Articles | Volume 16, issue 3
The Cryosphere, 16, 1057–1069, 2022
https://doi.org/10.5194/tc-16-1057-2022
The Cryosphere, 16, 1057–1069, 2022
https://doi.org/10.5194/tc-16-1057-2022
Research article
 | Highlight paper
28 Mar 2022
Research article  | Highlight paper | 28 Mar 2022

Strong increase in thawing of subsea permafrost in the 22nd century caused by anthropogenic climate change

Stiig Wilkenskjeld et al.

Related authors

Effects of land use and anthropogenic aerosol emissions in the Roman Empire
Anina Gilgen, Stiig Wilkenskjeld, Jed O. Kaplan, Thomas Kühn, and Ulrike Lohmann
Clim. Past, 15, 1885–1911, https://doi.org/10.5194/cp-15-1885-2019,https://doi.org/10.5194/cp-15-1885-2019, 2019
Short summary
Fire emission heights in the climate system – Part 1: Global plume height patterns simulated by ECHAM6-HAM2
A. Veira, S. Kloster, S. Wilkenskjeld, and S. Remy
Atmos. Chem. Phys., 15, 7155–7171, https://doi.org/10.5194/acp-15-7155-2015,https://doi.org/10.5194/acp-15-7155-2015, 2015
Short summary
Controls on fire activity over the Holocene
S. Kloster, T. Brücher, V. Brovkin, and S. Wilkenskjeld
Clim. Past, 11, 781–788, https://doi.org/10.5194/cp-11-781-2015,https://doi.org/10.5194/cp-11-781-2015, 2015
Comparing the influence of net and gross anthropogenic land-use and land-cover changes on the carbon cycle in the MPI-ESM
S. Wilkenskjeld, S. Kloster, J. Pongratz, T. Raddatz, and C. H. Reick
Biogeosciences, 11, 4817–4828, https://doi.org/10.5194/bg-11-4817-2014,https://doi.org/10.5194/bg-11-4817-2014, 2014

Related subject area

Discipline: Frozen ground | Subject: Numerical Modelling
Lateral thermokarst patterns in permafrost peat plateaus in northern Norway
Léo C. P. Martin, Jan Nitzbon, Johanna Scheer, Kjetil S. Aas, Trond Eiken, Moritz Langer, Simon Filhol, Bernd Etzelmüller, and Sebastian Westermann
The Cryosphere, 15, 3423–3442, https://doi.org/10.5194/tc-15-3423-2021,https://doi.org/10.5194/tc-15-3423-2021, 2021
Short summary
A method for solving heat transfer with phase change in ice or soil that allows for large time steps while guaranteeing energy conservation
Niccolò Tubini, Stephan Gruber, and Riccardo Rigon
The Cryosphere, 15, 2541–2568, https://doi.org/10.5194/tc-15-2541-2021,https://doi.org/10.5194/tc-15-2541-2021, 2021
Short summary
Effects of multi-scale heterogeneity on the simulated evolution of ice-rich permafrost lowlands under a warming climate
Jan Nitzbon, Moritz Langer, Léo C. P. Martin, Sebastian Westermann, Thomas Schneider von Deimling, and Julia Boike
The Cryosphere, 15, 1399–1422, https://doi.org/10.5194/tc-15-1399-2021,https://doi.org/10.5194/tc-15-1399-2021, 2021
Short summary
Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change
Eleanor J. Burke, Yu Zhang, and Gerhard Krinner
The Cryosphere, 14, 3155–3174, https://doi.org/10.5194/tc-14-3155-2020,https://doi.org/10.5194/tc-14-3155-2020, 2020
Short summary
Pathways of ice-wedge degradation in polygonal tundra under different hydrological conditions
Jan Nitzbon, Moritz Langer, Sebastian Westermann, Léo Martin, Kjetil Schanke Aas, and Julia Boike
The Cryosphere, 13, 1089–1123, https://doi.org/10.5194/tc-13-1089-2019,https://doi.org/10.5194/tc-13-1089-2019, 2019
Short summary

Cited articles

Angelopoulos, M., Westermann, S., Overduin, P., Faguet, A., Olenchenko, V., Grosse, G., and Grigoriev, M. N.: Heat and Salt Flow in Subsea Permafrost Modeled with CryoGRID2, J. Geophys. Res.-Earth, 124, 920–937, https://doi.org/10.1029/2018JF004823, 2019. a, b, c, d
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. a
Brovkin, V., Ganopolski, A., Archer, D., and Munhoven, G.: Glacial CO2 cycle as a succession of key physical and biogeochemical processes, Clim. Past, 8, 251–264, https://doi.org/10.5194/cp-8-251-2012, 2012. a
Brovkin, V., Boysen, L., Arora, V. K., Boisier, J. P., Cadule, P., Chini, L., Claussen, M., Friedlingstein, P., Gayler, V., van den Hurk, B. J. J. M., Hurtt, G. C., Jones, C. D., Kato, E., de Noblet-Ducoudre, N., Pacifico, F., Pongratz, J., and Weiss, M.: Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century, J. Climate, 26, 6859–6881, https://doi.org/10.1175/JCLI-D-12-00623.1, 2013. a
Davies, J. H.: Global map of solid Earth surface heat flow, Geochem. Geophy. Geosy., 14, 4608–4622, https://doi.org/10.1002/ggge.20271, 2013. a
Download
Short summary
Thawing permafrost releases carbon to the atmosphere, enhancing global warming. Part of the permafrost soils have been flooded by rising sea levels since the last ice age, becoming subsea permafrost (SSPF). The SSPF is less studied than the part on land. In this study we use a global model to obtain rates of thawing of SSPF under different future climate scenarios until the year 3000. After the year 2100 the scenarios strongly diverge, closely connected to the eventual disappearance of sea ice.