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Abstract. The Tibetan Plateau harbors the largest number of
glaciers outside the polar regions, which are the source of
several major rivers in Asia. These glaciers are also major
sources of nutrients for downstream ecosystems, while there
is a little amount of data available on the nutrient transfor-
mation processes on the glacier surface. Here, we monitored
the carbon and nitrogen concentration changes in a snow-
pit following a snowfall in the Dunde Glacier of the Tibetan
Plateau. The association of carbon and nitrogen changes with
bacterial community dynamics was investigated in the sur-
face and subsurface snow (depth at 0–15 and 15–30 cm, re-
spectively) during a 9 d period. Our results revealed rapid
temporal changes in nitrogen (including nitrate and ammo-
nium) and bacterial communities in both surface and subsur-
face snow. Nitrate and ammonium concentrations increased
from 0.44 to 1.15 mg L−1 and 0.18 to 0.24 mg L−1 in the
surface snow and decreased from 3.81 to 1.04 and 0.53 to
0.25 mg L−1 in the subsurface snow over time. Therefore,
we suggest that the surface snow is not nitrogen-limited,
while the subsurface snow is associated with nitrogen con-
sumption processes and is nitrogen-limited. The nitrate con-
centration co-varied with bacterial diversity, community
structure, and the predicted nitrogen fixation and nitrogen
assimilation/denitrification-related genes (narG), suggesting
nitrogen could mediate bacterial community changes. The
nitrogen limitation and enriched denitrification-related genes
in subsurface snow suggested stronger environmental and bi-
otic filtering than those in surface snow, which may explain

the lower bacterial diversity, more pronounced community
temporal changes, and stronger biotic interactions. Collec-
tively, these findings advance our understanding of bacterial
community variations and bacterial interactions after snow
deposition and provide a possible biological explanation for
nitrogen dynamics in snow.

1 Introduction

The Tibetan Plateau is the world’s third-largest ice reservoir
after those in Antarctica and Greenland (Qiu, 2012). These
glaciers are the source of several large rivers in Asia, such as
the Yellow, Yangtze, Mekong, Salween, Brahmaputra, and
Indus rivers (Immerzeel et al., 2010). Glaciers are major
sources of nutrients (carbon and nitrogen) for the down-
stream ecosystems (Singer et al., 2012; Hood et al., 2015;
Liu et al., 2021). It has been estimated that 80 Gg of dis-
solved organic carbon and 27–43 Gg of nitrogen are exported
from the Greenland Ice Sheet (Bhatia et al., 2013; Wadham
et al., 2016). These nutrients are subjected to complex ac-
cumulation and transformation processes in the glacier snow
before being released into downstream ecosystems, and mi-
croorganisms are the drivers of these processes (Anesio and
Laybourn-Parry, 2012; Hell et al., 2013; Hodson et al., 2008).
Several studies on snowpacks revealed vital knowledge of
the nutrient and microbial community dynamics in the Arc-
tic (Hell et al., 2013; Larose et al., 2013a, 2013b; Maccario
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et al., 2014, 2019), Antarctic (Antony et al., 2016), and Alps
(Lazzaro et al., 2015). However, such knowledge is rarely
available for the Tibetan Plateau, constraining our under-
standing of the nutrient accumulation, transformation, and
release processes, which is urgently needed under the en-
hanced warming and glacier retreat on the Tibetan Plateau.

Autochthonous (microbial origin) and allochthonous (wet
and dry atmospheric depositions) are the major sources of
nutrients in supraglacial snow, and the contribution of al-
lochthonous sources was much greater in Arctic glaciers
(Larose et al., 2013a). Microorganisms are highly involved in
the transformation of both autochthonous and allochthonous
nutrients. Several studies investigated the dynamics of nu-
trient and bacterial changes in supraglacial snow during the
ablation period. Larose et al. (2013a) revealed that the form
of nitrogen varied as a function of time in supraglacial snow
during a 2-month field study in Svalbard, and fluctuations in
microbial community structure were reported with the rela-
tive abundance of fungi and bacteria (such as Bacteroidetes
and Proteobacteria) increasing and decreasing, respectively.
Seasonal shifts in snowpack bacterial communities were re-
ported in the mountain snow in Japan, where rapid micro-
bial growth was observed with increasing snow temperature
and meltwater content (Segawa et al., 2005). However, the
results of these studies are likely the consequence of sev-
eral precipitation events due to the long study period. Dur-
ing precipitation, a new snow layer forms above the previous
ones, which is responsible for the stratified snowpack struc-
ture. These different snow layers have distinct physical and
chemical characteristics, and their age also differs substan-
tially (Lazzaro et al., 2015). Thus, while the microbial pro-
cess across the aged snowpack can be complex, focusing on
supraglacial snow from a single snowfall event could pro-
vide unique insights into the bacterial and nutrient dynamics.
For instance, Hell et al. (2013) reported bacterial community
structure changes during the ablation period across 5 d in the
high Arctic, but the bacterial and nutrient dynamics during
the snow accumulation period remain elusive.

Surface and subsurface snow typically harbors distinct
bacterial community structures (Xiang et al., 2009; Møller
et al., 2013; Carey et al., 2016). For example, algae (chloro-
plasts), Proteobacteria, Bacteroidetes, and Cyanobacteria
were more abundant in surface snow, while Firmicutes and
Fusobacteria were more abundant in the deeper snow layer
(Møller et al., 2013). A previous study had proposed that
nitrogen availability could also be a driver of microbial
community structure and function in snow (Larose et al.,
2013b), in which the NO−3 and NH+4 concentrations drove
the community composition in Ny-Ålesund snowpack. A dis-
solved inorganic nitrogen addition experiment also showed a
clear community response with the bacterial abundance be-
ing elevated and genera richness declining in the final time
point compared to the initial time point, suggesting potential
specialization of heterotrophic communities (Holland et al.,
2020).

Differences in physicochemical conditions can also indi-
rectly influence bacterial community structure through im-
pacts on the types of biotic interactions (Friedman and Gore,
2017; Khan et al., 2018; Bergk Pinto et al., 2019). For ex-
ample, the addition of organic carbon shifted bacterial in-
teractions from collaboration to competition in Arctic snow
(Bergk Pinto et al., 2019), with complex organic carbon
degradation and mineralization requiring intensive microbial
collaborations (Krug et al., 2020), which are particularly im-
portant for oligotrophic environments, such as glaciers. Col-
laboration is also known to be essential to biological pro-
cesses such as ammonia oxidation and denitrification, in
which various organisms carry out different steps of these
processes (Henry et al., 2005; Madsen, 2011; Yuan et al.,
2021). These changes in interactions and network complexity
can favor or disadvantage certain bacterial groups, thereby
changing the bacterial community structure (i.e., biofilter-
ing).

Several studies have investigated the nutrient and bacterial
community changes in supraglacial snow across the winter
(Brooks et al., 1998; Liu et al., 2006), but the bacterial and
nutrient dynamics of freshly fallen snow have been largely
overlooked. These short temporal changes will influence the
following post-depositional processes after it is buried by
the next snowfall and will ultimately determine the physic-
ochemical properties of the stratified snow in the following
year. In the present study, we investigated the bacterial com-
munity and snow physiochemical property changes in the
surface and subsurface supraglacial snow during a 9 d pe-
riod after a single snowfall event at the Dunde Glacier on the
northeastern Tibetan Plateau. We aimed to answer the fol-
lowing key questions: (1) do the bacterial community and nu-
trients change at a short temporal scale; (2) do the bacterial
communities in different snow layers exhibit similar com-
munity temporal changes; and (3) are the temporal changes
in the surface and subsurface snow related to environmental
filtering, biotic interactions, or both?

2 Materials and methods

2.1 Site description and sample collection

Snow samples were collected from the ablation zone at the
Dunde Glacier (38◦06′ N, 96◦24′ E; 5325 m above the sea-
level) during October and November 2016 (Fig. S1 in the
Supplement). Dunde Glacier is located in the Qilian moun-
tain region on the northeastern Tibetan Plateau, and it is con-
tinuously monitored by the Institute of Tibetan Plateau Re-
search, Chinese Academic of Sciences. No supraglacial snow
was observed on the glacier surface on 10 October when we
first arrived at the camp. Snowfall started on 18 October and
ended on 23 October. Sampling was conducted over a 9 d pe-
riod after the snowfall stopped on a small, flat 5 m× 3 m area
to reduce the impact of sample heterogeneity due to spatial
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variations. Snow samples were collected on 24, 25, 26, 27,
and 29 October and 2 November (which are referred to as
day 1, 2, 3, 4, 6, and 9) until the next snowfall started. This
enabled us to monitor the succession of bacterial commu-
nities and the chemical changes in snow through time after
deposition. The ambient air temperature during the sampling
period averaged −8 ◦C (data available through the European
Centre for Medium-Range Weather Forecasts; Fig. S2), and
no snow melting was observed over the 9 d period.

On each day, three snow pits were randomly dug within
the 5 m× 3 m area, and any two snow pits were 30–50 cm
apart. Each snow pit was approximately 30 cm deep, and the
snow was further divided equally into the surface and sub-
surface layers (approximately 15 cm deep for each layer) to
get enough snow for DNA extraction, according to Carey et
al. (2016). For each snow pit, the top 1 cm in contact with the
air was removed using a sterile spoon to avoid contamination,
and then surface and subsurface snow were collected using a
sterilized Teflon shovel into 3 L sterile sampling bags sepa-
rately. Approximately 100 mL were used for physicochemi-
cal analyses, whereas the rest was used for DNA extraction.
A total of 36 samples were collected. Tyvek bodysuits and
latex gloves were worn during the entire sampling process to
minimize the potential for contamination, and gloves were
worn during all subsequent handling of samples. Samples
were kept frozen during the transportation to the laboratory
and stored at −20 ◦C until analysis.

2.2 Environmental characterization of snow

The 100 mL snow sample allocated for physicochemical
analysis was melted at room temperature for 3 h before be-
ing analyzed. For dissolved organic carbon (DOC) and major
ion measurements, 100 mL of snow meltwater was syringe-
filtered through a 0.45 µm polytetrafluoroethylene (PTFE)
membrane filter (Macherey–Nagel) into 20 mL glass bottles.
The membrane was pre-treated with 1 % HCl, deionized wa-
ter rinsed, and 450 ◦C combusted for > 3 h to remove any
potential carbon and nitrogen on the membrane, and the ini-
tial 10 mL of the filtrate was discarded before collecting the
sample for analysis to eliminate any residual compound on
the membrane. The DOC concentrations were measured with
a TOC-VCPH analyzer (Shimadzu Corp., Japan). Major ions
(NH+4 , NO−3 , Na+, K+, and SO2−

4 ) were analyzed using a
Thermo-Fisher ICS-900 (ion chromatography system) as de-
scribed previously (Rice et al., 2012). The precision and ac-
curacy of the TOC-VCPH analyzer were both< 3 %, and the
limit of detection was 0.05 mg L−1. The precision and ac-
curacy of the ICS-900 were < 5 % and 0.1 mg L−1, and the
limit of detection was 0.01 mg L−1 (Fig. S3).

2.3 DNA extraction

For assessing the bacterial community composition, snow
samples (3 L) were melted at 4 ◦C overnight and filtered onto
a sterile 0.22 µm polycarbonate membrane (Millipore, USA)
with a vacuum pump (Ntengwe, 2005). Bacterial commu-
nity DNA was extracted from the biomass retained on the
filters using a FastDNA® SPIN Kit for Soil (MP Biomedi-
cals, Santa Ana, CA, USA) according to the manufacturer’s
instructions. DNA extraction with no sample added was per-
formed in parallel and used as a negative control.

The raw DNA was checked by electrophoresis in 1 %
(w/v) agarose gel and purified from the gel using an Agarose
Gel DNA purification kit (Takara, Japan). The concentration
and purity of the DNA extracts were measured using a Nan-
oDrop 1000 spectrophotometer (Thermo Scientific, Wilm-
ington, DE, USA). The extracted DNA was stored at −80 ◦C
until amplification.

2.4 Bacterial 16S rRNA amplification and Illumina
MiSeq sequencing

In total, 36 DNA samples and one negative control
were subjected to amplicon sequencing. Universal primers
515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) (Caporaso et al.,
2012), with 12 nt unique barcodes, were used to amplify the
V4 hyper-variable regions of the bacterial 16S rRNA gene.
Polymerase chain reaction (PCR) was performed under the
following conditions: 94 ◦C for 5 min, 30 cycles of 94 ◦C for
30 s, 52 ◦C for 30 s, and 72 ◦C for 30 s, followed by a fi-
nal cycle of 10 min at 72 ◦C. Each PCR reaction contained
12.5 µL 2× Premix Taq DNA polymerase (Takara Biotech-
nology and Dalian Co. Ltd., China), 1 µL primer (0.4 µM fi-
nal concentration), and 8.5 µL nuclease-free water, as well as
2 µL DNA template (20 ng µL−1) or 2 µL sterile water for the
PCR negative controls. PCR products were confirmed using
agarose gel electrophoresis, and no PCR band was detected
in the PCR negative controls. To minimize PCR batch-to-
batch variations and maximize the quantity of PCR prod-
uct, triplicate PCR reactions were performed for each sam-
ple, and PCR products were pooled for purification using the
OMEGA Gel Extraction Kit (Omega Bio-Tek, Norcross, GA,
USA) following electrophoresis. PCR products from differ-
ent samples were pooled in equal molar amounts and then
used for 2× 250 bp paired-end sequencing on a MiSeq ma-
chine (Illumina, San Diego, CA).

2.5 Processing of Illumina sequencing data

MiSeq sequence data were processed using the QIIME 2
pipeline version 2018.8 (Bolyen et al., 2019), following the
recommended procedures (https://docs.qiime2.org/2022.2/,
last access: 4 March 2020) and using the plugin demux to
visualize interactive quality diagrams and check read quality.
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Plugin DADA2 (Callahan et al., 2016) was applied to remove
primers, truncate poor-quality bases, conduct de-replication,
identify chimeras, and merge paired-end reads. Commands
included in the feature table (McDonald et al., 2012) gener-
ated the summary statistics of sequences related to the sam-
ples. Further, we trained a naïve Bayes classifier with the
feature-classifier plugin using the 16S rRNA gene database
at 99 % similarity of the SILVA 132 QIIME release and based
on the 515F–806R primer pair as used for the PCR. Finally,
the taxa plugin was used to filter mitochondrial and chloro-
plast sequences, as well as to generate absolute read count
tables of all taxa for each sample. Data were analyzed at the
level of amplicon sequence variant (ASV), in which ASVs
are delineated by 100 % sequence identity (Callahan et al.,
2017).

After removing singletons, a total of 1 685 186 high-
quality reads were obtained, representing 9178 ASVs. Before
statistical analysis, the dataset was rarefied to 45 000 reads
per sample, which is the lowest read count among samples.
Rarefaction curves reached an asymptote before the subsam-
pling, which confirmed that this depth was sufficient to detect
the diversity present (Fig. S4).

2.6 Network analysis

The ASV–ASV associations within the surface and subsur-
face bacterial communities were explored using Molecular
Ecological Network Analysis Pipeline (http://ieg4.rccc.ou.
edu/mena, last access: 10 May 2021) (Deng et al., 2012).
The ASVs that occurred in at least 50 % of the samples
from the surface or subsurface group were selected to con-
struct the network. Spearman’s rank correlation coefficient
(ρ) was calculated to reflect the strength of association be-
tween species. The false discovery rates (q values) were cal-
culated from the observed p-value distribution. The resulting
correlation matrix was analyzed with the random matrix the-
ory (RMT)-based network approach to determine the correla-
tion threshold for network construction, and the same thresh-
old was used for both the surface and subsurface network,
so the topological properties of the surface and subsurface
networks are comparable.

2.7 Statistical analysis

Shannon–Wiener and Chao1 indices, which were used to es-
timate the species richness in the snow community, were cal-
culated using the diversity function in the R package vegan
(Oksanen et al., 2010). Functional profiling of bacterial taxa
was carried out using the package Tax4Fun2 in R (Wemheuer
et al., 2020). While the application of functional profiles
predicted from 16S rRNA gene-based community composi-
tion data is limited by the functional information available
in databases, we present these data as one possible interpre-
tation of the patterns detected and note that the Tax4Fun2
package performed well compared to older widely used pro-

grams (Wemheuer et al., 2020). The pairwise Wilcoxon rank-
sum test was used to compare the depth-horizon differences
in environmental variables, alpha diversity, and the relative
abundance of taxonomic groups at the phylum level. Lin-
ear regression modeling was implemented in R using the lm
function to estimate the trend of environmental characteris-
tics, alpha diversity, and microbial community composition
changes. Multiple linear regression analysis was performed
to determine the contribution and significance of the envi-
ronmental characteristics to the alpha diversity using the lm
function in R. We use the stepwise Akaike information crite-
rion (AIC) method for variable selection by the step function
in R. The best model was chosen based on the lowest AIC
value (Wagenmakers and Farrell, 2004). The bacterial com-
munity structure was subjected to principal coordinate anal-
ysis (PCoA) carried out using the pcoa function of the ape
package in R. The significance of dissimilarity of community
composition among samples was tested using permutational
multivariate analysis of variance (PERMANOVA) based on
Bray–Curtis distance metrics with the adonis function in the
R package vegan (Oksanen et al., 2010). Test results with
p < 0.05 were considered statistically significant. The Man-
tel test based on Spearman’s rank correlations was performed
using the bacterial dissimilarity and environmental dissimi-
larity matrices, calculated based on the Bray–Curtis distance
metrics and Euclidean distance metrics in the vegan R pack-
age, respectively. The normalized stochasticity ratio (NST)
based on the Bray–Curtis dissimilarity was calculated us-
ing the NST package in R to estimate the determinacy and
stochasticity of the bacterial assembly processes with high
accuracy and precision (Ning et al., 2019). The NST index
used 50 % as the boundary point between more determin-
istic (< 50 %) and more stochastic (> 50 %) assembly pro-
cesses. All environmental variables were normalized before
the calculation. All statistical analyses were executed in R
version 3.4.3 (R Core Team, 2017).

3 Results

3.1 Environmental characteristics of the snowpack

The concentrations of NO−3 and NH+4 ranged from 0.44 to
5.09 and 0.17 to 0.62 mg L−1, respectively (Fig. 1a, Table S1
in the Supplement), and they were both significantly higher
in the subsurface than in the surface snow (Wilcoxon rank-
sum test: all p < 0.001; Fig. 1a). K+ and SO2−

4 ions in the
subsurface snow were also significantly higher (0.29± 0.13
and 6.09± 3.18 mg L−1, respectively) than those in the sur-
face snow (0.12± 0.08 and 3.71± 1.64 mg L−1; Wilcoxon
rank-sum test: p < 0.001 and p = 0.015, respectively). The
concentrations of DOC ranged from 0.46 to 5.89 mg L−1

and exhibited no significant difference between the sur-
face and subsurface snow (Wilcoxon rank-sum test: p =
0.310). The concentrations of Na+ ions ranged from 0.35
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Figure 1. The pattern of environmental factor changes in the surface and subsurface snow layers. (a) Environmental factor comparisons
in the surface and subsurface snow layers. Each dot represents an individual sample. Significantly higher concentrations of NO−3 , NH+4 ,

K+, and SO2−
4 were observed in the subsurface layer based on Wilcoxon rank-sum test. (b) Temporal changes in environmental factors in

the surface and subsurface layers. The solid and dashed lines indicate significant and non-significant temporal changes, respectively. The
concentration of NO−3 and NH+4 in the surface layer significantly increased with time, while the concentration of NO−3 , and NH+4 in the
subsurface layer, significantly decreased with time. Significance is based on linear regression. Grey shading indicates the 95 % confidence
interval of regression.

to 7.34 mg L−1, and there was no significant difference be-
tween the surface and subsurface snow (Wilcoxon rank-sum
test: p = 0.079). The concentration of NO−3 and NH+4 ions
in the surface snow exhibited a weak but significantly pos-
itive association with time (F1,16 = 5.97, p = 0.027, and
R2
= 0.27 and F1,16 = 8.58, p = 0.010, and R2

= 0.35, re-
spectively; Fig. 1b). On the other hand, stronger negative as-
sociations were found between inorganic nitrogen and time
in the subsurface snow (F1,16 = 40.66, p < 0.001, and R2

=

0.72 and F1,16 = 50.74, p < 0.001, and R2
= 0.76, respec-

tively). Other environmental parameters exhibited no signif-
icant changes with time.

3.2 Diversity and composition of bacterial community
from the snowpack

The surface and subsurface snow were both domi-
nated by Alphaproteobacteria, Actinobacteria, Cyanobacte-
ria, Gammaproteobacteria, Bacteroidetes, Firmicutes, Chlo-
roflexi, Gemmatimonadetes, Planctomycetes, Acidobacteria,
Deltaproteobacteria, and Deinococcus-Thermus (Fig. 2). The
relative abundance of most of these phyla was not signif-
icantly different in the two snow layers except the Gem-
matimonadetes, Planctomycetes, and Acidobacteria, which
were significantly more abundant in the surface layer than
in the subsurface layer (all p < 0.05, Wilcoxon rank-sum
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Figure 2. Taxonomic composition of bacterial community in snow. Only dominant phyla are presented (relative abundance > 1 %). The
snow community are dominated by Alphaproteobacteria, Actinobacteria, Cyanobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes,
Chloroflexi, Gemmatimonadetes, Planctomycetes, Acidobacteria, Deltaproteobacteria, and Deinococcus-Thermus.

test; Fig. S5). In the surface layer, weak but significant neg-
ative trends were observed between the relative abundances
and ASV number of Alphaproteobacteria, Gammaproteobac-
teria, and Firmicutes and time (F1,16 = 6.97, p = 0.018,
and R2

= 0.30; F1,16 = 23.8, p < 0.001, and R2
= 0.60;

and F1,16 = 22.28, p < 0.001, and R2
= 0.58 in relative

abundance; F1,16 = 7.56, p = 0.014, andR2
= 0.32; F1,16 =

27.12, p < 0.001, and R2
= 0.63; and F1,16 = 16.68, p =

0.001, and R2
= 0.51 in ASV number, respectively), while

weak positive correlations were observed between the rel-
ative abundances and ASV number of Cyanobacteria and
Deinococcus-Thermus and time (F1,16 = 6.94, p = 0.018,
and R2

= 0.30 and F1,16 = 13.10, p = 0.002, and R2
= 0.45

in relative abundance; F1,16 = 3.42, p = 0.083, and R2
=

0.18 and F1,16 = 4.07, p = 0.061, and R2
= 0.20 in ASV

number, respectively; Figs. S6 and S7 in the Supplement).
Relative to the surface snow, the subsurface layer had a
stronger negative correlation between the relative abundance
and ASV number of Alphaproteobacteria and Firmicutes and
time (F1,16 = 15.17, p = 0.001, and R2

= 0.49 and F1,16 =

15.43, p = 0.001, and R2
= 0.49 in relative abundance;

F1,16 = 18.98, p = 0.083, and R2
= 0.54 and F1,16 = 15.17,

p = 0.001, and R2
= 0.53 in ASV number, respectively;

Figs. S6 and S7), while weak correlations were observed be-
tween the relative abundance and ASV number of Cyanobac-
teria and Chloroflexi and time (F1,16 = 5.62, p = 0.031, and
R2
= 0.26 and F1,16 = 12.81, p = 0.003, and R2

= 0.44 in
relative abundance; F1,16 = 5.34, p = 0.034, and R2

= 0.25

and F1,16 = 14.49, p = 0.002, and R2
= 0.47 in ASV num-

ber, respectively).
The bacterial Shannon and Chao1 indices in the surface

snow were 5.61±0.39 and 744±199, respectively, and were
not significantly different from those in the subsurface layer
(5.52±0.68 and 705±269, respectively) (p = 0.81 and 0.57,
respectively) (Fig. 3a). In the surface snow, the Shannon
and Chao1 indices were similar across the 9 d (F1,16 = 0.37,
p = 0.553, and R2

= 0.02 and F1,16 = 0.01, p = 0.939, and
R2
= 0.001, respectively; Fig. 3b). Besides, weak positive

associations of Shannon and Chao1 indices with the DOC
and sodium ions were detected (F1,16 = 4.90, p = 0.042, and
R2
= 0.23 and F1,16 = 4.91, p = 0.042, and R2

= 0.24, re-
spectively; Fig. 4a and b). In contrast, although weak, sig-
nificant negative correlations were observed in both Shannon
and Chao1 indices with time in the subsurface snow (F1,16 =

12.33, p = 0.003, and R2
= 0.44 and F1,16 = 8.73, p =

0.009, and R2
= 0.35, respectively). Weak but significant

positive associations of Shannon and Chao1 indices with the
concentrations of NO−3 and NH+4 were detected (Shannon di-
versity: F1,16 = 9.13, p = 0.008, and R2

= 0.36 and F1,16 =

5.17, p = 0.037, and R2
= 0.24, respectively; Chao1 index:

F1,16 = 8.60, p = 0.009, and R2
= 0.36 and F1,16 = 5.32,

p = 0.035, and R2
= 0.25, respectively; Fig. 4c and d).

This is consistent with the multiple linear regression results,
which consistently identified the concentrations of NO−3 and
NH+4 as the significant determinants of bacterial Shannon di-
versity in the subsurface layer (Table S2).
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Figure 3. Bacterial alpha diversity in snow layers. (a) Bacterial alpha diversity comparison between the surface and subsurface layers. Each
dot represents an individual sample. For both Shannon and Chao1 indices, no significant difference was observed between the surface and
subsurface snow layers. The comparison is based on Wilcoxon rank-sum test. (b) Temporal changes in the alpha diversity indices in the
surface and subsurface snow layers. For the surface layer, no significant correlation was observed, while both Shannon and Chao1 showed
a significantly reduction with time in the subsurface layer. Significance is based on linear regression. Grey shading indicates the 95 %
confidence interval of regression.

3.3 Bacterial community structure and functional
genes

The bacterial community structure at the ASV level signif-
icantly differed in the surface and subsurface snow (PER-
MANOVA, F = 2.78, p < 0.001; Fig. 5a), as well as among
the different sampling times (PERMANOVA, F = 3.31 and
p < 0.001 and F = 2.17 and p < 0.001, respectively). Ad-
ditionally, a significant interactive effect was detected be-
tween the depth and time (PERMANOVA, F = 2.68, p <
0.001), indicating that the depth influenced the temporal pat-
tern of bacterial community structure changes. Specifically,
only the second principal coordinate (PCoA2) values of the
surface snow significantly varied with time (F1,16 = 141.8,
p < 0.001, R2

= 0.89; Fig. 5b), while the PCoA1 values of
the surface snow did not (F1,16 = 0.04, p = 0.840, R2

=

0.003; Fig. 5b). Furthermore, PCoA1 and PCoA2 of the sur-
face snow exhibited no significant correlation with the mea-
sured environmental factors (all p > 0.05; Figs. S8 and S9).
In comparison, both PCoA1 and PCoA2 values of the sub-
surface, albeit weakly, co-varied with time (F1,16 = 6.35,
p = 0.023, and R2

= 0.28 and F1,16 = 8.38, p = 0.011, and
R2
= 0.34, respectively; Fig. 5b), while the PCoA2 also

demonstrated a significant association with nitrate, ammo-
nium, potassium, sulfate, and DOC concentrations (all p <
0.05; Fig. S9).

Table 1. Results of Mantel test showing the relationships between
bacterial community composition and environmental factors in the
surface and subsurface snow. Significant correlations are in bold.

Environmental factor Surface Subsurface

R p R p

NO−3 0.09 0.21 0.38 0.005
NH+4 0.01 0.36 0.25 0.01
DOC 0.08 0.22 0.02 0.49
Na+ 0.02 0.40 0.16 0.14
SO2−

4 0.00 0.44 0.25 0.09
K+ 0.00 0.56 0.11 0.24

Normalized stochasticity ratio (NST) was used to exam-
ine the relative contributions of stochasticity and determin-
ism in shaping bacterial communities. The average NST
values were 74 % and 46 % in the surface and subsurface
snow layers, and the contribution of stochasticity was sig-
nificantly higher in the surface than in the subsurface layers
(p < 0.001; Fig. S10).

Mantel tests were performed to evaluate the effects of
environmental factors on bacterial community structure for
each layer. No significant correlation was identified between
the measured environmental factors and the bacterial com-
munity structure in the surface snow. However, weak posi-
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Figure 4. The influence of environmental factors on bacterial diversity. Correlations of Shannon (a, c) and Chao1 (b, d) diversity indices
with environmental factors in the surface and subsurface layers. Each dot represents an individual sample. The solid and dashed lines indicate
significant and nonsignificant changes, respectively. Significance is based on linear regression. Grey shading indicates the 95 % confidence
interval of regression.

tive associations were apparent in the subsurface snow with
the concentrations of NO−3 and NH+4 (p = 0.005 and 0.01,
respectively) (Table 1). The relative abundance of nitrogen-
cycling-associated functional genes was predicted in the sur-
face and subsurface snow. The relative abundance of the
nitrogen-fixation marker gene (nifH) positively associated
with time in the surface layer, while no clear pattern was
observed in the subsurface layer (F1,16 = 7.76, p = 0.013,
and R2

= 0.33 and F1,16 = 0.57, p = 0.461, and R2
= 0.01,

respectively; Fig. S11). The relative abundance of the narG
gene, which is involved in the nitrate reduction and deni-
trification process, exhibited negative and positive associa-
tions with time in the surface and subsurface, respectively
(F1,16 = 4.69, p = 0.046, and R2

= 0.23 and F1,16 = 11.24,
p = 0.004, and R2

= 0.41, respectively). The nirK gene,
which is also involved in the denitrification process, de-
creased with time in the surface layer, while no significant

change was detected in the subsurface layer (F1,16 = 10.39,
p = 0.005, and R2

= 0.39 and F1,16 = 1.98, p = 0.179, and
R2
= 0.05, respectively).

3.4 Interspecies interactions at the surface and
subsurface layers

Co-occurrence networks were constructed for the surface and
subsurface bacterial communities to infer the biotic inter-
actions among species (Fig. 6). The surface network com-
prised a higher number of nodes (each indicating one ASV,
node number = 197) but a lower number of edges (each in-
dicating a significant association between two ASVs; edge
number = 436) than the subsurface network (node number
= 140 and edge number = 523, Table 2). The network in
the subsurface snow, relative to surface snow, demonstrated
a higher number of edges per node (3.73 and 2.21, respec-
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Figure 5. Principal coordinate analysis (PCoA) of microbial communities in the surface and subsurface snow. (a) Bray–Curtis distance-based
PCoA ordination plot. The microbial community structures of the surface and subsurface snows are significantly different (PERMANOVA,
p < 0.001). (b) Pairwise regression analysis between PCoA scores and sampling time. The solid and dashed lines indicate significant and
insignificant changes (based on linear regression), respectively. The PCoA1 scores for the bacterial community in the surface layer exhibit no
significant correlation with time, while the PCoA2 scores significantly correlated with time. The PCoA1 and PCoA2 are both significantly
correlated with time in the subsurface layer. Grey shading indicates the 95 % confidence interval of regression.

Figure 6. Bacterial co-occurrence networks for the surface and subsurface layer communities. Each node represents a bacterial amplicon
sequence variant (ASV). The solid red lines represent positive correlations, and the solid blue lines represent negative correlations. Nodes are
colored by taxonomy at the phylum level. The subsurface community networks are more complex with a higher positive-to-total correlation
ratio.
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Table 2. Topological properties of the empirical networks for the
surface and subsurface bacterial communities.

Surface Subsurface

No. of nodes 197 140
No. of edges 436 523
Number of edges per node 2.21 3.73
Positive links 363 500
Negative links 73 22
Ratio of positive-to-total interactions 83 % 95 %
Modularity 0.65 0.40
No. of modules 23 12
Average connectivity 4.41 7.36
Average clustering coefficient (avgCC) 0.31 0.39
Average path distance (GD) 5.51 4.72
Average degree (avgK) 4.43 7.57
Graph density 0.02 0.06
Transitivity (trans) 0.45 0.49
Connectedness (con) 0.71 0.86

tively), higher average connectivity (avgK; 7.57 and 4.43,
respectively), and lower average path distance (GD; 4.72
and 5.51, respectively), which indicate a substantially more
complex network topology. Both networks were dominated
by positive (co-presence) relationships, and the subsurface
network exhibited a higher positive-to-total interaction ratio
(95 %) than the surface network (83 %).

Modularity, average clustering coefficient (avgCC), and
graph density of the surface and subsurface bacterial com-
munity networks were all higher than those of random net-
works (Table S3), indicating that snowpack bacterial net-
works showed non-random assemblage and exhibited mod-
ular structures. The subsurface networks showed higher val-
ues of avgCC (0.39), transitivity (0.49), and connectedness
(0.86) than the surface bacterial community network (0.31,
0.45, and 0.71, respectively), indicating a greater degree of
connectivity (Table 2).

4 Discussion

4.1 Rapid shifts of bacterial community structure
across a short temporal scale

The surface and subsurface snow was dominated by
Alphaproteobacteria, Actinobacteria, Cyanobacteria,
Gammaproteobacteria, and Bacteroidetes (Fig. 2). Despite
differences in sampling season, the bacterial taxa detected
were consistent with previous studies on snow in the Arctic
and Antarctic (Larose et al., 2010; Carpenter et al., 2000;
Amato et al., 2007; Lopatina et al., 2013; Møller et al.,
2013). Bacterial richness and diversity exhibited little
change throughout the 9 d in the surface snow layer, while
they exhibited a reduction trend in the subsurface snow
layer (Fig. 3b). This indicates that the microbiome in the

subsurface snow may be subjected to greater environmental
filtering than those in the surface snow (Xiang et al., 2009).
Among all environmental factors measured, nitrate and
ammonium were the only measured environmental factors
that changed across the 9 d. The nitrate and ammonium
concentrations in the subsurface snow both exhibited an R2

value of greater than 0.7 and reduced with time, therefore
indicating a consumption process (Fig. 1b). Despite the
R2 value being weak, both nitrate and ammonium concen-
trations co-varied with bacteria richness and diversity in
subsurface snow, which was not observed in the surface
snow (Fig. 4). Furthermore, multiple linear regression
analyses also identified nitrate and ammonium to be the
dominant driver of bacterial Shannon diversity in the
subsurface snow (Table S2). Thus, these results suggest
that nitrate and ammonium could play a more important
role in influencing bacterial diversity in subsurface snow
than that in surface snow. Nitrogen is an essential nutrient
for microbial growth, and it plays an important role in
controlling microbial diversity and ecosystem productivity
(Vitousek et al., 2002; Xia et al., 2008; Sun et al., 2014).
The positive associations between nitrogen concentration
and alpha diversity indices have been typically inferred as
nitrogen limitation (Telling et al., 2011). Thus, these results
hint that nitrogen limitation could occur in subsurface snow
and influence bacteria diversity. In comparison, the surface
layer is unlikely to be subjected to nitrogen limitation, and
the nitrogen in the surface snow slightly increased. This
is consistent with previous studies on the Greenland ice
sheet, where nitrate additions to surface ice did not alter
the cryoconite community cell abundance and 16S rRNA
gene-based community composition (Cameron et al., 2017).

The bacterial community structure also exhibited tempo-
ral changes in the subsurface layer. Furthermore, associa-
tions between nitrogen and the microbial community struc-
ture were observed to a certain degree (Table 1 and Fig. 5),
again indicating some level of environmental filtering (Kim
et al., 2016). This is consistent with the finding in the Arctic
that nitrogen influences snow bacterial community composi-
tion via regulating algae metabolism (Lutz et al., 2017). This
is also consistent with the higher contribution of determinis-
tic processes in the subsurface layer than in the surface layer
(Fig. S10). Deterministic processes could be due to environ-
mental filtering or biotic interactions, whereas stochastic pro-
cesses include dispersal limitation, community drift, and spe-
ciation (Stegen et al., 2012). The surface layer could receive
nitrogen input through aeolian deposition processes (Björk-
man et al., 2014), whereas the subsurface snow could only
receive limited external microbial and nutrient input through
supraglacial meltwater. The latter could be particularly lim-
ited during the glacier deposition period when the glacier sur-
face temperature is below 0 ◦C (Fig. S2).

Our results suggest that both bacteria and snow physio-
chemical properties experience changes across the 9 d during
the snow deposition period for the Tibetan glacier investi-
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gated here, and those changes were stronger in the subsur-
face layer than in the surface layer. Traditionally, supraglacial
snow is recognized as a cold oligotrophic environment with
a very slow metabolism rate (Quesada and Vincent, 2012;
Marshall and Chalmers, 1997), but increasing evidence has
suggested that bacterial community changes can occur on
a short temporal scale. For example, Hell et al. (2013) re-
ported changes in the dominant bacterial phylum Proteobac-
teria across 5 d, and active bacterial metabolism has been ob-
served in the Greenland Ice Sheet supraglacial ice (Nicholes
et al., 2019). In addition, active bacteria affiliated with Pro-
teobacteria have been identified in the Antarctic (Lopatina et
al., 2013) and Arctic (Holland et al., 2020) snow at tempera-
tures below 0 ◦C, therefore supporting the present study that
bacterial community changes in 9 d could be possible. This
indicates that supraglacial snow can harbor an active bacte-
rial community, which in turn can have an impact on nutrient
transformation.

4.2 Distinct nitrogen-transformation processes in
surface and subsurface snow

Both ammonium and nitrate concentrations showed a weak
increasing trend with time in the surface snow (Fig. 1). The
weak increase in ammonium could be explained by biogenic
emissions due to local plant and animal sources (Filippa et
al., 2010), while the increase in nitrate has been largely at-
tributed to atmospheric deposition (Björkman et al., 2014).
Nitrogen deposition occurs at a rate of 282 kg N km−2 yr−1

in the region of our investigation (Lü and Tian, 2007), which
equals 0.19 mg N for the 0.5 m× 0.5 m area sampled each
day (assuming nitrogen deposition occurred evenly across
the year). Another potential source of nitrogen input could
be the nitrogen fixation process (Telling et al., 2011). Bac-
teria are the only microorganisms that are capable of fix-
ing atmospheric nitrogen (Bernhard, 2010). Potential nitro-
gen input from microbial processes is supported by the in-
crease in the nitrogen-fixing Cyanobacteria (Fig. S6) and
nifH gene (Fig. S11). Cyanobacteria are known as free-living
phototrophs capable of nitrogen fixation, especially in ex-
treme environments (Chrismas et al., 2018; Makhalanyane et
al., 2015; Levy-Booth et al., 2014). For example, Cyanobac-
teria were found to be the main group of potential nitrogen
fixers determined by quantitative PCR with three sets of spe-
cific nifH primers on the surface of the Greenland Ice Sheet
(Telling et al., 2012). The nitrogen fixation rate was not quan-
tified in the present study, but the present study suggests that
microbial nitrogen fixation could be an overlooked source of
nitrogen in Tibetan glacier snow. Further transcriptomic and
nitrogen-isotope analyses may provide additional evidence
on the microbial activity in nitrogen fixation.

In contrast with the surface layer, nitrogen concentrations
(nitrate and ammonium) significantly decreased in the sub-
surface snow with time (Fig. 1). A possible explanation for
this might be the microbial utilization and photochemical

degradation of nitrogen compounds (Björkman et al., 2014).
The microbial processes, i.e. nitrate reduction and denitri-
fication process, are evidenced by the increase in the narG
gene (Fig. S11) (Telling et al., 2011; Zhang et al., 2020). Al-
ternatively, microorganisms may carry out assimilatory ni-
trate reduction, which is used to incorporate nitrogen into
biomolecules (Larose et al., 2013a; Richardson and Wat-
mough, 1999). The assimilatory process is performed by a
range of microorganisms including bacteria, algae, yeasts,
and fungi (Huth and Liebs, 1988). Thus, further studies on
eukaryotes, including algae, may provide a full understand-
ing of the nitrogen consumption mechanisms in subsurface
snow. The denitrification process converts nitrate to N2 and
generates nitrite, nitric oxide (NO), and nitrous oxide (N2O)
intermediates (Kuypers et al., 2018). A previous study de-
tected microbial-specific phylogenetic probes that targeted
genera whose members are able to carry out denitrification
reactions such as Roseomonas in a snowpack of Spitsbergen
Island of Svalbard, Norway (Larose et al., 2013a). Amoroso
et al. (2010) also proposed that denitrification can explain the
microbial isotopic signature observed in winter snow at Ny-
Ålesund. Although the oxygen level in the subsurface snow
was not measured, the occurrence of anaerobic denitrifica-
tion reactions in subsurface snow has been reported in Arc-
tic snowpacks (Larose et al., 2013a). Lastly, photochemical
degradation of nitrogen compounds is the most well-known
nitrogen degradation pathway, and the release of both NO
and NOx by NO−3 photolysis on natural snow has been re-
ported in European high Arctic snowpack (Amoroso et al.,
2010; Beine et al., 2003). In a snow reactive nitrogen oxide
(NOy) survey in Greenland, NOy flux was reported to exit
snow in 52 out of 112 measurements (Dibb et al., 1998). Fur-
ther metatranscriptomic analyses targeting the genes associ-
ated with nitrogen cycling are required to confirm the dis-
tinct nitrogen transformation processes between the surface
and subsurface layers.

4.3 Subsurface snow exhibits greater complexity in
biotic interactions

Biotic interactions can explain a substantial proportion of the
community structure variations (Hacquard et al., 2015; Dang
and Lovell, 2016). Our results indicated that the subsurface
community network was more complex as evidenced by the
higher average connectivity and a shorter path length (GD)
compared to the surface community network (Table 2). This
is likely due to the enhanced environmental filtering, as has
been observed in other systems subjected to environmental
stresses (Ji et al., 2019; Wang et al., 2018). A higher ratio of
positive-to-total interactions, but lower modularity, was iden-
tified in the subsurface snow network (Table 2). In general,
higher positive interactions indicate increased microbial co-
operation (Ju et al., 2014; Scheffer et al., 2012), whereas a
reduction in modularity indicates microbial niche homoge-
nization (Ji et al., 2019). The enhanced biotic associations
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and cooperation in the subsurface layer may be attributed to
the occurrence of denitrification processes, as denitrification
is a multi-step process that involves multiple bacterial co-
horts to complete the process (Henry et al., 2005; Madsen,
2011; Yuan et al., 2021). The enhanced collaboration and de-
terministic succession were previously reported in the bacte-
rial community associated with the anoxic decomposition of
microcystis biomass (Wu et al., 2020), while cross-feeding
was shown to enhance positive interactions among the dif-
ferent members of the community (Borchert et al., 2021).

The path lengths of the subsurface network were lower
than that of the surface layer (Table 2). The shorter path
length has been proposed to be associated with a higher
transfer efficiency of information and materials across the
microorganisms in the network (Du et al., 2020) which are
required for complex biological processes that require ex-
tensive bacterial collaboration, such as denitrification (Yuan
et al., 2021). Thus, the short path length is consistent with
the dominance of denitrification processes in the subsurface
layer. Previous studies have proposed microbial interactions
as biotic drivers that impact microbial diversity (Calcagno et
al., 2017; Hunt and Ward, 2015). Thus, those microorgan-
isms which are not adapted to the subsurface environment
would be excluded from the environment, which provides an
alternative explanation for the reduction in diversity (Schef-
fer et al., 2012; Ziegler et al., 2018; Bergk Pinto et al., 2019).

5 Conclusion

Our results showed the dynamics of nitrogen and the bac-
terial community in supraglacial snow over 9 d. Inorganic
nitrogen was unchanged or slightly increased in the surface
snow, while it decreased in subsurface snow. Due to atmo-
spheric nitrogen deposition and potential bacterial nitrogen
fixation activities, nitrogen limitation is unlikely to occur in
the surface snow. In contrast, nitrogen consumption was in-
ferred in the subsurface snow. Nitrogen is traditionally recog-
nized to be released from the supraglacial environment due
to photolysis, whereas this study hints that nitrogen assimi-
lation and denitrification could be alternative routes. There-
fore, the increased nitrogen deposition due to anthropogenic
activities may enhance the nitrogen consumption in the sub-
surface snow, which reduces the impact of increased nitrogen
discharge on downstream glacier-fed rivers. In summary, our
results provide a new perspective on the nutrients and bacte-
rial community dynamics in supraglacial snow of the Tibetan
Plateau. Further studies based on metagenome and metatran-
scriptome can enhance the understanding of bacterial func-
tions.
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