Articles | Volume 16, issue 3
https://doi.org/10.5194/tc-16-1057-2022
https://doi.org/10.5194/tc-16-1057-2022
Research article
 | Highlight paper
 | 
28 Mar 2022
Research article | Highlight paper |  | 28 Mar 2022

Strong increase in thawing of subsea permafrost in the 22nd century caused by anthropogenic climate change

Stiig Wilkenskjeld, Frederieke Miesner, Paul P. Overduin, Matteo Puglini, and Victor Brovkin

Related authors

Representation of soil hydrology in permafrost regions may explain large part of inter-model spread in simulated Arctic and subarctic climate
Philipp de Vrese, Goran Georgievski, Jesus Fidel Gonzalez Rouco, Dirk Notz, Tobias Stacke, Norman Julius Steinert, Stiig Wilkenskjeld, and Victor Brovkin
The Cryosphere, 17, 2095–2118, https://doi.org/10.5194/tc-17-2095-2023,https://doi.org/10.5194/tc-17-2095-2023, 2023
Short summary
Effects of land use and anthropogenic aerosol emissions in the Roman Empire
Anina Gilgen, Stiig Wilkenskjeld, Jed O. Kaplan, Thomas Kühn, and Ulrike Lohmann
Clim. Past, 15, 1885–1911, https://doi.org/10.5194/cp-15-1885-2019,https://doi.org/10.5194/cp-15-1885-2019, 2019
Short summary
Fire emission heights in the climate system – Part 1: Global plume height patterns simulated by ECHAM6-HAM2
A. Veira, S. Kloster, S. Wilkenskjeld, and S. Remy
Atmos. Chem. Phys., 15, 7155–7171, https://doi.org/10.5194/acp-15-7155-2015,https://doi.org/10.5194/acp-15-7155-2015, 2015
Short summary
Controls on fire activity over the Holocene
S. Kloster, T. Brücher, V. Brovkin, and S. Wilkenskjeld
Clim. Past, 11, 781–788, https://doi.org/10.5194/cp-11-781-2015,https://doi.org/10.5194/cp-11-781-2015, 2015
Comparing the influence of net and gross anthropogenic land-use and land-cover changes on the carbon cycle in the MPI-ESM
S. Wilkenskjeld, S. Kloster, J. Pongratz, T. Raddatz, and C. H. Reick
Biogeosciences, 11, 4817–4828, https://doi.org/10.5194/bg-11-4817-2014,https://doi.org/10.5194/bg-11-4817-2014, 2014

Related subject area

Discipline: Frozen ground | Subject: Numerical Modelling
Coupled thermo–geophysical inversion for permafrost monitoring
Soňa Tomaškovičová and Thomas Ingeman-Nielsen
The Cryosphere, 18, 321–340, https://doi.org/10.5194/tc-18-321-2024,https://doi.org/10.5194/tc-18-321-2024, 2024
Short summary
Simulating ice segregation and thaw consolidation in permafrost environments with the CryoGrid community model
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
The Cryosphere, 17, 4179–4206, https://doi.org/10.5194/tc-17-4179-2023,https://doi.org/10.5194/tc-17-4179-2023, 2023
Short summary
Investigating the thermal state of permafrost with Bayesian inverse modeling of heat transfer
Brian Groenke, Moritz Langer, Jan Nitzbon, Sebastian Westermann, Guillermo Gallego, and Julia Boike
The Cryosphere, 17, 3505–3533, https://doi.org/10.5194/tc-17-3505-2023,https://doi.org/10.5194/tc-17-3505-2023, 2023
Short summary
Representation of soil hydrology in permafrost regions may explain large part of inter-model spread in simulated Arctic and subarctic climate
Philipp de Vrese, Goran Georgievski, Jesus Fidel Gonzalez Rouco, Dirk Notz, Tobias Stacke, Norman Julius Steinert, Stiig Wilkenskjeld, and Victor Brovkin
The Cryosphere, 17, 2095–2118, https://doi.org/10.5194/tc-17-2095-2023,https://doi.org/10.5194/tc-17-2095-2023, 2023
Short summary
Simulating the current and future northern limit of permafrost on the Qinghai–Tibet Plateau
Jianting Zhao, Lin Zhao, Zhe Sun, Fujun Niu, Guojie Hu, Defu Zou, Guangyue Liu, Erji Du, Chong Wang, Lingxiao Wang, Yongping Qiao, Jianzong Shi, Yuxin Zhang, Junqiang Gao, Yuanwei Wang, Yan Li, Wenjun Yu, Huayun Zhou, Zanpin Xing, Minxuan Xiao, Luhui Yin, and Shengfeng Wang
The Cryosphere, 16, 4823–4846, https://doi.org/10.5194/tc-16-4823-2022,https://doi.org/10.5194/tc-16-4823-2022, 2022
Short summary

Cited articles

Angelopoulos, M., Westermann, S., Overduin, P., Faguet, A., Olenchenko, V., Grosse, G., and Grigoriev, M. N.: Heat and Salt Flow in Subsea Permafrost Modeled with CryoGRID2, J. Geophys. Res.-Earth, 124, 920–937, https://doi.org/10.1029/2018JF004823, 2019. a, b, c, d
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. a
Brovkin, V., Ganopolski, A., Archer, D., and Munhoven, G.: Glacial CO2 cycle as a succession of key physical and biogeochemical processes, Clim. Past, 8, 251–264, https://doi.org/10.5194/cp-8-251-2012, 2012. a
Brovkin, V., Boysen, L., Arora, V. K., Boisier, J. P., Cadule, P., Chini, L., Claussen, M., Friedlingstein, P., Gayler, V., van den Hurk, B. J. J. M., Hurtt, G. C., Jones, C. D., Kato, E., de Noblet-Ducoudre, N., Pacifico, F., Pongratz, J., and Weiss, M.: Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century, J. Climate, 26, 6859–6881, https://doi.org/10.1175/JCLI-D-12-00623.1, 2013. a
Davies, J. H.: Global map of solid Earth surface heat flow, Geochem. Geophy. Geosy., 14, 4608–4622, https://doi.org/10.1002/ggge.20271, 2013. a
Download
Short summary
Thawing permafrost releases carbon to the atmosphere, enhancing global warming. Part of the permafrost soils have been flooded by rising sea levels since the last ice age, becoming subsea permafrost (SSPF). The SSPF is less studied than the part on land. In this study we use a global model to obtain rates of thawing of SSPF under different future climate scenarios until the year 3000. After the year 2100 the scenarios strongly diverge, closely connected to the eventual disappearance of sea ice.