Articles | Volume 16, issue 4
https://doi.org/10.5194/tc-16-1409-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1409-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of tides on Antarctic ice shelf melting
Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
now at: Physical Oceanography of Polar Seas, Alfred Wegener Institute, Postfach 12 01 61, 27515 Bremerhaven, Germany
David E. Gwyther
Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
Coastal and Regional Oceanography Laboratory, School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
Matt A. King
School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Tasmania 7001, Australia
Benjamin K. Galton-Fenzi
The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Tasmania 7001, Australia
Australian Antarctic Division, Kingston, Tasmania 7050, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
Related authors
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
Geosci. Model Dev., 18, 2945–2960, https://doi.org/10.5194/gmd-18-2945-2025, https://doi.org/10.5194/gmd-18-2945-2025, 2025
Short summary
Short summary
The new coupled ice sheet–ocean model addresses challenges related to horizontal resolution through advanced mesh flexibility, enabled by the use of unstructured grids. We describe the new model, verify its functioning in an idealised setting and demonstrate its advantages in a global-ocean–Antarctic ice sheet domain. The results of this study comprise an important step towards improving predictions of the Antarctic contribution to sea level rise over centennial timescales.
Ole Richter, David E. Gwyther, Benjamin K. Galton-Fenzi, and Kaitlin A. Naughten
Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, https://doi.org/10.5194/gmd-15-617-2022, 2022
Short summary
Short summary
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present-day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. Hence, the model will ultimately help to improve projections of sea level rise and climate change.
Lawrence A. Bird, Vitaliy Ogarko, Laurent Ailleres, Lachlan Grose, Jérémie Giraud, Felicity S. McCormack, David E. Gwyther, Jason L. Roberts, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 3355–3380, https://doi.org/10.5194/tc-19-3355-2025, https://doi.org/10.5194/tc-19-3355-2025, 2025
Short summary
Short summary
The terrain of the seafloor has important controls on the access of warm water below floating ice shelves around Antarctica. Here, we present an open-source method to infer what the seafloor looks like around the Antarctic continent and within these ice shelf cavities, using measurements of the Earth's gravitational field. We present an improved seafloor map for the Vincennes Bay region in East Antarctica and assess its impact on ice melt rates.
Claire K. Yung, Xylar S. Asay-Davis, Alistair Adcroft, Christopher Y. S. Bull, Jan De Rydt, Michael S. Dinniman, Benjamin K. Galton-Fenzi, Daniel Goldberg, David E. Gwyther, Robert Hallberg, Matthew Harrison, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, James R. Jordan, Nicolas C. Jourdain, Kazuya Kusahara, Gustavo Marques, Pierre Mathiot, Dimitris Menemenlis, Adele K. Morrison, Yoshihiro Nakayama, Olga Sergienko, Robin S. Smith, Alon Stern, Ralph Timmermann, and Qin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-1942, https://doi.org/10.5194/egusphere-2025-1942, 2025
Short summary
Short summary
ISOMIP+ compares 12 ocean models that simulate ice-ocean interactions in a common, idealised, static ice shelf cavity setup, aiming to assess and understand inter-model variability. Models simulate similar basal melt rate patterns, ocean profiles and circulation but differ in ice-ocean boundary layer properties and spatial distributions of melting. Ice-ocean boundary layer representation is a key area for future work, as are realistic-domain ice sheet-ocean model intercomparisons.
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
Geosci. Model Dev., 18, 2945–2960, https://doi.org/10.5194/gmd-18-2945-2025, https://doi.org/10.5194/gmd-18-2945-2025, 2025
Short summary
Short summary
The new coupled ice sheet–ocean model addresses challenges related to horizontal resolution through advanced mesh flexibility, enabled by the use of unstructured grids. We describe the new model, verify its functioning in an idealised setting and demonstrate its advantages in a global-ocean–Antarctic ice sheet domain. The results of this study comprise an important step towards improving predictions of the Antarctic contribution to sea level rise over centennial timescales.
Eric Buchta, Mirko Scheinert, Matt A. King, Terry Wilson, Achraf Koulali, Peter J. Clarke, Demián Gómez, Eric Kendrick, Christoph Knöfel, and Peter Busch
Earth Syst. Sci. Data, 17, 1761–1780, https://doi.org/10.5194/essd-17-1761-2025, https://doi.org/10.5194/essd-17-1761-2025, 2025
Short summary
Short summary
Geodetic GPS measurements in Antarctica have been used to track bedrock displacement, which is vital for understanding geodynamic processes such as plate motion and glacial isostatic adjustment. However, the potential of GPS data has been limited by its partially fragmented availability and unreliable metadata. A new dataset, which spans the period from 1995 to 2021, offers consistently processed coordinate time series for 286 GPS sites and promises to enhance future geodynamic research.
John Bright Ayabilah, Matt King, Danielle Udy, and Tessa Vance
EGUsphere, https://doi.org/10.5194/egusphere-2025-1187, https://doi.org/10.5194/egusphere-2025-1187, 2025
Short summary
Short summary
Large-scale climate modes significantly influence Antarctic Ice Sheet (AIS) mass variability. This study investigates AIS variability during different El Niño-Southern Oscillation (ENSO) periods using GRACE data (2002–2022). Results show strong spatial variability driven by changes in the Amundsen Sea Low (ASL) and Southern Annular Mode (SAM). This highlights the importance of understanding these patterns for future ice mass estimates and sea level rise predictions.
Benjamin Keith Galton-Fenzi, Richard Porter-Smith, Sue Cook, Eva Cougnon, David E. Gwyther, Wilma G. C. Huneke, Madelaine G. Rosevear, Xylar Asay-Davis, Fabio Boeira Dias, Michael S. Dinniman, David Holland, Kazuya Kusahara, Kaitlin A. Naughten, Keith W. Nicholls, Charles Pelletier, Ole Richter, Helene L. Seroussi, and Ralph Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4047, https://doi.org/10.5194/egusphere-2024-4047, 2025
Short summary
Short summary
Melting beneath Antarctica’s floating ice shelves is key to future sea-level rise. We compare several different ocean simulations with satellite measurements, and provide the first multi-model average estimate of melting and refreezing driven by both ocean temperature and currents beneath ice shelves. The multi-model average can provide a useful tool for better understanding the role of ice shelf melting in present-day and future ice-sheet changes and informing coastal adaptation efforts.
Fabio Boeira Dias, Matthew H. England, Adele K. Morrison, and Benjamin Galton-Fenzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3905, https://doi.org/10.5194/egusphere-2024-3905, 2025
Short summary
Short summary
The Antarctic Ice Sheet melting dominates the sea-level projection uncertainties. Much uncertainty arises from our limited understanding of how ice shelves melt from below. Using a detailed ocean-ice shelf model, we found that East Antarctic ice shelves experience seasonal melting driven by ocean heat transport variability. In contrast, West Antarctic ice shelves show consistent melting due to a steady supply of warm, deep water, indicating potentially distinct response due to a warming climate.
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024, https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
Short summary
We introduce an accelerated forcing approach to address timescale discrepancies between the ice sheets and ocean components in coupled modelling by reducing the ocean simulation duration. The approach is evaluated using idealized coupled models, and its limitations in real-world applications are discussed. Our results suggest it can be a valuable tool for process-oriented coupled ice sheet–ocean modelling and downscaling climate simulations with such models.
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024, https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Short summary
Our research delves into the future evolution of Antarctica's Wilkes Subglacial Basin (WSB) and its potential contribution to sea level rise, focusing on how basal melt is implemented at the grounding line in ice flow models. Our findings suggest that these implementation methods can significantly impact the magnitude of future ice loss projections. Under a high-emission scenario, the WSB ice sheet could undergo massive and rapid retreat between 2200 and 2300.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza
Geosci. Model Dev., 17, 2359–2386, https://doi.org/10.5194/gmd-17-2359-2024, https://doi.org/10.5194/gmd-17-2359-2024, 2024
Short summary
Short summary
Ocean forecasting relies on the combination of numerical models and ocean observations through data assimilation (DA). Here we assess the performance of two DA systems in a dynamic western boundary current, the East Australian Current, across a common modelling and observational framework. We show that the more advanced, time-dependent method outperforms the time-independent method for forecast horizons of 5 d. This advocates the use of advanced methods for highly variable oceanic regions.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur and if similar diversions could occur elsewhere in Antarctica due to climate change.
David E. Gwyther, Shane R. Keating, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 157–178, https://doi.org/10.5194/gmd-16-157-2023, https://doi.org/10.5194/gmd-16-157-2023, 2023
Short summary
Short summary
Ocean eddies are important for weather, climate, biology, navigation, and search and rescue. Since eddies change rapidly, models that incorporate or assimilate observations are required to produce accurate eddy timings and locations, yet the model accuracy is rarely assessed below the surface. We use a unique type of ocean model experiment to assess three-dimensional eddy structure in the East Australian Current and explore two pathways in which this subsurface structure is being degraded.
David E. Gwyther, Colette Kerry, Moninya Roughan, and Shane R. Keating
Geosci. Model Dev., 15, 6541–6565, https://doi.org/10.5194/gmd-15-6541-2022, https://doi.org/10.5194/gmd-15-6541-2022, 2022
Short summary
Short summary
The ocean current flowing along the southeastern coast of Australia is called the East Australian Current (EAC). Using computer simulations, we tested how surface and subsurface observations might improve models of the EAC. Subsurface observations are particularly important for improving simulations, and if made in the correct location and time, can have impact 600 km upstream. The stability of the current affects model estimates could be capitalized upon in future observing strategies.
Madelaine Rosevear, Benjamin Galton-Fenzi, and Craig Stevens
Ocean Sci., 18, 1109–1130, https://doi.org/10.5194/os-18-1109-2022, https://doi.org/10.5194/os-18-1109-2022, 2022
Short summary
Short summary
Understanding ocean-driven melting of Antarctic ice shelves is critical for predicting future sea level. However, ocean observations from beneath ice shelves are scarce. Here, we present unique ocean and melting data from the Amery Ice Shelf, East Antarctica. We use our observations to evaluate common methods of representing melting in ocean–climate models (melting
parameterisations) and show that these parameterisations overestimate melting when the ocean is warm and/or currents are weak.
Chen Zhao, Rupert Gladstone, Benjamin Keith Galton-Fenzi, David Gwyther, and Tore Hattermann
Geosci. Model Dev., 15, 5421–5439, https://doi.org/10.5194/gmd-15-5421-2022, https://doi.org/10.5194/gmd-15-5421-2022, 2022
Short summary
Short summary
We use a coupled ice–ocean model to explore an oscillation feature found in several contributing models to MISOMIP1. The oscillation is closely related to the discretized grounding line retreat and likely strengthened by the buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and frequent ice–ocean coupling. Our model choices have a non-trivial impact on mean melt and ocean circulation strength, which might be interesting for the coupled ice–ocean community.
Yu Wang, Chen Zhao, Rupert Gladstone, Ben Galton-Fenzi, and Roland Warner
The Cryosphere, 16, 1221–1245, https://doi.org/10.5194/tc-16-1221-2022, https://doi.org/10.5194/tc-16-1221-2022, 2022
Short summary
Short summary
The thermal structure of the Amery Ice Shelf and its spatial pattern are evaluated and analysed through temperature observations from six boreholes and numerical simulations. The simulations demonstrate significant ice warming downstream along the ice flow and a great variation of the thermal structure across the ice flow. We suggest that the thermal structure of the Amery Ice Shelf is unlikely to be affected by current climate changes on decadal timescales.
Grace A. Nield, Matt A. King, Rebekka Steffen, and Bas Blank
Geosci. Model Dev., 15, 2489–2503, https://doi.org/10.5194/gmd-15-2489-2022, https://doi.org/10.5194/gmd-15-2489-2022, 2022
Short summary
Short summary
We present a finite-element model of post-seismic solid Earth deformation built in the software package Abaqus for the purpose of calculating post-seismic deformation in the far field of major earthquakes. The model is benchmarked against an existing open-source post-seismic model demonstrating good agreement. The advantage over existing models is the potential for simple modification to include 3-D Earth structure, non-linear rheologies and alternative or multiple sources of stress change.
Ole Richter, David E. Gwyther, Benjamin K. Galton-Fenzi, and Kaitlin A. Naughten
Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, https://doi.org/10.5194/gmd-15-617-2022, 2022
Short summary
Short summary
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present-day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. Hence, the model will ultimately help to improve projections of sea level rise and climate change.
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Bogdan Matviichuk, Matt King, and Christopher Watson
Solid Earth, 11, 1849–1863, https://doi.org/10.5194/se-11-1849-2020, https://doi.org/10.5194/se-11-1849-2020, 2020
Short summary
Short summary
The Earth deforms as the weight of ocean mass changes with the tides. GPS has been used to estimate displacements of the Earth at tidal periods and then used to understand the properties of the Earth or to test models of ocean tides. However, there are important inaccuracies in these GPS measurements at major tidal periods. We find that combining GPS and GLONASS gives more accurate results for constituents other than K2 and K1; for these, GLONASS or ambiguity resolved GPS are preferred.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Cited articles
Arzeno, I. B., Beardsley, R. C., Limeburner, R., Owens, B., Padman, L.,
Springer, S. R., Stewart, C. L., and Williams, M. J. M.: Ocean variability
contributing to basal melt rate near the ice front of Ross Ice Shelf,
Antarctica, J. Geophys. Res.-Oceans, 119, 4214–4233,
https://doi.org/10.1002/2014JC009792, 2014. a
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a
Asay-Davis, X. S., Jourdain, N. C., and Nakayama, Y.: Developments in
Simulating and Parameterizing Interactions Between the Southern
Ocean and the Antarctic Ice Sheet, Current Climate Change Reports, 3,
316–329, https://doi.org/10.1007/s40641-017-0071-0, 2017. a, b, c
Bronselaer, B., Winton, M., Griffies, S. M., Hurlin, W. J., Rodgers, K. B.,
Sergienko, O. V., Stouffer, R. J., and Russell, J. L.: Change in future
climate due to Antarctic meltwater, Nature, 564, 53,
https://doi.org/10.1038/s41586-018-0712-z, 2018. a
Cougnon, E. A., Galton‐Fenzi, B. K., Meijers, A. J. S., and Legrésy, B.:
Modeling interannual dense shelf water export in the region of the Mertz
Glacier Tongue (1992–2007), J. Geophys. Res.-Oceans,
118, 5858–5872, https://doi.org/10.1002/2013JC008790, 2013. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., Rosnay, P. D., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA‐Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of
Barotropic Ocean Tides, J. Atmos. Ocean. Tech.,
19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Foldvik, A., Gammelsrød, T., Slotsvik, N., and Tørresen, T.: Oceanographic
conditions on the Weddell Sea Shelf during the German Antarctic
Expedition 1979/80, Polar Res., 3, 209–226,
https://doi.org/10.3402/polar.v3i2.6953, 1985. a
Foldvik, A., Middleton, J. H., and Foster, T. D.: The tides of the southern
Weddell Sea, Deep-Sea Res. Pt. I, 37,
1345–1362, https://doi.org/10.1016/0198-0149(90)90047-Y, 1990. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Galton-Fenzi, B. K.: Modelling ice-shelf/ocean interaction, PhD, University of
Tasmania, https://eprints.utas.edu.au/19882/ (last access: 19 April 2022), 2009. a
Galton-Fenzi, B. K., Maraldi, C., Coleman, R., and Hunter, J.: The cavity under
the Amery Ice Shelf, East Antarctica, J. Glaciol., 54,
881–887, https://doi.org/10.3189/002214308787779898, 2008. a
Gammelsrod, T. and Slotsvik, N.: Hydrographic and Current Measurements in
the Southern Weddell Sea 1979/80, Polarforschung,
https://epic.awi.de/id/eprint/28128/ (last access: 19 April 2022), 1981. a
Griffiths, S. D. and Peltier, W. R.: Modeling of Polar Ocean Tides at the
Last Glacial Maximum: Amplification, Sensitivity, and
Climatological Implications, J. Climate, 22, 2905–2924,
https://doi.org/10.1175/2008JCLI2540.1, 2009. a
Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, The Cryosphere, 7, 647–655, https://doi.org/10.5194/tc-7-647-2013, 2013. a
Gwyther, D. E., Galton-Fenzi, B. K., Hunter, J. R., and Roberts, J. L.: Simulated melt rates for the Totten and Dalton ice shelves, Ocean Sci., 10, 267–279, https://doi.org/10.5194/os-10-267-2014, 2014. a, b
Gwyther, D. E., Cougnon, E. A., Galton-Fenzi, B. K., Roberts, J. L., Hunter,
J. R., and Dinniman, M. S.: Modelling the response of ice shelf basal melting
to different ocean cavity environmental regimes, Ann. Glaciol., 57,
131–141, https://doi.org/10.1017/aog.2016.31, 2016. a, b
Haney, R. L.: On the Pressure Gradient Force over Steep Topography in
Sigma Coordinate Ocean Models, J. Phys. Oceanogr., 21,
610–619, https://doi.org/10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2,
1991. a
Hattermann, T., Smedsrud, L. H., Nøst, O. A., Lilly, J. M., and Galton-Fenzi,
B. K.: Eddy-resolving simulations of the Fimbul Ice Shelf cavity
circulation: Basal melting and exchange with open ocean, Ocean Model.,
82, 28–44, https://doi.org/10.1016/j.ocemod.2014.07.004, 2014. a
Hellmer, H. H.: Impact of Antarctic ice shelf basal melting on sea ice and
deep ocean properties, Geophys. Res. Lett., 31, 10,
https://doi.org/10.1029/2004GL019506, 2004. a
Hellmer, H. H. and Olbers, D. J.: A two-dimensional model for the thermohaline
circulation under an ice shelf, Antarct. Sci., 1, 325–336,
https://doi.org/10.1017/S0954102089000490, 1989. a
Holland, D. M. and Jenkins, A.: Modeling Thermodynamic Ice–Ocean
Interactions at the Base of an Ice Shelf, J. Phys. Oceanogr., 29, 1787–1800,
https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999. a, b, c
Jacobs, S. S.: Bottom water production and its links with the thermohaline
circulation, Antarct. Sci., 16, 427–437,
https://doi.org/10.1017/S095410200400224X, 2004. a
Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A., and Frolich, R. M.:
Melting of ice shelves and the mass balance of Antarctica, J.
Glaciol., 38, 375–387, https://doi.org/10.3189/S0022143000002252, 1992. a
Jenkins, A., Nicholls, K. W., and Corr, H. F. J.: Observation and
Parameterization of Ablation at the Base of Ronne Ice Shelf,
Antarctica, J. Phys. Oceanogr., 40, 2298–2312,
https://doi.org/10.1175/2010JPO4317.1, 2010. a, b
King, M. A. and Padman, L.: Accuracy assessment of ocean tide models around
Antarctica, Geophys. Res. Lett., 32, 23, https://doi.org/10.1029/2005GL023901,
2005. a
Lewis, E. L. and Perkin, R. G.: Ice pumps and their rates, J. Geophys. Res.-Oceans, 91, 11756–11762,
https://doi.org/10.1029/JC091iC10p11756, 1986. a
Liu, Y., Moore, J. C., Cheng, X., Gladstone, R. M., Bassis, J. N., Liu, H.,
Wen, J., and Hui, F.: Ocean-driven thinning enhances iceberg calving and
retreat of Antarctic ice shelves, P. Natl. Acad.
Sci., 112, 3263–3268, https://doi.org/10.1073/pnas.1415137112, 2015. a
Llanillo, P. J., Aiken, C. M., Cordero, R. R., Damiani, A., Sepúlveda, E., and
Fernández-Gómez, B.: Oceanographic Variability induced by Tides, the
Intraseasonal Cycle and Warm Subsurface Water intrusions in
Maxwell Bay, King George Island (West-Antarctica), Sci.
Rep.-UK, 9, 1–17, https://doi.org/10.1038/s41598-019-54875-8, 2019. a
Loder, J. W.: Topographic Rectification of Tidal Currents on the Sides
of Georges Bank, J. Phys. Oceanogr., 10, 1399–1416,
https://doi.org/10.1175/1520-0485(1980)010<1399:TROTCO>2.0.CO;2, 1980. a
MacAyeal, D. R.: Thermohaline circulation below the Ross Ice Shelf: A
consequence of tidally induced vertical mixing and basal melting, J.
Geophys. Res.-Oceans, 89, 597–606, https://doi.org/10.1029/JC089iC01p00597,
1984. a, b
MacAyeal, D. R.: Tidal Rectification Below the Ross Ice Shelf,
Antarctica, Oceanology of the Antarctic Continental Shelf,
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/AR043p0109 (last access: 19 April 2022),
1985. a
Mack, S. L., Dinniman, M. S., McGillicuddy, D. J., Sedwick, P. N., and Klinck,
J. M.: Dissolved iron transport pathways in the Ross Sea: Influence of
tides and horizontal resolution in a regional ocean model, J. Marine
Syst., 166, 73–86, https://doi.org/10.1016/j.jmarsys.2016.10.008, 2017. a
Makinson, K., Holland, P. R., Jenkins, A., Nicholls, K. W., and Holland, D. M.:
Influence of tides on melting and freezing beneath Filchner-Ronne Ice
Shelf, Antarctica, Geophys. Res. Lett., 38, 6,
https://doi.org/10.1029/2010GL046462, 2011. a
Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard, F., Cailleau, S., Drévillon, M., Fanjul, E. A., Sotillo, M. G., Marsaleix, P., and the Mercator Research and Development Team: NEMO on the shelf: assessment of the Iberia–Biscay–Ireland configuration, Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, 2013. a
Mazloff, M. R., Heimbach, P., and Wunsch, C.: An Eddy-Permitting Southern
Ocean State Estimate, J. Phys. Oceanogr., 40, 880–899,
https://doi.org/10.1175/2009JPO4236.1, 2010. a
McPhee, M. G.: A time‐dependent model for turbulent transfer in a stratified
oceanic boundary layer, J. Geophys. Res.-Oceans, 92,
6977–6986, https://doi.org/10.1029/JC092iC07p06977, 1987. a
Mellor, G. L., Ezer, T., and Oey, L.-Y.: The Pressure Gradient Conundrum
of Sigma Coordinate Ocean Models, J. Atmos. Ocean.
Tech., 11, 1126–1134,
https://doi.org/10.1175/1520-0426(1994)011<1126:TPGCOS>2.0.CO;2, 1994. a, b
Mellor, G. L., Oey, L.-Y., and Ezer, T.: Sigma Coordinate Pressure
Gradient Errors and the Seamount Problem, J. Atmos.
Ocean. Tech., 15, 1122–1131,
https://doi.org/10.1175/1520-0426(1998)015<1122:SCPGEA>2.0.CO;2, 1998. a
Menemenlis, D., Campin, J., Heimbach, P., Hill, C., Lee, T., Nguyen, A.,
Schodlok, M., and Zhang, H.: ECCO2: High Resolution Global Ocean
and Sea Ice Data Synthesis, AGU Fall Meeting Abstracts,
http://adsabs.harvard.edu/abs/2008AGUFMOS31C1292M (last access: 19 April 2022), 2008. a
Mouginot, J., Rignot, E., and Scheuchl, B.: MEaSURES Antarctic Boundaries
for IPY 2007-2009 from Satellite Radar, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/SEVV4MR8P1ZN, 2016. a, b
Mueller, R. D., Padman, L., Dinniman, M. S., Erofeeva, S. Y., Fricker, H. A.,
and King, M. A.: Impact of tide-topography interactions on basal melting of
Larsen C Ice Shelf, Antarctica, J. Geophys. Res.-Oceans, 117, C5, https://doi.org/10.1029/2011JC007263, 2012. a, b, c
Mueller, R. D., Hattermann, T., Howard, S. L., and Padman, L.: Tidal influences on a future evolution of the Filchner–Ronne Ice Shelf cavity in the Weddell Sea, Antarctica, The Cryosphere, 12, 453–476, https://doi.org/10.5194/tc-12-453-2018, 2018. a, b, c, d
Padman, L., Howard, S. L., and Muench, R.: Internal tide generation along the
South Scotia Ridge, Deep-Sea Res. Pt. II, 53, 157–171, https://doi.org/10.1016/j.dsr2.2005.07.011, 2006. a
Padman, L., Howard, S. L., Orsi, A. H., and Muench, R. D.: Tides of the
northwestern Ross Sea and their impact on dense outflows of Antarctic
Bottom Water, Deep-Sea Res. Pt. II,
56, 818–834, https://doi.org/10.1016/j.dsr2.2008.10.026, 2009. a, b, c
Padman, L., Siegfried, M. R., and Fricker, H. A.: Ocean Tide Influences on
the Antarctic and Greenland Ice Sheets, Rev. Geophys., 56,
142–184, https://doi.org/10.1002/2016RG000546, 2018. a, b, c
Padman, L., Howard, S., and King, M. A.: Antarctic Tide Gauge Database,
https://www.esr.org/data-products/antarctic_tg_database (last access: 19 April 2022),
2020. a
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den
Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968,
2012. a
Purkey, S. G. and Johnson, G. C.: Antarctic Bottom Water Warming and
Freshening: Contributions to Sea Level Rise, Ocean Freshwater
Budgets, and Global Heat Gain, J. Climate, 26, 6105–6122,
https://doi.org/10.1175/JCLI-D-12-00834.1, 2013. a
Reese, R., Gudmundsson, G. H., Levermann, A., and Winkelmann, R.: The far reach
of ice-shelf thinning in Antarctica, Nat. Clim. Change, 8, 53–57,
https://doi.org/10.1038/s41558-017-0020-x, 2018. a, b
Richter, O.: Whole Antarctic Ocean Model, Zenodo [code], https://doi.org/10.5281/ZENODO.3738985,
2020a. a
Richter, O.: Post- and preprocessing tools for the ROMS Whole Antarctic Ocean
Model, Zenodo [code], https://doi.org/10.5281/ZENODO.3738998, 2020b. a
Richter, O.: Data from: Tidal Modulation of Antarctic Ice Shelf Melting, University of Tasmania [data set], https://doi.org/10.25959/5eeccb497aedf, 2020c. a
Robertson, R.: Modeling internal tides over Fieberling Guyot: resolution,
parameterization, performance, Ocean Dynam., 56, 430–444,
https://doi.org/10.1007/s10236-006-0062-5, 2006. a
Robertson, R.: Tidally induced increases in melting of Amundsen Sea ice
shelves, J. Geophys. Res.-Oceans, 118, 3138–3145,
https://doi.org/10.1002/jgrc.20236, 2013. a
Robertson, R. and Dong, C.: An evaluation of the performance of vertical mixing
parameterizations for tidal mixing in the Regional Ocean Modeling
System (ROMS), Geosci. Lett., 6, 15,
https://doi.org/10.1186/s40562-019-0146-y, 2019. a
Robinson, I. S.: Tidal vorticity and residual circulation, Deep-Sea Res.
Pt. I, 28, 195–212,
https://doi.org/10.1016/0198-0149(81)90062-5, 1981. a
Rosier, S. H. R., Green, J. A. M., Scourse, J. D., and Winkelmann, R.: Modeling
Antarctic tides in response to ice shelf thinning and retreat, J. Geophys. Res.-Oceans, 119, 87–97, https://doi.org/10.1002/2013JC009240, 2014. a, b
Savage, A. C., Arbic, B. K., Alford, M. H., Ansong, J. K., Farrar, J. T.,
Menemenlis, D., O'Rourke, A. K., Richman, J. G., Shriver, J. F., Voet, G.,
Wallcraft, A. J., and Zamudio, L.: Spectral decomposition of internal gravity
wave sea surface height in global models, J. Geophys. Res.-Oceans, 122, 7803–7821, https://doi.org/10.1002/2017JC013009, 2017. a
Schnaase, F. and Timmermann, R.: Representation of shallow grounding zones in
an ice shelf-ocean model with terrain-following coordinates, Ocean Model.,
144, 101 487, https://doi.org/10.1016/j.ocemod.2019.101487, 2019. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system
(ROMS): a split-explicit, free-surface, topography-following-coordinate
oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Silvano, A., Rintoul, S. R., Peña-Molino, B., Hobbs, W. R., Wijk, E. v., Aoki,
S., Tamura, T., and Williams, G. D.: Freshening by glacial meltwater enhances
melting of ice shelves and reduces formation of Antarctic Bottom Water,
Sci. Adv., 4, eaap9467, https://doi.org/10.1126/sciadv.aap9467, 2018. a, b, c
Stewart, A. L., Klocker, A., and Menemenlis, D.: Circum-Antarctic Shoreward
Heat Transport Derived From an Eddy- and Tide-Resolving
Simulation, Geophys. Res. Lett., 45, 834–845,
https://doi.org/10.1002/2017GL075677, 2018. a, b, c
Stewart, C. L., Christoffersen, P., Nicholls, K. W., Williams, M. J. M., and
Dowdeswell, J. A.: Basal melting of Ross Ice Shelf from solar heat
absorption in an ice-front polynya, Nat. Geosci., 12, 435–440, 2019. a
Tamura, T., Ohshima, K. I., Nihashi, S., and Hasumi, H.: Estimation of
Surface Heat/Salt Fluxes Associated with Sea Ice
Growth/Melt in the Southern Ocean, SOLA, 7, 17–20,
https://doi.org/10.2151/sola.2011-005, 2011. a
Timmermann, R., Wang, Q., and Hellmer, H. H.: Ice shelf basal melting in a
global finite-element sea ice/ice shelf/ocean model, Ann. Glaciol.,
53, 60, https://doi.org/10.3189/2012AoG60A156, 2012. a
Turner, J., Orr, A., Gudmundsson, G. H., Jenkins, A., Bingham, R. G.,
Hillenbrand, C.-D., and Bracegirdle, T. J.: Atmosphere‐ocean‐ice
interactions in the Amundsen Sea Embayment, West Antarctica,
Rev. Geophys., 55, 235–276, https://doi.org/10.1002/2016RG000532, 2017. a
Williams, G. D., Herraiz-Borreguero, L., Roquet, F., Tamura, T., Ohshima,
K. I., Fukamachi, Y., Fraser, A. D., Gao, L., Chen, H., McMahon, C. R.,
Harcourt, R., and Hindell, M.: The suppression of Antarctic bottom water
formation by melting ice shelves in Prydz Bay, Nat. Commun., 7,
12 577, https://doi.org/10.1038/ncomms12577, 2016. a
Wilmes, S.-B. and Green, J. A. M.: The evolution of tides and tidal dissipation
over the past 21,000 years, J. Geophys. Res.-Oceans, 119,
4083–4100, https://doi.org/10.1002/2013JC009605, 2014. a
Short summary
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at which the ocean melts glaciers. Here, using a computational ocean model, we derive the first estimate of present-day tidal melting that covers all of Antarctica. Our results suggest that large-scale ocean models aiming to accurately predict ice melt rates will need to account for the effects of tides. The inclusion of tide-induced friction at the ice–ocean interface should be prioritized.
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at...