S. D. and Peltier, W. R.: Modeling of Polar Ocean Tides at the
Last Glacial Maximum: Amplification, Sensitivity, and
Climatological Implications, J. Climate, 22, 2905–2924,
https://doi.org/10.1175/2008JCLI2540.1, 2009. a
Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, The Cryosphere, 7, 647–655, https://doi.org/10.5194/tc-7-647-2013, 2013. a
Gwyther, D. E., Galton-Fenzi, B. K., Hunter, J. R., and Roberts, J. L.: Simulated melt rates for the Totten and Dalton ice shelves, Ocean Sci., 10, 267–279, https://doi.org/10.5194/os-10-267-2014, 2014. a, b
Gwyther, D. E., Cougnon, E. A., Galton-Fenzi, B. K., Roberts, J. L., Hunter,
J. R., and Dinniman, M. S.: Modelling the response of ice shelf basal melting
to different ocean cavity environmental regimes, Ann. Glaciol., 57,
131–141, https://doi.org/10.1017/aog.2016.31, 2016. a, b
Haney, R. L.: On the Pressure Gradient Force over Steep Topography in
Sigma Coordinate Ocean Models, J. Phys. Oceanogr., 21,
610–619, https://doi.org/10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2,
1991. a
Hattermann, T., Smedsrud, L. H., Nøst, O. A., Lilly, J. M., and Galton-Fenzi,
B. K.: Eddy-resolving simulations of the Fimbul Ice Shelf cavity
circulation: Basal melting and exchange with open ocean, Ocean Model.,
82, 28–44, https://doi.org/10.1016/j.ocemod.2014.07.004, 2014. a
Hellmer, H. H.: Impact of Antarctic ice shelf basal melting on sea ice and
deep ocean properties, Geophys. Res. Lett., 31, 10,
https://doi.org/10.1029/2004GL019506, 2004. a
Hellmer, H. H. and Olbers, D. J.: A two-dimensional model for the thermohaline
circulation under an ice shelf, Antarct. Sci., 1, 325–336,
https://doi.org/10.1017/S0954102089000490, 1989. a
Holland, D. M. and Jenkins, A.: Modeling Thermodynamic Ice–Ocean
Interactions at the Base of an Ice Shelf, J. Phys. Oceanogr., 29, 1787–1800,
https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999. a, b, c
Jacobs, S. S.: Bottom water production and its links with the thermohaline
circulation, Antarct. Sci., 16, 427–437,
https://doi.org/10.1017/S095410200400224X, 2004. a
Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A., and Frolich, R. M.:
Melting of ice shelves and the mass balance of Antarctica, J.
Glaciol., 38, 375–387, https://doi.org/10.3189/S0022143000002252, 1992. a
Jenkins, A., Nicholls, K. W., and Corr, H. F. J.: Observation and
Parameterization of Ablation at the Base of Ronne Ice Shelf,
Antarctica, J. Phys. Oceanogr., 40, 2298–2312,
https://doi.org/10.1175/2010JPO4317.1, 2010. a, b
King, M. A. and Padman, L.: Accuracy assessment of ocean tide models around
Antarctica, Geophys. Res. Lett., 32, 23, https://doi.org/10.1029/2005GL023901,
2005. a
Lewis, E. L. and Perkin, R. G.: Ice pumps and their rates, J. Geophys. Res.-Oceans, 91, 11756–11762,
https://doi.org/10.1029/JC091iC10p11756, 1986. a
Liu, Y., Moore, J. C., Cheng, X., Gladstone, R. M., Bassis, J. N., Liu, H.,
Wen, J., and Hui, F.: Ocean-driven thinning enhances iceberg calving and
retreat of Antarctic ice shelves, P. Natl. Acad.
Sci., 112, 3263–3268, https://doi.org/10.1073/pnas.1415137112, 2015. a
Llanillo, P. J., Aiken, C. M., Cordero, R. R., Damiani, A., Sepúlveda, E., and
Fernández-Gómez, B.: Oceanographic Variability induced by Tides, the
Intraseasonal Cycle and Warm Subsurface Water intrusions in
Maxwell Bay, King George Island (West-Antarctica), Sci.
Rep.-UK, 9, 1–17, https://doi.org/10.1038/s41598-019-54875-8, 2019. a
Loder, J. W.: Topographic Rectification of Tidal Currents on the Sides
of Georges Bank, J. Phys. Oceanogr., 10, 1399–1416,
https://doi.org/10.1175/1520-0485(1980)010<1399:TROTCO>2.0.CO;2, 1980. a
MacAyeal, D. R.: Thermohaline circulation below the Ross Ice Shelf: A
consequence of tidally induced vertical mixing and basal melting, J.
Geophys. Res.-Oceans, 89, 597–606, https://doi.org/10.1029/JC089iC01p00597,
1984. a, b
MacAyeal, D. R.: Tidal Rectification Below the Ross Ice Shelf,
Antarctica, Oceanology of the Antarctic Continental Shelf,
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/AR043p0109 (last access: 19 April 2022),
1985. a
Mack, S. L., Dinniman, M. S., McGillicuddy, D. J., Sedwick, P. N., and Klinck,
J. M.: Dissolved iron transport pathways in the Ross Sea: Influence of
tides and horizontal resolution in a regional ocean model, J. Marine
Syst., 166, 73–86, https://doi.org/10.1016/j.jmarsys.2016.10.008, 2017. a
Makinson, K., Holland, P. R., Jenkins, A., Nicholls, K. W., and Holland, D. M.:
Influence of tides on melting and freezing beneath Filchner-Ronne Ice
Shelf, Antarctica, Geophys. Res. Lett., 38, 6,
https://doi.org/10.1029/2010GL046462, 2011. a
Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard, F., Cailleau, S., Drévillon, M., Fanjul, E. A., Sotillo, M. G., Marsaleix, P., and the Mercator Research and Development Team: NEMO on the shelf: assessment of the Iberia–Biscay–Ireland configuration, Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, 2013. a
Mazloff, M. R., Heimbach, P., and Wunsch, C.: An Eddy-Permitting Southern
Ocean State Estimate, J. Phys. Oceanogr., 40, 880–899,
https://doi.org/10.1175/2009JPO4236.1, 2010. a
McPhee, M. G.: A time‐dependent model for turbulent transfer in a stratified
oceanic boundary layer, J. Geophys. Res.-Oceans, 92,
6977–6986, https://doi.org/10.1029/JC092iC07p06977, 1987. a
Mellor, G. L., Ezer, T., and Oey, L.-Y.: The Pressure Gradient Conundrum
of Sigma Coordinate Ocean Models, J. Atmos. Ocean.
Tech., 11, 1126–1134,
https://doi.org/10.1175/1520-0426(1994)011<1126:TPGCOS>2.0.CO;2, 1994. a, b
Mellor, G. L., Oey, L.-Y., and Ezer, T.: Sigma Coordinate Pressure
Gradient Errors and the Seamount Problem, J. Atmos.
Ocean. Tech., 15, 1122–1131,
https://doi.org/10.1175/1520-0426(1998)015<1122:SCPGEA>2.0.CO;2, 1998. a
Menemenlis, D., Campin, J., Heimbach, P., Hill, C., Lee, T., Nguyen, A.,
Schodlok, M., and Zhang, H.: ECCO2: High Resolution Global Ocean
and Sea Ice Data Synthesis, AGU Fall Meeting Abstracts,
http://adsabs.harvard.edu/abs/2008AGUFMOS31C1292M (last access: 19 April 2022), 2008. a
Mouginot, J., Rignot, E., and Scheuchl, B.: MEaSURES Antarctic Boundaries
for IPY 2007-2009 from Satellite Radar, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/SEVV4MR8P1ZN, 2016. a, b
Mueller, R. D., Padman, L., Dinniman, M. S., Erofeeva, S. Y., Fricker, H. A.,
and King, M. A.: Impact of tide-topography interactions on basal melting of
Larsen C Ice Shelf, Antarctica, J. Geophys. Res.-Oceans, 117, C5, https://doi.org/10.1029/2011JC007263, 2012. a, b, c
Mueller, R. D., Hattermann, T., Howard, S. L., and Padman, L.: Tidal influences on a future evolution of the Filchner–Ronne Ice Shelf cavity in the Weddell Sea, Antarctica, The Cryosphere, 12, 453–476, https://doi.org/10.5194/tc-12-453-2018, 2018. a, b, c, d
Padman, L., Howard, S. L., and Muench, R.: Internal tide generation along the
South Scotia Ridge, Deep-Sea Res. Pt. II, 53, 157–171, https://doi.org/10.1016/j.dsr2.2005.07.011, 2006. a
Padman, L., Howard, S. L., Orsi, A. H., and Muench, R. D.: Tides of the
northwestern Ross Sea and their impact on dense outflows of Antarctic
Bottom Water, Deep-Sea Res. Pt. II,
56, 818–834, https://doi.org/10.1016/j.dsr2.2008.10.026, 2009. a, b, c
Padman, L., Siegfried, M. R., and Fricker, H. A.: Ocean Tide Influences on
the Antarctic and Greenland Ice Sheets, Rev. Geophys., 56,
142–184, https://doi.org/10.1002/2016RG000546, 2018. a, b, c
Padman, L., Howard, S., and King, M. A.: Antarctic Tide Gauge Database,
https://www.esr.org/data-products/antarctic_tg_database (last access: 19 April 2022),
2020. a
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den
Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968,
2012. a
Purkey, S. G. and Johnson, G. C.: Antarctic Bottom Water Warming and
Freshening: Contributions to Sea Level Rise, Ocean Freshwater
Budgets, and Global Heat Gain, J. Climate, 26, 6105–6122,
https://doi.org/10.1175/JCLI-D-12-00834.1, 2013. a
Reese, R., Gudmundsson, G. H., Levermann, A., and Winkelmann, R.: The far reach
of ice-shelf thinning in Antarctica, Nat. Clim. Change, 8, 53–57,
https://doi.org/10.1038/s41558-017-0020-x, 2018. a, b
Richter, O.: Whole Antarctic Ocean Model, Zenodo [code], https://doi.org/10.5281/ZENODO.3738985,
2020a. a
Richter, O.: Post- and preprocessing tools for the ROMS Whole Antarctic Ocean
Model, Zenodo [code], https://doi.org/10.5281/ZENODO.3738998, 2020b. a
Richter, O.: Data from: Tidal Modulation of Antarctic Ice Shelf Melting, University of Tasmania [data set], https://doi.org/10.25959/5eeccb497aedf, 2020c. a
Robertson, R.: Modeling internal tides over Fieberling Guyot: resolution,
parameterization, performance, Ocean Dynam., 56, 430–444,
https://doi.org/10.1007/s10236-006-0062-5, 2006. a
Robertson, R.: Tidally induced increases in melting of Amundsen Sea ice
shelves, J. Geophys. Res.-Oceans, 118, 3138–3145,
https://doi.org/10.1002/jgrc.20236, 2013. a
Robertson, R. and Dong, C.: An evaluation of the performance of vertical mixing
parameterizations for tidal mixing in the Regional Ocean Modeling
System (ROMS), Geosci. Lett., 6, 15,
https://doi.org/10.1186/s40562-019-0146-y, 2019. a
Robinson, I. S.: Tidal vorticity and residual circulation, Deep-Sea Res.
Pt. I, 28, 195–212,
https://doi.org/10.1016/0198-0149(81)90062-5, 1981. a
Rosier, S. H. R., Green, J. A. M., Scourse, J. D., and Winkelmann, R.: Modeling
Antarctic tides in response to ice shelf thinning and retreat, J. Geophys. Res.-Oceans, 119, 87–97, https://doi.org/10.1002/2013JC009240, 2014. a, b
Savage, A. C., Arbic, B. K., Alford, M. H., Ansong, J. K., Farrar, J. T.,
Menemenlis, D., O'Rourke, A. K., Richman, J. G., Shriver, J. F., Voet, G.,
Wallcraft, A. J., and Zamudio, L.: Spectral decomposition of internal gravity
wave sea surface height in global models, J. Geophys. Res.-Oceans, 122, 7803–7821, https://doi.org/10.1002/2017JC013009, 2017. a
Schnaase, F. and Timmermann, R.: Representation of shallow grounding zones in
an ice shelf-ocean model with terrain-following coordinates, Ocean Model.,
144, 101 487, https://doi.org/10.1016/j.ocemod.2019.101487, 2019. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system
(ROMS): a split-explicit, free-surface, topography-following-coordinate
oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Silvano, A., Rintoul, S. R., Peña-Molino, B., Hobbs, W. R., Wijk, E. v., Aoki,
S., Tamura, T., and Williams, G. D.: Freshening by glacial meltwater enhances
melting of ice shelves and reduces formation of Antarctic Bottom Water,
Sci. Adv., 4, eaap9467, https://doi.org/10.1126/sciadv.aap9467, 2018. a, b, c
Stewart, A. L., Klocker, A., and Menemenlis, D.: Circum-Antarctic Shoreward
Heat Transport Derived From an Eddy- and Tide-Resolving
Simulation, Geophys. Res. Lett., 45, 834–845,
https://doi.org/10.1002/2017GL075677, 2018. a, b, c
Stewart, C. L., Christoffersen, P., Nicholls, K. W., Williams, M. J. M., and
Dowdeswell, J. A.: Basal melting of Ross Ice Shelf from solar heat
absorption in an ice-front polynya, Nat. Geosci., 12, 435–440, 2019. a
Tamura, T., Ohshima, K. I., Nihashi, S., and Hasumi, H.: Estimation of
Surface Heat/Salt Fluxes Associated with Sea Ice
Growth/Melt in the Southern Ocean, SOLA, 7, 17–20,
https://doi.org/10.2151/sola.2011-005, 2011. a
Timmermann, R., Wang, Q., and Hellmer, H. H.: Ice shelf basal melting in a
global finite-element sea ice/ice shelf/ocean model, Ann. Glaciol.,
53, 60, https://doi.org/10.3189/2012AoG60A156, 2012. a
Turner, J., Orr, A., Gudmundsson, G. H., Jenkins, A., Bingham, R. G.,
Hillenbrand, C.-D., and Bracegirdle, T. J.: Atmosphere‐ocean‐ice
interactions in the Amundsen Sea Embayment, West Antarctica,
Rev. Geophys., 55, 235–276, https://doi.org/10.1002/2016RG000532, 2017. a
Williams, G. D., Herraiz-Borreguero, L., Roquet, F., Tamura, T., Ohshima,
K. I., Fukamachi, Y., Fraser, A. D., Gao, L., Chen, H., McMahon, C. R.,
Harcourt, R., and Hindell, M.: The suppression of Antarctic bottom water
formation by melting ice shelves in Prydz Bay, Nat. Commun., 7,
12 577, https://doi.org/10.1038/ncomms12577, 2016. a
Wilmes, S.-B. and Green, J. A. M.: The evolution of tides and tidal dissipation
over the past 21,000 years, J. Geophys. Res.-Oceans, 119,
4083–4100, https://doi.org/10.1002/2013JC009605, 2014. a
Short summary
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at which the ocean melts glaciers. Here, using a computational ocean model, we derive the first estimate of present-day tidal melting that covers all of Antarctica. Our results suggest that large-scale ocean models aiming to accurately predict ice melt rates will need to account for the effects of tides. The inclusion of tide-induced friction at the ice–ocean interface should be prioritized.
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at...