Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5423-2021
https://doi.org/10.5194/tc-15-5423-2021
Research article
 | 
07 Dec 2021
Research article |  | 07 Dec 2021

Elements of future snowpack modeling – Part 2: A modular and extendable Eulerian–Lagrangian numerical scheme for coupled transport, phase changes and settling processes

Anna Simson, Henning Löwe, and Julia Kowalski

Related authors

Bayesian data selection to quantify the value of data for landslide runout calibration
V Mithlesh Kumar, Anil Yildiz, and Julia Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2025-4531,https://doi.org/10.5194/egusphere-2025-4531, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Data clustering to optimise the representativity of observational data in air quality data assimilation: a case study with EURAD-IM (version 5.9.1 DA)
Alexander Hermanns, Anne Caroline Lange, Julia Kowalski, Hendrik Fuchs, and Philipp Franke
EGUsphere, https://doi.org/10.5194/egusphere-2025-450,https://doi.org/10.5194/egusphere-2025-450, 2025
Short summary
OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024,https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary
Wind tunnel experiments to quantify the effect of aeolian snow transport on the surface snow microstructure
Benjamin Walter, Hagen Weigel, Sonja Wahl, and Henning Löwe
The Cryosphere, 18, 3633–3652, https://doi.org/10.5194/tc-18-3633-2024,https://doi.org/10.5194/tc-18-3633-2024, 2024
Short summary
Microstructure-based simulations of the viscous densification of snow and firn
Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe
The Cryosphere, 18, 2831–2846, https://doi.org/10.5194/tc-18-2831-2024,https://doi.org/10.5194/tc-18-2831-2024, 2024
Short summary

Cited articles

Audet, D. and Fowler, A.: A mathematical model for compaction in sedimentary basins, Geophys. J. Int., 110, 577–590, https://doi.org/10.1111/j.1365-246x.1992.tb02093.x, 1992. a, b
Bader, H.-P. and Weilenmann, P.: Modeling temperature distribution, energy and mass flow in a (phase-changing) snowpack. I. Model and case studies, Cold Reg. Sci. Technol., 20, 157–181, https://doi.org/10.1016/0165-232x(92)90015-m, 1992. a, b, c, d, e
Bartelt, P. and Christen, M.: A computational procedure for instationary temperature-dependent snow creep, Springer Berlin Heidelberg, https://doi.org/10.1007/BFb0104195, 2007. a, b
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/s0165-232x(02)00074-5, 2002. a, b, c, d, e, f, g, h, i, j
Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.: An Energy and Mass Model of Snow Cover Suitable for Operational Avalanche Forecasting, J. Glaciol., 35, 333–342, https://doi.org/10.3189/s0022143000009254, 1989. a, b, c
Short summary
This companion paper deals with numerical particularities of partial differential equations underlying one-dimensional snow models. In this second part we include mechanical settling and develop a new hybrid (Eulerian–Lagrangian) method for solving the advection-dominated ice mass conservation on a moving mesh alongside Eulerian diffusion (heat and vapor) and phase changes. The scheme facilitates a modular and extendable solver strategy while retaining controls on numerical accuracy.
Share