Articles | Volume 16, issue 4
https://doi.org/10.5194/tc-16-1265-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1265-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temporal variation of bacterial community and nutrients in Tibetan glacier snowpack
Yuying Chen
State Key Laboratory of Tibetan Plateau Earth System, Resources and
Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy
of Sciences, Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
Keshao Liu
State Key Laboratory of Tibetan Plateau Earth System, Resources and
Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy
of Sciences, Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
Yongqin Liu
State Key Laboratory of Tibetan Plateau Earth System, Resources and
Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy
of Sciences, Beijing 100101, China
Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou
730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
Trista J. Vick-Majors
Great Lakes Research Center, Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
Feng Wang
State Key Laboratory of Tibetan Plateau Earth System, Resources and
Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy
of Sciences, Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou
730000, China
Related authors
No articles found.
Yongqin Liu, Songnian Hu, Tao Yu, Yingfeng Luo, Zhihao Zhang, Yuying Chen, Shunchao Guo, Qinglan Sun, Guomei Fan, Linhuan Wu, Juncai Ma, Keshao Liu, Pengfei Liu, Junzhi Liu, Ruyi Dong, and Mukan Ji
Earth Syst. Sci. Data, 17, 5165–5179, https://doi.org/10.5194/essd-17-5165-2025, https://doi.org/10.5194/essd-17-5165-2025, 2025
Short summary
Short summary
Based on amplicon sequencing, metagenome sequencing, and cultivated genome sequencing, the dataset contains 64,510 bacterial and archaeal species, 62,595,715 unique genes, and 4,501 microbial genomes of bacteria and archaea from glaciers of the Antarctic, Arctic, Tibetan Plateau, and other alpine regions. The data can be useful to ecologists, microbiologists, and policymakers regarding microbial distribution, evolution, and biohazard assessment for glacier microbiome under global climate change.
Junzhi Liu, Pengcheng Fang, Yefeng Que, Liang-Jun Zhu, Zheng Duan, Guoan Tang, Pengfei Liu, Mukan Ji, and Yongqin Liu
Earth Syst. Sci. Data, 14, 3791–3805, https://doi.org/10.5194/essd-14-3791-2022, https://doi.org/10.5194/essd-14-3791-2022, 2022
Short summary
Short summary
The management and conservation of lakes should be conducted in the context of catchments because lakes collect water and materials from their upstream catchments. This study constructed the first dataset of lake-catchment characteristics for 1525 lakes with an area from 0.2 to 4503 km2 on the Tibetan Plateau (TP), which provides exciting opportunities for lake studies in a spatially explicit context and promotes the development of landscape limnology on the TP.
Yongqin Liu, Pengcheng Fang, Bixi Guo, Mukan Ji, Pengfei Liu, Guannan Mao, Baiqing Xu, Shichang Kang, and Junzhi Liu
Earth Syst. Sci. Data, 14, 2303–2314, https://doi.org/10.5194/essd-14-2303-2022, https://doi.org/10.5194/essd-14-2303-2022, 2022
Short summary
Short summary
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study constructed the first dataset of microbial abundance and total nitrogen in Tibetan Plateau (TP) glaciers and the first dataset of dissolved organic carbon in ice cores on the TP. These new data could provide valuable information for research on the glacier carbon and nitrogen cycle and help in assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
Mukan Ji, Weidong Kong, Chao Liang, Tianqi Zhou, Hongzeng Jia, and Xiaobin Dong
The Cryosphere, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020, https://doi.org/10.5194/tc-14-3907-2020, 2020
Short summary
Short summary
Old permafrost soil usually has more carbohydrates, while younger soil contains more aliphatic carbons, which substantially impacts soil bacterial communities. However, little is known about how permafrost age and thawing drive microbial communities. We found that permafrost thawing significantly increased bacterial richness in young permafrost and changed soil bacterial compositions at all ages. This suggests that thawing results in distinct bacterial species and alters soil carbon degradation.
Cited articles
Amato, P., Hennebelle, R., Magand, O., Sancelme, M., Delort, A.-M.,
Barbante, C., Boutron, C., and Ferrari, C.: Bacterial characterization of
the snow cover at Spitzberg, Svalbard, FEMS Microbiol. Ecol., 59,
255–264, 2007.
Amoroso, A., Domine, F., Esposito, G., Morin, S., Savarino, J., Nardino, M.,
Montagnoli, M., Bonneville, J. M., Clement, J. C., Ianniello, A., and Beine,
H. J.: Microorganisms in dry polar snow are involved in the exchanges of
reactive nitrogen species with the atmosphere, Environ. Sci. Technol., 44,
714–719, https://doi.org/10.1021/es9027309, 2010.
Anesio, A. M. and Laybourn-Parry, J.: Glaciers and ice sheets as a biome,
Trends Ecol. Evol., 27, 219–225,
https://doi.org/10.1016/j.tree.2011.09.012, 2012.
Antony, R., Sanyal, A., Kapse, N., Dhakephalkar, P. K., Thamban, M., and
Nair, S.: Microbial communities associated with Antarctic snow pack and
their biogeochemical implications, Microbiol. Res., 192, 192–202,
https://doi.org/10.1016/j.micres.2016.07.004, 2016.
Beine, H. J., Dominè, F., Ianniello, A., Nardino, M., Allegrini, I., Teinilä, K., and Hillamo, R.: Fluxes of nitrates between snow surfaces and the atmosphere in the European high Arctic, Atmos. Chem. Phys., 3, 335–346, https://doi.org/10.5194/acp-3-335-2003, 2003.
Bergk Pinto, B., Maccario, L., Dommergue, A., Vogel, T. M., and Larose, C.:
Do organic substrates drive microbial community interactions in Arctic
snow?, Front. Microbiol., 10, 2492–2492, https://doi.org/10.3389/fmicb.2019.02492,
2019.
Bernhard, A.: The nitrogen cycle: processes, players, and human impack,
Nature Education Knowledge, 2, 1–9, 2010.
Bhatia, M. P., Das, S. B., Xu, L., Charette, M. A., Wadham, J. L., and
Kujawinski, E. B.: Organic carbon export from the Greenland ice sheet,
Geochim. Cosmochim. Ac., 109, 329–344,
https://doi.org/10.1016/j.gca.2013.02.006, 2013.
Björkman, M. P., Vega, C. P., Kühnel, R., Spataro, F., Ianniello,
A., Esposito, G., Kaiser, J., Marca, A., Hodson, A., Isaksson, E., and
Roberts, T. J.: Nitrate postdeposition processes in Svalbard surface snow,
J. Geophys. Res.-Atmos., 119, 12953–12976,
https://doi.org/10.1002/2013jd021234, 2014.
Borchert, E., Hammerschmidt, K., Hentschel, U., and Deines, P.: Enhancing
Microbial Pollutant Degradation by Integrating Eco-Evolutionary Principles
with Environmental Biotechnology, Trends Microbiol., 29, 908–918,
https://doi.org/10.1016/j.tim.2021.03.002, 2021.
Brooks, P. D., Williams, M. W., and Schmidt, S. K.: Inorganic nitrogen and
microbial biomass dynamics before and during spring snowmelt,
Biogeochemistry, 43, 1–15, https://doi.org/10.1023/A:1005947511910, 1998.
Calcagno, V., Jarne, P., Loreau, M., Mouquet, N., and David, P.: Diversity
spurs diversification in ecological communities, Nat. Commun., 8,
15810, https://doi.org/10.1038/ncomms15810, 2017.
Callahan, B. J., McMurdie, P. J., and Holmes, S. P.: Exact sequence variants
should replace operational taxonomic units in marker-gene data analysis, The
ISME Journal, 11, 581–583, https://doi.org/10.1038/nmeth.3869, 2017.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J.
A., and Holmes, S. P.: DADA2: high-resolution sample inference from Illumina
amplicon data, Nature Methods, 13, 2639–2643, https://doi.org/10.1038/ismej.2017.119, 2016.
Cameron, K. A., Stibal, M., Chrismas, N., Box, J., and Jacobsen, C. S.:
Nitrate addition has minimal short-term impacts on Greenland ice sheet
supraglacial prokaryotes, Environ. Microbiol. Rep., 9, 144–150,
https://doi.org/10.1111/1758-2229.12510, 2017.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J.,
Fierer, N., Owens, S. M., Betley, J., Fraser, L., and Bauer, M.:
Ultra-high-throughput microbial community analysis on the Illumina HiSeq and
MiSeq platforms, The ISME journal, 6, 1621–1624, https://doi.org/10.1038/ismej.2012.8, 2012.
Carey, C. J., Hart, S. C., Aciego, S. M., Riebe, C. S., Blakowski, M. A.,
and Aronson, E. L.: Microbial community structure of subalpine snow in the
Sierra Nevada, California, Arct. Antarct. Alp. Res., 48,
685–701, https://doi.org/10.1657/AAAR0015-062, 2016.
Carpenter, E. J., Lin, S., and Capone, D. G.: Bacterial activity in South
Pole snow, Appl. Environ. Microbiol., 66, 4514–4517, 2000.
Chrismas, N. A. M., Anesio, A. M., and Sanchez-Baracaldo, P.: The future of
genomics in polar and alpine cyanobacteria, FEMS Microbiol. Ecol., 94, 4,
https://doi.org/10.1093/femsec/fiy032, 2018.
Dang, H. and Lovell, C. R.: Microbial surface colonization and biofilm
development in marine environments, Microbiol. Mol. Biol.
R., 80, 91, https://doi.org/10.1128/MMBR.00037-15, 2016.
Deng, Y., Jiang, Y.-H., Yang, Y., He, Z., Luo, F., and Zhou, J.: Molecular
ecological network analyses, BMC bioinformatics, 13, 113, https://doi.org/10.1186/1471-2105-13-113, 2012.
Dibb, J. E., Talbot, R. W., Munger, J. W., Jacob, D. J., and Fan, S.-M.:
Air-snow exchange of HNO3 and NOyat Summit, Greenland, J. Geophys. Res.-Atmos., 103, 3475–3486, https://doi.org/10.1029/97jd03132, 1998.
Du, S., Ya, T., Zhang, M., Zhu, M., Li, N., Liu, S., and Wang, X.: Distinct
microbial communities and their networks in an anammox coupled with sulfur
autotrophic/mixotrophic denitrification system, Environ. Pollut.,
262, 114190, https://doi.org/10.1016/j.envpol.2020.114190, 2020.
Filippa, G., Freppaz, M., Williams, M. W., and Zanini, E.: Major element
chemistry in inner alpine snowpacks (Aosta Valley Region, NW Italy), Cold
Reg. Sci. Technol., 64, 158–166,
https://doi.org/10.1016/j.coldregions.2010.07.005, 2010.
Friedman, J. and Gore, J.: Ecological systems biology: The dynamics of
interacting populations, Current Opinion in Systems Biology, 1, 114–121,
https://doi.org/10.1016/j.coisb.2016.12.001, 2017.
Hacquard, S., Garrido-Oter, R., González, A., Spaepen, S., Ackermann,
G., Lebeis, S., McHardy, A. C., Dangl, J. L., Knight, R., and Ley, R.:
Microbiota and host nutrition across plant and animal kingdoms, Cell Host
Microbe, 17, 603–616, 2015.
Hell, K., Edwards, A., Zarsky, J., Podmirseg, S. M., Girdwood, S., Pachebat,
J. A., Insam, H., and Sattler, B.: The dynamic bacterial communities of a
melting High Arctic glacier snowpack, The ISME journal, 7, 1814–1826, https://doi.org/10.1038/ismej.2013.51, 2013.
Henry, S., Baudoin, E., Lopez-Gutierrez, J. C., Martin-Laurent, F., Brauman,
A., and Philippot, L.: Quantification of denitrifying bacteria in soils by
nirK gene targeted real-time PCR, J. Microbiol. Methods, 61, 289–290,
https://doi.org/10.1016/j.mimet.2004.12.008, 2005.
Hodson, A., Anesio, A. M., Tranter, M., Fountain, A., Osborn, M., Priscu,
J., Laybourn-Parry, J., and Sattler, B.: Glacial ecosystems, Ecol.
Monogr., 78, 41–67, 2008.
Holland, A. T., Bergk Pinto, B., Layton, R., Williamson, C. J., Anesio, A.
M., Vogel, T. M., Larose, C., and Tranter, M.: Over Winter Microbial
Processes in a Svalbard Snow Pack: An Experimental Approach, Front.
Microbiol., 11, 1029, https://doi.org/10.3389/fmicb.2020.01029, 2020.
Hood, E., Battin, T. J., Fellman, J., O'Neel, S., and Spencer, R. G. M.:
Storage and release of organic carbon from glaciers and ice sheets, Nat. Geosci., 8, 91–96, https://doi.org/10.1038/ngeo2331, 2015.
Hunt, D. E. and Ward, C. S.: A network-based approach to disturbance
transmission through microbial interactions, Front. Microbiol., 6, 1182,
https://doi.org/10.3389/fmicb.2015.01182, 2015.
Huth, J. and Liebs, P.: Nitrogen regulation in microorganisms, Zentralbl
Mikrobiol, 143, 179–194, https://doi.org/10.1016/s0232-4393(88)80038-6, 1988.
Immerzeel, W. W., Beek, L. P. H. V., and Bierkens, M. F. P.: Climate Change
Will Affect the Asian Water Towers, Science, 328, 1382–1385,
https://doi.org/10.1126/science.1183188, 2010.
Ji, M., Kong, W., Yue, L., Wang, J., Deng, Y., and Zhu, L.: Salinity reduces
bacterial diversity, but increases network complexity in Tibetan Plateau
lakes, FEMS Microbiol. Ecol., 95, 12, https://doi.org/10.1093/femsec/fiz190, 2019.
Ju, F., Xia, Y., Guo, F., Wang, Z., and Zhang, T.: Taxonomic relatedness
shapes bacterial assembly in activated sludge of globally distributed
wastewater treatment plants, Environ. Microbiol., 16, 2421–2432,
2014.
Khan, N., Maezato, Y., McClure, R. S., Brislawn, C. J., Mobberley, J. M.,
Isern, N., Chrisler, W. B., Markillie, L. M., Barney, B. M., Song, H.-S.,
Nelson, W. C., and Bernstein, H. C.: Phenotypic responses to interspecies
competition and commensalism in a naturally-derived microbial co-culture,
Sci. Rep.-UK, 8, 297, https://doi.org/10.1038/s41598-017-18630-1, 2018.
Kim, M., Jung, J. Y., Laffly, D., Kwon, H. Y., and Lee, Y. K.: Shifts in
bacterial community structure during succession in a glacier foreland of the
High Arctic, FEMS Microbiol. Ecol., 93, 1, https://doi.org/10.1093/femsec/fiw213, 2016.
Krug, L., Erlacher, A., Markut, K., Berg, G., and Cernava, T.: The
microbiome of alpine snow algae shows a specific inter-kingdom connectivity
and algae-bacteria interactions with supportive capacities, The ISME
Journal, 14, 2197–2210, https://doi.org/10.1038/s41396-020-0677-4, 2020.
Kuypers, M. M. M., Marchant, H. K., and Kartal, B.: The microbial
nitrogen-cycling network, Nat. Rev. Microbiol., 16, 263–276,
https://doi.org/10.1038/nrmicro.2018.9, 2018.
Larose, C., Berger, S., Ferrari, C., Navarro, E., Dommergue, A., Schneider,
D., and Vogel, T. M.: Microbial sequences retrieved from environmental
samples from seasonal Arctic snow and meltwater from Svalbard, Norway,
Extremophiles, 14, 205–212, 2010.
Larose, C., Dommergue, A., and Vogel, T. M.: Microbial nitrogen cycling in
Arctic snowpacks, Environ. Res. Lett., 8, 035004,
https://doi.org/10.1088/1748-9326/8/3/035004, 2013a.
Larose, C., Prestat, E., Cecillon, S., Berger, S., Malandain, C., Lyon, D.,
Ferrari, C., Schneider, D., Dommergue, A., and Vogel, T. M.: Interactions
between Snow Chemistry, Mercury Inputs and Microbial Population Dynamics in
an Arctic Snowpack, PLOS ONE, 8, e79972, https://doi.org/10.1371/journal.pone.0079972,
2013b.
Lazzaro, A., Wismer, A., Schneebeli, M., Erny, I., and Zeyer, J.: Microbial
abundance and community structure in a melting alpine snowpack,
Extremophiles, 19, 631–642, 2015.
Levy-Booth, D. J., Prescott, C. E., and Grayston, S. J.: Microbial
functional genes involved in nitrogen fixation, nitrification and
denitrification in forest ecosystems, Soil Biol. Biochem., 75,
11–25, https://doi.org/10.1016/j.soilbio.2014.03.021, 2014.
Liu, K., Liu, Y., Hu, A., Wang, F., Zhang, Z., Yan, Q., Ji, M., and
Vick-Majors, T. J.: Fate of glacier surface snow-originating bacteria in the
glacier-fed hydrologic continuums, Environ. Microbiol., 23, 6450–6462,
https://doi.org/10.1111/1462-2920.15788, 2021.
Liu, Y., Yao, T., Kang, S., Jiao, N., Zeng, Y., Shi, Y., Luo, T., Jing, Z.,
and Huang, S.: Seasonal variation of snow microbial community structure in
the East Rongbuk glacier, Mt. Everest, Chinese Sci. Bull., 51,
1476–1486, https://doi.org/10.1007/s11434-006-1476-7, 2006.
Lopatina, A., Krylenkov, V., and Severinov, K.: Activity and bacterial
diversity of snow around Russian Antarctic stations, Res.
Microbiol., 164, 949–958, 2013.
Lü, C. and Tian, H.: Spatial and temporal patterns of nitrogen
deposition in China: Synthesis of observational data, J. Geophys. Res.-Atmos., 112, 10931–10954, https://doi.org/10.1029/2006JD007990, 2007.
Lutz, S., Anesio, A. M., Edwards, A., and Benning, L. G.: Linking microbial
diversity and functionality of arctic glacial surface habitats, Environ.
Microbiol., 19, 551–565, https://doi.org/10.1111/1462-2920.13494, 2017.
Maccario, L., Vogel, T. M., and Larose, C.: Potential drivers of microbial
community structure and function in Arctic spring snow, Front.
Microbiol., 5, 413, https://doi.org/10.3389/fmicb.2014.00413, 2014.
Maccario, L., Carpenter, S. D., Deming, J. W., Vogel, T. M., and Larose, C.:
Sources and selection of snow-specific microbial communities in a
Greenlandic sea ice snow cover, Sci. Rep.-UK, 9, 2290,
https://doi.org/10.1038/s41598-019-38744-y, 2019.
Madsen, E. L.: Microorganisms and their roles in fundamental biogeochemical
cycles, Curr. Opin. Biotech., 22, 456–464,
https://doi.org/10.1016/j.copbio.2011.01.008, 2011.
Makhalanyane, T. P., Valverde, A., Velazquez, D., Gunnigle, E., Van Goethem,
M. W., Quesada, A., and Cowan, D. A.: Ecology and biogeochemistry of
cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats,
Biodivers. Conserv., 24, 819–840, https://doi.org/10.1007/s10531-015-0902-z, 2015.
Marshall, W. A. and Chalmers, M. O.: Airborne dispersal of antarctic
terrestrial algae and cyanobacteria, Ecography, 20, 585–594, https://doi.org/10.1111/j.1600-0587.1997.tb00427.x, 1997
McDonald, D., Clemente, J. C., Kuczynski, J., Rideout, J. R., Stombaugh, J.,
Wendel, D., Wilke, A., Huse, S., Hufnagle, J., and Meyer, F.: The Biological
Observation Matrix (BIOM) format or: how I learned to stop worrying and love
the ome-ome, GigaScience, 1, 7, https://doi.org/10.1186/2047-217X-1-7, 2012.
Miteva, V.: Bacteria in snow and glacier ice, in: Psychrophiles: From
biodiversity to biotechnology, edited by: Margesin, R., Schinner, F., Marx, J. C., and Gerday, C., Springer, 31–50, 2008.
Møller, A. K., Søborg, D. A., Abu Al-Soud, W., Sørensen, S. J., and
Kroer, N.: Bacterial community structure in High-Arctic snow and freshwater
as revealed by pyrosequencing of 16S rRNA genes and cultivation, Polar
Res., 32, 17390, https://doi.org/10.3402/polar.v32i0.17390, 2013.
Nicholes, M. J., Williamson, C. J., Tranter, M., Holland, A., Poniecka, E.,
Yallop, M. L., Black, Bloom, G., and Anesio, A.: Bacterial Dynamics in
Supraglacial Habitats of the Greenland Ice Sheet, Front. Microbiol.,
10, 1366–1366, https://doi.org/10.3389/fmicb.2019.01366, 2019.
Ning, D., Deng, Y., Tiedje, J. M., and Zhou, J.: A general framework for
quantitatively assessing ecological stochasticity, P.
Natl. Acad. Sci. USA, 116, 16892–16898, https://doi.org/10.1073/pnas.1904623116,
2019.
Ntengwe, F. W.: An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – the case of Nkana Mine in Zambia, Phys. Chem. Earth, 30, 726–734,
https://doi.org/10.1016/j.pce.2005.08.014, 2005.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O'hara, R., Simpson,
G. L., Solymos, P., Stevens, M. H. H., and Wagner, H.: vegan: Community
Ecology Package. R package version 1.17-2, https://cran.r-project.org/web/packages/vegan/index.html (last access: 16 May 2021), 23, 2010.
Quesada, A. and Vincent, W. F.: Cyanobacteria in the Cryosphere: Snow, Ice
and Extreme Cold, in: Ecology of Cyanobacteria II: Their Diversity in Space
and Time, edited by: Whitton, B. A., Springer Netherlands, Dordrecht,
387–399, https://doi.org/10.1007/978-94-007-3855-3_14, 2012.
Qiu, J.: Tibetan glaciers shrinking rapidly, Nature News, 15, 1–2, 2012.
R Core Team: R: A Language and Environment for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0,
https://www.R-project.org/ (last access: 28 May 2021), 2017.
Rice, E. W., Baird, R. B., Eaton, A. D., and Clesceri, L. S.: Standard methods for the examination of water and wastewate, 22nd edn., American Public Health Association, American Water Works, Water Environment Federation, Washington D.C., ISBN 978-087553-013-0, 2012.
Richardson, D. J. and Watmough, N. J.: Inorganic nitrogen metabolism in
bacteria, Curr. Opin. Chem. Biol., 3, 207–219,
https://doi.org/10.1016/S1367-5931(99)80034-9, 1999.
Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W.,
Dakos, V., van de Koppel, J., van de Leemput, I. A., Levin, S. A., van Nes,
E. H., Pascual, M., and Vandermeer, J.: Anticipating Critical Transitions,
Science, 338, 344–348, https://doi.org/10.1126/science.1225244, 2012.
Segawa, T., Miyamoto, K., Ushida, K., Agata, K., Okada, N., and Kohshima,
S.: Seasonal change in bacterial flora and biomass in mountain snow from the
Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and
real-time PCR, Appl. Environ. Microbiol., 71, 123–130, 2005.
Singer, G. A., Fasching, C., Wilhelm, L., Niggemann, J., Steier, P.,
Dittmar, T., and Battin, T. J.: Biogeochemically diverse organic matter in
Alpine glaciers and its downstream fate, Nat. Geosci., 5, 710–714,
https://doi.org/10.1038/ngeo1581, 2012.
Stegen, J. C., Lin, X., Konopka, A. E., and Fredrickson, J. K.: Stochastic
and deterministic assembly processes in subsurface microbial communities,
The ISME journal, 6, 1653–1664, 2012.
Sun, Y., Shen, Y.-x., Liang, P., Zhou, J., Yang, Y., and Huang, X.: Linkages
between microbial functional potential and wastewater constituents in
large-scale membrane bioreactors for municipal wastewater treatment, Water
Res., 56, 162–171, https://doi.org/10.1016/j.watres.2014.03.003, 2014.
Telling, J., Anesio, A. M., Tranter, M., Irvine-Fynn, T., Hodson, A.,
Butler, C., and Wadham, J.: Nitrogen fixation on Arctic glaciers, Svalbard,
J. Geophys. Res.-Biogeo., 116, G03039,
https://doi.org/10.1029/2010jg001632, 2011.
Telling, J., Stibal, M., Anesio, A. M., Tranter, M., Nias, I., Cook, J., Bellas, C., Lis, G., Wadham, J. L., Sole, A., Nienow, P., and Hodson, A.: Microbial nitrogen cycling on the Greenland Ice Sheet, Biogeosciences, 9, 2431–2442, https://doi.org/10.5194/bg-9-2431-2012, 2012.
Vitousek, P. M., Hättenschwiler, S., Olander, L., and Allison, S.:
Nitrogen and nature, AMBIO, 31, 97–102,
2002.
Wadham, J. L., Hawkings, J., Telling, J., Chandler, D., Alcock, J., O'Donnell, E., Kaur, P., Bagshaw, E., Tranter, M., Tedstone, A., and Nienow, P.: Sources, cycling and export of nitrogen on the Greenland Ice Sheet, Biogeosciences, 13, 6339–6352, https://doi.org/10.5194/bg-13-6339-2016, 2016.
Wagenmakers, E.-J. and Farrell, S.: AIC model selection using Akaike
weights, Psychon. B. Rev., 11, 192–196, https://doi.org/10.3758/BF03206482,
2004.
Wang, S., Wang, X., Han, X., and Deng, Y.: Higher precipitation strengthens
the microbial interactions in semi-arid grassland soils, Global Ecol.
Biogeogr., 27, 570–580, https://doi.org/10.1111/geb.12718, 2018.
Wemheuer, F., Taylor, J. A., Daniel, R., Johnston, E., Meinicke, P., Thomas,
T., and Wemheuer, B.: Tax4Fun2: prediction of habitat-specific functional
profiles and functional redundancy based on 16S rRNA gene sequences,
Environ. Microbiome, 15, 1–12, 2020.
Wu, H., Adams, J. M., Shi, Y., Li, Y., Song, X., Zhao, X., Chu, H., and
Zhang, G.-L.: Depth-Dependent Patterns of Bacterial Communities and Assembly
Processes in a Typical Red Soil Critical Zone, Geomicrobiol. J., 37,
201–212, https://doi.org/10.1080/01490451.2019.1688432, 2020.
Xia, S., Li, J., and Wang, R.: Nitrogen removal performance and microbial
community structure dynamics response to carbon nitrogen ratio in a compact
suspended carrier biofilm reactor, Ecol. Eng., 32, 256–262,
2008.
Xiang, S., Shang, T, Chen, Y., and Yao, T.: Deposition and postdeposition
mechanisms as possible drivers of microbial population variability in
glacier ice, FEMS Microbiol. Ecol., 70, 165–176,
https://doi.org/10.1111/j.1574-6941.2009.00759.x, 2009.
Yuan, H., Huang, S., Yuan, J., You, Y., and Zhang, Y.: Characteristics of
microbial denitrification under different aeration intensities: Performance,
mechanism, and co-occurrence network, Sci. Total Environ., 754,
141965, https://doi.org/10.1016/j.scitotenv.2020.141965, 2021.
Zhang, J., Shu, X., Zhang, Y., Tan, X., and Zhang, Q.: The responses of
epilithic algal community structure and function to light and nutrients and
their linkages in subtropical rivers, Hydrobiologia, 847, 841–855,
10.1007/s10750-019-04146-4, 2020.
Ziegler, M., Eguíluz, V. M., Duarte, C. M., and Voolstra, C. R.: Rare
symbionts may contribute to the resilience of coral–algal assemblages, The
ISME Journal, 12, 161–172, https://doi.org/10.1038/ismej.2017.151, 2018.
Short summary
We investigated the bacterial communities in surface and subsurface snow samples in a Tibetan Plateau glacier using 16S rRNA gene sequences. Our results revealed rapid temporal changes in nitrogen (including nitrate and ammonium) and bacterial communities in both surface and subsurface snow. These findings advance our understanding of bacterial community variations and bacterial interactions after snow deposition and provide a possible biological explanation for nitrogen dynamics in snow.
We investigated the bacterial communities in surface and subsurface snow samples in a Tibetan...