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Abstract. A coupled treatment of transport processes, phase
changes and mechanical settling is the core of any detailed
snowpack model. A key concept underlying the majority of
these models is the notion of layers as deforming material
elements that carry the information on their physical state.
Thereby an explicit numerical solution of the ice mass conti-
nuity equation can be circumvented, although with the down-
side of virtual no flexibility in implementing different cou-
pling schemes for densification, phase changes and transport.
As a remedy we consistently recast the numerical core of
a snowpack model into an extendable Eulerian–Lagrangian
framework for solving the coupled non-linear processes. In
the proposed scheme, we explicitly solve the most general
form of the ice mass balance using the method of charac-
teristics, a Lagrangian method. The underlying coordinate
transformation is employed to state a finite-difference formu-
lation for the superimposed (vapor and heat) transport equa-
tions which are treated in their Eulerian form on a moving,
spatially non-uniform grid that includes the snow surface as
a free upper boundary. This formulation allows us to unify
the different existing viewpoints of densification in snow or
firn models in a flexible way and yields a stable coupling
of the advection-dominated mechanical settling with the re-
maining equations. The flexibility of the scheme is demon-
strated within several numerical experiments using a modu-
lar solver strategy. We focus on emerging heterogeneities in
(two-layer) snowpacks, the coupling of (solid–vapor) phase

changes with settling at layer interfaces and the impact of
switching to a non-linear mechanical constitutive law. Lastly,
we discuss the potential of the scheme for extensions like a
dynamical equation for the surface mass balance or the cou-
pling to liquid water flow.

1 Introduction

The snow density is probably the most important prognostic
variable of any snowpack model as, e.g., reflected by a focus
on snow water equivalent in past snow model intercompar-
ison projects (Krinner et al., 2018, and references therein).
That said, it actually comes as a surprise when not even the
detailed snowpack models, e.g., Crocus and SNOWPACK,
explicitly state an ice mass conservation equation in their
technical documentation (Brun et al., 1989, 1992; Lehning
et al., 2002; Bartelt and Lehning, 2002). Only a more de-
tailed inspection reveals how mass conservation is accounted
for, namely rather indirectly by stating a settling law for indi-
vidual layers and resorting to a “Lagrangian coordinate sys-
tem that moves with the ice matrix” (Bartelt and Lehning,
2002) to translate the ice-phase deformation into a thick-
ness evolution of the layers (Brun et al., 1989; Vionnet et al.,
2012). While this procedure has been well established for a
long time, it is without numerical ambiguities only in the ab-
sence of phase changes. In addition, this non-explicit nature

Published by Copernicus Publications on behalf of the European Geosciences Union.



5424 A. Simson et al.: Mixed Eulerian–Lagrangian approach for snow modeling – Part 2

of the most important conservation law in snow makes it vir-
tually impossible to isolate and advance the numerical core
of a snowpack model as an encapsulated numerical scheme
comprising all involved coupled non-linear partial differen-
tial equations.

This non-explicit treatment of snow density or ice mass
continuity in snowpack models, e.g., SNOWPACK and Cro-
cus, has to be contrasted to other existing work on densi-
fication, comprising both stand-alone numerical snow stud-
ies (Meyer et al., 2020) and the vast body of work on firn
densification (Lundin et al., 2017). All of the latter models
are built around an explicit formulation of the ice mass con-
tinuity equation. This conceptual difference renders a gen-
eral comparison of firn and snow densification mechanisms
(Lundin et al., 2017) difficult. For model intercomparisons
in the future it is thus desirable to have a numerical core that
is able to digest arbitrary snow or firn densification physics
with a flexible but rigorous coupling to superimposed non-
linear transport and phase change processes.

Any holistic snowpack model has to account for transport
of heat, vapor and liquid water and its induced phase change
processes, as well as mechanical settling and apparent meta-
morphic processes acting on the snow’s microstructure. A
widespread body of literature exists that proposes different
modeling approaches and computational tools for the various
flavors and perspectives of this multi-physics coupled situa-
tion, e.g., Krinner et al. (2018, and references therein). For
the general timescales of interest (diurnal up to seasonal), it
is common practice to employ a continuum assumption and
to model the snowpack’s state as a mixture of ice, vapor, wa-
ter and air, as initially described in Bader and Weilenmann
(1992). Detailed snowpack models, such as SNOWPACK
(Lehning et al., 2002) and Crocus (Vionnet et al., 2012), are
built upon this type of mixture theory approach and used for
a wide range of purposes.

While heat transport, mechanical settling and processes
due to the presence of liquid water have been incorporated
into SNOWPACK (Bartelt and Lehning, 2002) and Crocus
(Vionnet et al., 2012) for a long time, effects due to vapor
transport have mostly recently been investigated in separate
studies. Temperature gradients between the ground and at-
mosphere imply upward vapor fluxes in snowpacks. Stronger
temperature gradients (due to either a smaller snowpack
height or colder surface temperature) in arctic conditions
yield higher vapor fluxes (Domine et al., 2019) compared
with alpine snowpacks. Depth hoar layers with reduced den-
sity and thermal conductivity form at the snowpack’s bottom.
In alpine snowpacks similar hoar layers develop within the
snowpack that may cause avalanches due to their low me-
chanical stability (Schweizer et al., 2003). Upscaled and ho-
mogenized continuum mechanical process models that ac-
count for vapor transport have been put forward, for instance
by Hansen and Foslien (2015) and Calonne et al. (2014).
Both couple the snowpack’s evolving temperature profiles
to a non-linear reaction–diffusion type of equation for va-

por transport and phase change. While they provide different
flavors of how to set up the underlying mathematical model,
both approaches are formulated for idealized conditions and
investigate vapor diffusion in the absence of settling and
therefore neglect its feedback on the apparent snow density.
These model-based investigations and also field-based obser-
vations in arctic snowpacks on top of permafrost (Domine
et al., 2016, 2019) have demonstrated the significance of
vapor-related processes in snow. Hence, it is of great inter-
est to investigate further how vapor interacts with apparent
mechanical processes within the snowpack.

Incorporating vapor transport directly into a fully coupled
snowpack model is however challenging, e.g., due to the fact
that the associated characteristic timescales are small, and
expected effects on the snowpack are localized (Schürholt
et al., 2021). To resolve these processes on small timescales
and at specific locations requires a much higher spatio-
temporal resolution than is typically provided by existing op-
erational schemes. In its original version, SNOWPACK for
instance uses time steps on the order of 15 min or longer
(Bartelt and Lehning, 2002) to facilitate seasonal simula-
tion times. For Crocus time steps are on the order of 15 min
(Viallon-Galinier et al., 2020) to 1 h (Vionnet et al., 2012).
The recent work of Jafari et al. (2020) provides a first at-
tempt to account for vapor transport within a coupled snow-
pack model. In their paper, they accounted for diffusive va-
por transport and phase change following Hansen and Fos-
lien (2015) and analyzed its feedback on the snow density. In
order to resolve diffusive processes, simulations were con-
ducted at much shorter time steps of 1 min and a finer spatial
resolution of approximately 0.1 cm. For comparison, a typ-
ical layer thickness in SNOWPACK is 2 cm (Wever et al.,
2016) and the minimum layer thickness in Crocus is 0.5 cm
(Brun et al., 1989). While the work of Jafari et al. (2020)
demonstrates the general feasibility of vapor-coupled snow-
pack models, the exact nature of how vapor transport and
phase changes interfere with stress-induced settling remains
to be investigated in depth.

It is well known that any numerical strategy that aims
at simulating simultaneous settling-induced deformation of
the snowpack and (arbitrary) diffusive transport requires a
special computational treatment to couple both. Diffusive
transport and reactive phase change are best modeled by
taking an Eulerian perspective, hence on a static mesh. In
contrast there exist a number of different techniques to in-
corporate the settling-induced deformation. One option is
to use a time-dependent coordinate transformation by Mor-
land (1982), who developed a fixed domain transformation to
solve one-phase diffusion problems with a moving free sur-
face on a finite, time-invariant computational domain. An al-
ternative approach was put forward by Wingham (2000), who
used a different spatio-temporal coordinate transformation
for firn densification. Both transformation strategies effec-
tively eliminate the vertical motion (or gradients of it) from
the computational update procedure. And exactly the same is
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(implicitly) performed in the present treatment of densifica-
tion in snowpack models (Bartelt and Lehning, 2002; Vion-
net et al., 2012), where the coordinate transformation em-
bodied in the deformation of the underlying computational
grid through the update of layer positions and/or thicknesses
is (implicitly) exploited for the ice mass conservation. How-
ever, the present descriptions do not take full advantage of a
clear and explicit separation into a Lagrangian deformation
module that accounts for mechanical settling and an Eule-
rian transport and phase change module. The benefit of this
hybrid computational strategy is that it is easy to understand,
computationally feasible, provides a modular error control
and increases the interpretability by disentangling numerical
artifacts from features of the underlying non-linear process
models. Hybrid numerical schemes that combine an Eulerian
process model with a Lagrangian-type spatio-temporal mesh
adaptation are not new. These schemes have been used in
other disciplines, e.g., for phase change problems (Lacroix
and Garon, 1992); as σ coordinates in oceanography, where
the ocean’s surface and bottom are projected onto coordi-
nates σ = 0 and σ =−1 that follow the ocean floor’s topogra-
phy (Mellor and Blumberg, 1985); or for shallow-flow mod-
els (Kowalski and Torrilhon, 2019).

The aim of our work is twofold: first, we will describe our
numerical strategy for a phase-changing snowpack. The nu-
merical scheme is hybrid, in the sense that it clearly discrim-
inates between a solution of the mechanical settling opera-
tor by means of a Lagrangian approach and a solution to the
transport and phase change operator by means of an Eule-
rian approach. To some degree, the numerical model descrip-
tion must be understood as a rigorous re-formulation of the
numerical schemes from existing computational snowpack
models. Yet, in addition to existing schemes we (a) explic-
itly separate the Eulerian and Lagrangian part of the solver
to facilitate a later modular adaption, (b) provide a full finite-
difference formulation including correction terms due to the
deforming (non-uniform) mesh that are typically omitted,
and (c) discuss options to increase the approximation accu-
racy of the various parts of the numerical scheme. Second,
we demonstrate the computational potential by applying and
analyzing simulation results for an idealized two-layer, dry-
snow situation. We consider a model cascade of different
process building blocks, which in their most comprehensive
version, correspond to fully coupled heat and vapor transport
alongside phase changes and settling.

With this work we seek to contribute to anticipated fu-
ture developments of snow or firn models or likewise ex-
tensions of existing ones that aim at flexibility and modu-
larity while providing a simple, mathematically rigorous nu-
merical approximation for a stable and robust integration of
generic multi-physics process equations. By modularity and
extendability we understand the possibility of considering or
neglecting specific process modules and parametrizations in
a straightforward way. This modularity would enable us to
(a) investigate competing non-linear effects systematically

Table 1. Terminology of state variables, model parameters and con-
stants.

Symbol Name Equation/value Unit

State variables

φi Ice volume fraction Eq. (1) –
ρv Vapor density Eq. (A1) kgm−3

T Temperature Eq. (11) K

Model parameters of snow

v Vertical velocity Eq. (7) ms−1

c Ice deposition rate Eq. (9) kg m−3 s−1

ε̇ Strain rate Eq. (3) s−1

η Viscosity Eq. (4) Pas
σ Stress Eq. (5) Pam−2

ρsnow Density Eq. (5) kgm−3

Deff Vapor diffusion coefficient Eq. (A2) m2 s−1

(ρC)eff Heat capacity Eq. (A4) Jm−3 K−1

keff Thermal conductivity Eq. (A3) Wm−1 K−1

Parameters assumed to be constant (Calonne et al., 2014)

ρi Ice density φi= 1 917 kgm−3

L Ice latent heat of sublimation 2 835 333 Jkg−1

Ci Ice heat capacity φi= 1 2000 J kg−1 K−1

ρa Air density φi= 0 1.335 kgm−3

Ca Air heat capacity φi= 0 1005 J kg−1 K−1

from a cascade of process models, (b) assess the quality of
the numerical approximation independently and (c) conduct
a standardized model selection based on well-defined bench-
marks.

The paper is structured as follows. In Sect. 2, we recall
the dry-snow model equations comprising the relevant trans-
port, phase change and mechanical aspects. In Sect. 3, we
introduce the Eulerian–Lagrangian numerical scheme and its
solution using the method of characteristics. In Sect. 4, we
present and discuss results from a number of simulation sce-
narios, including verification scenarios that consider trans-
port, phase changes and mechanics in the absence of any in-
teraction, as well as coupled scenarios that focus on their
interplay. We furthermore investigate the impact of differ-
ent viscosity parametrizations and assess the behavior when
switching to a Glen type of non-linear constitutive closure.
Finally, we compare our results to a conventional layer-based
treatment. In Sect. 5, we summarize and discuss our findings,
and in Sect. 6 we draw conclusions regarding future snow-
pack modeling.

2 Physical model

2.1 General situation

As a common starting point, snow models take a macroscale
perspective that volume averages (Bartelt and Lehning, 2002;
Bader and Weilenmann, 1992; Hansen and Foslien, 2015)
or homogenizes (Calonne et al., 2014) the snowpack’s mi-
crostructural state into macroscale variables. If not stated
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otherwise, we implicitly assume all state variables to be
macroscale variables. State variables, model parameters and
constants used in this paper are summarized in Table 1.

In the most general case, snow is a mixture of ice, air,
vapor and water, and the snow density is given as a mix-
ture of the respective pure densities (Bader and Weilenmann,
1992; Morland et al., 1990). The amount of ice in one ref-
erence volume of snow is φiρiV , in which φi denotes the
ice’s volume fraction, ρi its pure density and V the volume
of the reference volume. For dry snow, further contributions
due to water vapor can be neglected, and the snow density
can be approximated as φi ρi. The structure and volume frac-
tion of the ice can change over time either due to strain-
induced settling processes or due to transient phase changes,
such as sublimation and deposition or melting and freezing.
Our paper focuses on the derivation of a hybrid Eulerian–
Lagrangian framework to solve settling, transport and phase
changes with an assessment of the computational building
blocks. To this end we restrict ourselves to dry snow and al-
low for one secondary phase (vapor) in an Eulerian treatment
coupled to the Lagrangian treatment of the ice phase. With
respect to computational model development, we regard the
dry-snow situation as the more challenging (yet less investi-
gated) one compared to the wet-snow situation, mostly due
to a broader spectrum of characteristic spatial and temporal
scales involved (see more detailed discussion in Sect. 6).

Note, that water transport and solid–liquid phase change
can in principle be integrated following a similar strategy
to that presented in this paper. The following section intro-
duces the (macroscale) snowpack model where the subsec-
tion structure reflects the later-described modular structure
of the numerical core.

2.2 Ice mass balance

The ice volume fraction φi = φi(z, t) within a spatio-
temporally evolving snowpack of varying snow height H(t)
is governed by the ice mass balance and reads

∂tφi+∇ · (v φi)=
c

ρi
, (1)

with velocity field v, source term c and ice density ρi (Hansen
and Foslien, 2015; Bader and Weilenmann, 1992). Note that
mechanical settling is neglected in Part 1 of this companion
paper. The corresponding ice mass balance (Eq. 7 in Part 1)
does thus not include the velocity field v.

In a 1D situation that focuses on an evolving vertical snow
column, we have the vertical position z as the only relevant
spatial coordinate (z ∈ [0,H(t)]). The velocity field v re-
duces to vertical velocity v = v(z, t), which depends on time
and the position within the column. It is negative for snow
height decrease and positive for snow height increase. Ver-
tical motion results either from mechanical settling, hence
a consolidation or compaction of the snowpack, or alterna-
tively as a continuity response to changes in ice volume from

sublimation, deposition, melting and freezing via the source
term c. The continuity response leads to a minor vertical de-
crease/increase in snow height. Though effects due to consol-
idation of snow may be significantly more pronounced than
those due to phase change processes in the pore space, the
latter needs to be accounted for to acknowledge mass con-
servation of the complete system. At this point in time, we
do not consider any additional increases in snow height due
to precipitation, yet we discuss how this can be included in
the future in Sect. 5.

The source term c = c(z, t) varies with time and position
in the column and stands for a gain or loss of ice mass from
phase change (Bader and Weilenmann, 1992) per unit vol-
ume and unit time. As we constrain this paper to the dry sit-
uation we will henceforth refer to c as the deposition rate.
c is positive (production) if new ice is built, namely vapor
deposits, and it is negative (loss) if ice is lost, namely subli-
mates. Finally, ρi denotes the constant pure density of ice and
serves as a scaling factor. The ice mass balance (Eq. 1) cou-
ples mechanical settling and phase change processes. Con-
sidering the equation in its full form is essential for our goal
to model and eventually analyze the interplay between these
processes. The structure of the ice mass balance resembles an
advection–reaction equation that can conveniently be solved
by means of Lagrangian-type computational methods, such
as the method of characteristics (see Sect. 3). Yet in order to
do so, we need to provide a closure for both vertical veloc-
ity v and deposition rate c.

2.3 A closure for the velocity field

Velocity v represents mechanical deformation in the snow-
pack. Its idealized relation to the strain rate is given by

∇v = ε̇. (2)

Note that this is simplified with respect to more general,
tensorial formulations of 1D consolidation theories; see for
instance Audet and Fowler (1992). Yet even the idealized for-
mulation Eq. (2) will be sufficient for our purposes, as it re-
sembles the approach implicitly chosen in snowpack models
(Bartelt and Lehning, 2002; Vionnet et al., 2012).

In general one would expect that porous snow inherits the
non-linear constitutive behavior of ice (Kirchner et al., 2001),
which leads to

ε̇ =
1
η
σm, (3)

which is a variant of Glen’s law. Here, η denotes the com-
pactive viscosity of snow and σ denotes the stress. The
choice of the Glen exponent m in earlier work depends on
both the physical regime and the computational feasibility.
The linear form of Glen’s law (m= 1) is chosen in Vionnet
et al. (2012) and Bartelt and Lehning (2002). For the sake of
comparability we thus mainly use a linear version of Glen’s
law; hence m= 1. Our framework, however, also copes with
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the non-linear relation, such as m= 3, and we later include a
comparative example.

The compactive viscosity η depends on the snow’s mi-
crostructure and is challenging to determine from experi-
ments (Wiese and Schneebeli, 2017). It is typically provided
as a parametrized closure for a specific physical situation
and strongly correlates with the choice for the Glen expo-
nent m. This fact clearly constrains its universal applicabil-
ity and makes any transfer of a validated snowpack model
to other physical situations challenging. In this article, we
will consider both constant-viscosity scenarios, as well as an
additional scenario with a varying viscosity assuming an em-
pirical viscosity closure from Vionnet et al. (2012)

η(φi,T )= f η0
ρiφi

cη
exp(aη(Tph− T )+ bηρiφi), (4)

with the state variables temperature T and ice vol-
ume fraction φi; the constants ice density ρi and
phase change temperature Tph= 273 K; and further
constants η0= 7.62237× 106 kgs−1, aη= 0.1 K−1,
bη= 0.023 m3 kg−1 and cη= 250 kgm−2. Finally, f re-
flects properties of the snow microstructure, i.e., the
angularity and the size of the grains, and it is assumed to
be 1 in our case. The constant-viscosity value applied to
a linear Glen’s law ηconst,m=1 is derived with intermediate
values for the ice volume fraction and temperature of the
respective initial conditions. These values are plugged into
the empirical closure Eq. (4) to solve for viscosity. The same
procedure cannot be applied to derive a constant-viscosity
value for the non-linear version of Glen’s law ηconst,m=3
since the viscosity closure (Eq. 4) was initially calibrated to
the linear form of Glen’s law (m= 1). Instead we choose
a snow deformation rate from the literature (ε̇= 10−6 s−1;
Johnson, 2011) and determine the maximum stress value
from the initial snow density. These strain rate and stress
values are then inserted into the constitutive relation (Eq. 3),
which is finally solved for viscosity. To avoid infinite ice
volume growth above physical values (φi> 1), the viscosity
must tend to infinity for φi→ 1. Therefore, the constant-
viscosity values are restricted to ice volumes below 0.95
by multiplication with an ice-volume-fraction-dependent
power law (Appendix Eq. A6). This power law yields ∼ 1
for φi ≤ 0.95 and exponentially increases for higher ice
volumes. Multiplied with the constant-viscosity values, vis-
cosity remains constant below φi< 0.95 and exponentially
increases above it, which stops further densification and
settling. This procedure does not intend to reproduce the cor-
rect physics for low-porosity ice, although it mathematically
leads to a similar crossover behavior.

In the absence of strong horizontal deformation and devi-
atoric stress components, it is reasonable to assume a stress-
free condition at the snow’s surface and a hydrostatic stress
condition in its interior:

∇σ = gρsnow . (5)

g is the gravitational acceleration, and ρsnow refers to the
snow’s density, which is clearly dominated by the ice fraction
via ρsnow ≈ φi(z)ρi. It varies with the position z in the snow
column due to a vertically varying ice volume fraction φi(z).
Integration of Eq. (5) and combination with Eqs. (2) and (3)
yields an expression for the velocity gradient:

∂zv =
1
η

g H(t)∫
z

φi(ζ )ρidζ

m. (6)

ζ is the integration variable. A second integration along
the vertical axis finally yields an expression for the velocity
at position z in the snow column:

v(z)=

z∫
0

1
η

g H(t)∫
z̃

φi(ζ )ρidζ


m

dz̃ , (7)

in terms of total height H(t) and the ice volume fraction
φi(z, t) and with v(z= 0, t)≡ 0. This definition of the ver-
tical velocity yields a process that complies with the obvious
physical constraints: (a) the velocity vanishes at the bottom
of the snow column, hence preventing artificial penetration
into the ground. This is similar to displacement requirements
in SNOWPACK (Bartelt and Lehning, 2002). (b) The ver-
tical velocity accumulates with height, which prevents any
artificial disaggregation of the snowpack. (c) The vertical ve-
locity relaxes towards zero as the ice volume fraction tends
towards its maximum volume fraction φi < φi,max < 1. In the
remainder of this paper, we will use Eq. (7) to account for the
mechanical settling of the snowpack.

2.4 Transport and phase changes

The ice deposition rate c as relevant to solve Eq. (1) typically
depends on a cascade of coupled heat and mass transport for
the involved phases of ice, water and vapor. In this article, we
will consider a process model proposed by Hansen and Fos-
lien (2015) that reflects a dry-snow condition in which void
space is filled by vapor only. Note, however, that this cou-
pled process model could readily be substituted or extended
by another one, e.g., from Calonne et al. (2014), Jafari et al.
(2020) or Schürholt et al. (2021).

Next, we state the essential aspects and process equations
of the model proposed in Hansen and Foslien (2015) and de-
scribe how it can be used to recover the ice deposition rate.

Assuming a dry-snow condition, the ice production is
solely determined by mass transport between vapor and ice.
The vapor mass balance reads

∂t (ρv(1−φi))−∇ · (Deff∇ρv)= −c, (8)

in which ρv denotes the vapor density and Deff the effective
vapor diffusion coefficient. Vapor production corresponds to
a negative ice deposition rate −c that represents sublima-
tion. Following Hansen and Foslien (2015), vapor density in
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the pore space can be assumed to be at saturation density
ρ

eq
v , so ρv ≡ ρ

eq
v . The latter is well investigated, and empir-

ical relations exist that specify its temperature dependency
ρ

eq
v (T ). In this work, we will employ an empirical relation

from Libbrecht (1999). The full expression can be read in
Appendix A1. Due to the closure for vapor density ρeq

v , the
vapor mass balance (Eq. 8) can be rewritten using the tem-
perature dependence of the equilibrium vapor density:

(1−φi)
dρeq

v

dT
∂tT −∇ ·

(
Deff

dρeq
v

dT
∇T

)
= −c. (9)

Assuming the snow to be in thermal equilibrium at the mi-
croscale, we can likewise write the energy balance in terms
of the temperature, which reads

(ρC)eff∂tT −∇ · (keff∇T )= cL. (10)

The parameters (ρC)eff and keff stand for the effective heat
capacity of snow and effective thermal conductivity, respec-
tively. Both parameters depend on the ice volume fraction,
and their definition is stated in Appendix A2. The right-hand
side of the heat equation (Eq. 10) accounts for latent heat
release, which is coupled to phase change processes.

The system of the two equations, Eqs. (9) and (10), and
the two unknowns, temperature T and deposition rate c, is
solved by replacing c in Eq. (10) with Eq. (9), which yields
a non-linear equation for temperature:(
(ρC)eff +(1−φi)

dρeq
v (T )

dT
L

)
∂tT

=∇ ·

((
LDeff

dρeq
v (T )

dT
+ keff

)
∇T

)
. (11)

The spatio-temporal temperature evolution is then used
to recover the ice deposition rate c from either Eq. (9) or
Eq. (10).

3 Computational approach

The complete process model is now given by the ice mass
balance Eq. (1), its mechanically induced vertical velocity
Eq. (7), and the coupled system for temperature Eq. (11) and
ice deposition rate determined by either Eq. (9) or Eq. (10).
Each of the equations will be solved in a separate module.
The ice mass balance in conjunction with the vertical veloc-
ity has the form of a non-linear advection equation, whereas
the remaining equations are of parabolic nature, which is re-
flected in our general approach to solve the system.

3.1 General approach to the computational strategy

Based on the distinction into diffusion- and advection-
dominated processes, we propose a two-step solution
scheme:

Step 1. This step accounts for the mesh deformation and
solves the advection-dominated mechanical settling, i.e., the
ice mass balance Eq. (1), by means of a Lagrangian ap-
proach that tracks the movement of the coordinates including
changes from metamorphism.

Step 2. This step determines the spatio-temporal evo-
lution of temperature and deposition rate fields as intro-
duced in Sect. 2.4 based on an Eulerian approach that solves
the diffusion-dominated transport and phase changes via
a finite-difference implementation on a deformed (unstruc-
tured) mesh.

Note that here we employed a finite-difference method be-
cause it provides a feasible algorithm that is applicable to the
scenarios considered in the paper using a 1D snow column.
It also naturally integrates with the Lagrangian part of the
solution (Step 1), as we can re-use the same mesh. In princi-
ple, it is also possible to couple the two-step approach with
a finite-element solution for the temperature and deposition
rate, for instance when aiming for a 2D or 3D model in a
complex geometry that incorporates realistic mountain slope
topographies. When using a finite-element solver, however,
we have to keep in mind that the deposition rate and tem-
perature fields need to be reconstructed from the solution at
each time step. Especially when wanting to use higher-order
elements, this might limit computational feasibility.

Our solution scheme alternates both steps via straightfor-
ward first-order operator splitting. This is found to work well
for our simulation scenarios yet could be readily exchanged
with a higher-order splitting scheme, e.g., a second-order
Strang splitting (LeVeque, 2002), if required.

The computational model is implemented in Python, and it
is modular and extendable, in the sense that each module can
be separately activated and deactivated. This not only simpli-
fies the verification of individual process building blocks but
also allows an in-depth investigation of the various coupling
effects and the model’s non-linear feedback. Alternative for-
mulations e.g., of the parametrized velocity field are imple-
mented and can easily be exchanged. Finally, the modular
structure facilitates the implementation of additional closure
relations or the integration of entire new process modules.

3.2 Computational grid

In this paper, we consider a 1D snow column, which is dis-
cretized into nz+1 spatial mesh nodes denoted by zk with k ∈
{0,1, . . .,nz}. We applied 101 computational nodes (nz=
100) except for some simulations that required a higher res-
olution of 251 nodes (nz= 250). The mesh is non-uniform
in general, meaning that the distance between neighboring
nodes zk+1−zk varies throughout the snow column and with
time. Note that the z axis is oriented opposing gravitational
acceleration, such that z0 denotes the position of the ground
and znz the position of the snowpack’s free surface. Time
increments are denoted by tn with n ∈ {0,1, . . .,nt} and nt
being the maximum number of time steps in a complete sim-
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ulation run. For each of the field variables subscript k de-
notes the vertical coordinate and superscript n denotes the
time step; hence T (zk, tn)= T nk .

3.3 Lagrangian solution of the ice mass balance

When the snowpack is subject to vertical motion, e.g., set-
tling, its physical height decreases; hence its vertical extent
shrinks. One option to reflect this in a computational method
is to adjust the spatial node coordinates accordingly. The
challenging fact in our situation is that the vertical motion
within the snow column (non-linear advection) is coupled to
phase changes, i.e., a change in the ice volume fraction via
the source term in the ice mass balance (Eq. 1). The method
of characteristics is a suitable method to solve such a non-
linear advection equation with source terms. It can be inter-
preted as a simultaneous motion tracking of snow reference
volumes, referred to as the integration along so-called char-
acteristics, while also accounting for its metamorphism along
the trajectory. By construction, the method correctly tracks
the snowpack’s moving free surface. Due to the fact that the
snow column’s evolution is determined with respect to a ref-
erence volume that moves vertically at speed v in the snow-
pack, the method of characteristics is called a Lagrangian ap-
proach.

In order to derive the specific update rule for the ice mass
balance Eq. (1), we first apply the product rule to its initial
Eulerian version

∂tφi+ v∂zφi =
1
ρi
c−φi∂zv (12)

and then re-formulate the equation in a Lagrangian reference
frame, hence with respect to nodes moving at the vertical ve-
locity v. Changing to the moving reference frame effectively
compensates for the advection term in Eq. (12) and yields

∂tφi =
1
ρi
c−φi∂zv, (13)

∂tz= v. (14)

Equation (14) accounts for the settling of material parti-
cles within the snowpack. We will use it to update the coor-
dinates of the mesh nodes directly, which results in a contin-
uous mesh deformation as illustrated in Fig. 1. Equation (13)
captures the evolution of the ice volume fraction along the
trajectory of a moving ice volume within the snowpack. It
accounts for volume changes due to (a) mass production and
loss in response to phase changes and (b) vertical variation
in the vertical velocity. Further details and generalizations of
the method of characteristics can be found in Farlow (1993).

Equations (13) and (14) can be solved analytically for a
constant vertical velocity and deposition rate. In our case
however, the velocity closure is provided by Eq. (7) and
the deposition rate results from solving yet another process

Figure 1. Computational mesh. The snowpack height varies with
time, e.g., shrinks due to settling of the snow. This has to be in-
corporated into the computational mesh, which undergoes defor-
mation due to the downward movement of the free surface. The
initially equidistant mesh does not uniformly change, which results
in a mesh of varying node distances, so in general 1z0

k
6=1zn

k
and

1zn
k
6=1zn

k+1.

model (Eqs. 10 and 11), which requires a numerical solution.
Since we expect the response of the ice volume fraction to be
slow (with respect to other processes in the system), we will
rely on a first-order explicit Euler time integration scheme:

φn+1
i,k = φ

n
i,k +1t

n

(
1
ρi
cnk −φ

n
i,k∂zv

n
k

)
, (15)

zn+1
k = znk +1t

nvnk . (16)

In order to update the mesh coordinates according to
Eq. (16) for the vertical velocity closure derived before, we
need to numerically approximate Eq. (7) at each node zk ,
which results in

v(zk)=

k∑
j=0

(
1
η
σmj

)
1znj , (17)

with 1znj := z
n
j+1− z

n
j where j ∈ [0,nz), m being the Glen

exponent, η being viscosity and σj denoting the stress ex-
erted by the overburdened snow mass

σj =

nz∑
l=j

gφni,lρi1z
n
l , (18)

where g is gravitational acceleration. Note that the stress at
the uppermost node k = nz is zero, so velocity v(znz) is only
controlled by the movement below and is thus equivalent to
the velocity at the next lower node (v(znz−1)). The forward
Euler scheme of Eqs. (15) and (16) via the method of char-
acteristics combined with the velocity update (Eq. 17) essen-
tially resembles the treatment of mass conservation as it is,
for instance, presently carried out in SNOWPACK. However,
the explicit formulation and numerical treatment of Eqs. (15)
and (16) allows us to also employ other (e.g., higher-order,
implicit) solution schemes for both equations if this is re-
quired to capture detailed aspects of the spatio-temporal cou-
pling of phase changes (c) and settling (via ∂zv) (cf. also
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the discussion in Sect. 5). To solve Eq. (15), we directly
discretize the velocity’s spatial derivative ∂zv, which corre-
sponds to the strain rate ε̇nk =

1
η
σmk given via Eq. (3). This

is beneficial, as it avoids numerically approximating the ve-
locity gradient. The complete numerical update of ice vol-
ume fraction φi and mesh coordinates z can now concisely
be written as

φn+1
i,k = φ

n
i,k +1t

n

(
1
ρi
cnk −

1
η

(
nz∑
l=k

gφni,lρi1z
n
l

)m
φni,k

)
, (19)

zn+1
k = znk +1t

n

(
k∑
j=0

1
η

(
nz∑
l=j

gφni,lρi1z
n
l

)m
1znj

)
. (20)

Similarly to existing layer-based schemes (see for instance
Sect. 3.4. in Bartelt and Lehning, 2002, or its recent exten-
sion in Jafari et al., 2020), the method of characteristics pro-
vides information on the settling of layers within the snow-
pack. Yet, in addition, it serves as a basis for a fully modular
and flexible computational strategy that (a) by construction
accounts for the two-way feedback between the ice volume
fraction and mass production or decay rates resulting from
phase changes as a response to transport processes within
the snowpack and (b) allows for a flexible adoption and ex-
tension of the process model (used to determine c) and the
velocity closure. The latter could for instance serve as a path-
way to integrate a data-driven velocity closure (or assimila-
tion) from measurements. Such flexibility in numerical tools
will be important in the future to conduct model compar-
isons, such as presented in Schürholt et al. (2021) within
holistic snowpack models, or even a formalized Bayesian
model selection that allows for inferring the most plausible
process model out of a pool of candidate models given cer-
tain data. A remaining difficulty now is to provide a (Eule-
rian) numerical scheme for diffusive processes that can oper-
ate on a spatially varying unstructured mesh.

3.4 Eulerian solution of transport and phase changes
on a moving mesh

The process model accounting for vapor transport and heat
transport (Eqs. 9 and 11) has to be solved with respect to
a moving computational mesh according to Eq. (16). Both
equations have the same generic structure; namely

α∂tT − ∂z(β∂zT )= γ, (21)

with α = αT = (ρC)eff+ (1−φi)
dρeq

v (T )
dT L, β = βT = keff+

LDeff
dρeq

v (T )
dT and γ = γT = 0 for the heat equation (Eq. 11)

and α = αc = (1−φi)
dρeq

v (T )
dT , β = βc =Deff

dρeq
v (T )
dT and γ =

γc = −c for the vapor transport equation (Eq. 9).
An implicit first-order finite-difference approximation of

Eqs. (9) and (11) for a spatially varying mesh of increments

1znk results in

αnT ,k
T n+1
k − T nk

1tn

=

2βnT ,k
((
T n+1
k+1 − T

n+1
k

)
−

(
T n+1
k − T n+1

k−1

))
(
1znk

)2
+
(
1znk−1

)2
+
βnT ,k+1−β

n
T ,k−1

1znk +1z
n
k−1

T n+1
k+1 − T

n+1
k−1

1znk +1z
n
k−1

+ET

(
T n+1
k+1 ,T

n+1
k−1

)
, (22)

αnc,k
T n+1
k − T nk

1tn

=

2βnc,k
((
T n+1
k+1 − T

n+1
k

)
−

(
T n+1
k − T n+1

k−1

))
(
1znk

)2
+
(
1znk−1

)2
− cn+1

k +
βnc,k+1−β

n
c,k−1

1znk +1z
n
k−1

T n+1
k+1 − T

n+1
k−1

1znk +1z
n
k−1

+Ec

(
T n+1
k+1 ,T

n+1
k−1

)
. (23)

Note that parameters αf and βf for f ∈ {T ,c} also vary
in space and time and will be (explicitly) evaluated based
on the snowpack’s state at time n. The terms Ec and ET
are higher-order mesh errors for the vapor and temperature
equations. These higher-order mesh errors account for the
necessary correction due to non-uniformity of the mesh and
are controlled by the temperature gradient; they vanish for
equidistant meshes or constant temperatures. The complete
form of the higher-order mesh errors is given in Appendix B,
and their effect on the accuracy of the simulation is discussed
in Sect. 4.3.

The complete numerical update can be concisely written in
matrix form, which matches with the way it is implemented
in the software:

T n+1
= (AT+ET)

−1 (BTT
n
)
, (24)

cn+1
= (Ac+Ec)T

n+1
+BcT

n. (25)

First, Eq. (24) is solved for temperature T n+1. Next, the
updated temperature is used to solve Eq. (25) for the deposi-
tion rate cn+1. The complete matrix definitions are given in
Appendix C. Note that, formally, it would be possible to add
up matrices AT and ET as well as Ac and Ec. We decided to
keep them in this particular form to stress the similarity of
this formulation with a standard finite-difference approxima-
tion on an equidistant mesh, in which we are left with BT and
Bc and ET and Ec vanish.

3.5 Iterative coupling of Eulerian and Lagrangian
solutions

The derived numerical update routines for temperature, de-
position rate, vertical velocity and ice volume fraction com-
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Figure 2. The computational workflow of one iteration. The state variables at time tn, depicted on the left-hand side, are updated through
the modules annotated as dashed-outline boxes that are ordered diagonally in the center of the figure. After each update the state variables
at time tn+1 are retrieved. The equations of the modules are implemented into the computational model through the respective solution
technique stated in the solid-outline boxes in the top row. The computational steps are carried out from top to bottom. The iterative approach
can be summarized as (1) determine time step size 1t according to Eq. (26), (2) update the temperature field based on Eq. (22), (3) compute
the deposition rate with the temperature field based on Eq. (23), (4) determine the vertical velocity with Eqs. (17) and (18), and (5) update
the ice volume fraction and the mesh coordinates simultaneously based on Eqs. (19) and (20). While (2) and (3) are a re-implementation of
an existing approach previously published by Hansen and Foslien (2015) and Calonne et al. (2014), their coupling to (4) and (5) constitutes
the novelties of our work. Note that (4) is computed as part of (5) in the code.

prise the four main modules that are sequentially called to
update the respective state variables for one time step. A
schematic illustration is given in Fig. 2. The equations for
heat and vapor transport have already been implemented by
Calonne et al. (2014) and Hansen and Foslien (2015). A feed-
back on the ice volume fraction in the absence of a vertical
velocity has been investigated in Part 1 of the companion pa-
per (Schürholt et al., 2021). The modules for vertical velocity
and the coupled update of ice volume fraction and mesh co-
ordinates, through the method of characteristics, are novel in
our approach. Our implementation is modular in the sense
that it allows for a coupling with other process models that
comply with a non-uniform mesh.

The time step size for the next time step n+ 1 is dynam-
ically updated in the computational scheme. Since diffusive
processes are dominant, we utilize the mesh Fourier number
based on the diffusivity βT

αT
of heat of the current time step n:

1tn+1
=min

k

0.5αnT ,k
(
1znk

)2
βnT ,k

 . (26)

Since this choice for the time step computation did not
yield instabilities, we excluded the vapor’s diffusivity for the
time step computation. Note that in response to settling pro-
cesses, the mesh sizes vary and decrease (see Fig. 1) with
time, and so does the time step.

In the following, we describe how the modularity of the
model is applied and used to assess the individual effect of

the different process building blocks by a strategical activa-
tion and deactivation of the modules.

3.6 Application of the model

We applied the developed numerical scheme to perform sev-
eral simulations with varying combinations of activated and
deactivated advection- and diffusion-type process building
blocks, e.g., transport and phase changes, such as those also
considered in Schürholt et al. (2021), vs. transport and phase
changes in the presence of settling and their corresponding
coupled scenarios. Furthermore, this scheme allowed the nu-
merical verification of separate building blocks. While the
scenarios are still idealized, they demonstrate the robustness
of the Eulerian–Lagrangian scheme against the selection of
varying sub-sets of model components. Table 2 provides an
overview of the various combinations we considered as they
have been introduced in Sect. 3. Note that we use the terms
vertical velocity and settling velocity interchangeably.

Firstly, we focus on the effects due to pure mechanical set-
tling on the snowpack (Case 1). Next, we consider isolated
heat transport (Case 2) as well as its interplay with settling
processes (Case 3). Similarly, we consider coupled heat and
vapor transport first in the absence of settling (Case 4) and
later with settling (Case 5). For Case 5, we evaluate the ef-
fect of included or excluded higher-order mesh errors ET and
Ec (see Sect. 3.4) on the temperature profiles. Case 1, Case 3
and Case 5 consider the constant viscosity for a linear Glen’s
law (m= 1) ηconst,m=1, as introduced in Sect. 2.3. Further-
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Table 2. List of the various simulation scenarios, referred to as cases, in which we activate different combinations of process building blocks
and consider constant-viscosity and non-constant-viscosity closures. Heat transport induces vapor transport and triggers phase changes.
Cases 5, 7 and 8 are also referred to as fully coupled processes.

Case Heat Vapor Mechanics (Eqs. 19 and 20)

transport transport Viscosity (Sect. 2.3) Glen’s law (Eq. 17)

(Eq. 22) (Eq. 23) η = const η(φi,T ) m= 1 m= 3

Case 1 X X
Case 2 X
Case 3 X X X
Case 4 X X
Case 5 X X X X
Case 6 X X
Case 7 X X X X
Case 8 X X X X

Figure 3. The initial condition of the snowpack regarding snow den-
sity on the left-hand side and profile plots of the initial ice volume
fraction (φ0

i ) and temperature (T 0) on the right-hand side. There are
two snow layers with equal thickness of 25 cm, yielding a snow-
pack of 50 cm height. The bottom layer has a higher density of
150 kgm−3, and the upper layer’s density is 75 kgm−3. The z axis
of the 1D model increases in an upward direction, so z= 0 denotes
the ground. Downward-directed movements are thus described by
negative velocities. The vicinity of the interface between the two
layers is referred to as the transition area. The initial ice volume
fraction is derived from the initial snow density. Its profile (φ0

i )
shows the linear decrease over 2 cm of the ice volume fraction in
the transition area from the lower to the upper layer. The initial tem-
perature profile (T 0) is constant at 263 K. The black dots mark the
constant temperature boundary conditions: 273 K at the bottom and
253 K at the top.

more, we investigate the impact of an empirical, temperature-
controlled and ice-volume-fraction-controlled viscosity clo-
sure (Eq. 4), first on settling only (Case 6) and then on the
fully coupled processes (Case 7). Next, we show that our
general approach can be combined with the non-linear Glen’s
law (Eq. 3) by using m= 3 (Case 8) and an accordingly
adjusted constant viscosity ηconst,m=3. For a detailed expla-
nation of the general derivation of the viscosity values see
Sect. 2.3. Lastly, we compare our new modeling approach to
that of layer-based schemes (cf. Sect. 1).

3.7 Computational setup, initial and boundary
conditions

Initial condition. The initial ice volume fraction φi reflects
a layered situation as depicted in Fig. 3, with two snow
layers of equal thickness. The bottom layer has an initial
snow density of 150 kgm−3, and the upper layer’s density is
75 kgm−3. The transition from the upper layer to the lower
layer is linearly smoothed out over 2 cm, which for a grid
defined according to Sect. 3.2 corresponds to 5 computa-
tional nodes for the coarser and 11 computational nodes for
the finer discretization. The snow densities are in the range
of “damped new snow” and “new snow”, respectively (Pa-
terson, 1994). Snow densities in this range are expected,
e.g., for new snow in the European Alps (Helfricht et al.,
2018) or in the Rocky Mountains (Judson and Doesken,
2000). We choose this layered snowpack to ensure an ex-
treme and very active snow regime with a strong dynamical
coupling of the processes. Temperature is initially constant at
263 K throughout the whole snowpack. The deposition rate
is directly deduced from temperature (see Eq. 23) and there-
fore requires neither initial nor boundary conditions. From
the initial condition we derived the constant-viscosity values
ηconst,m=1 ≈ 9.1× 107 Pas and ηconst,m=3 ≈ 16× 1012 Pas;
see also Appendix A3.

Boundary condition. We consider a constant temperature
of 273 K at the bottom boundary and a constant temperature
of 253 K at the free surface.

Simulation time. We simulate 2 d (48 h), 3 d (62 h) and 4 d
(96 h) scenarios.

4 Results and discussion

4.1 Settling (Case 1)

First, we investigate the effects of mechanical settling on the
snowpack (Case 1 in Table 2) and in particular the evolution
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Figure 4. Plots show the results of Case 1 of Table 2, corresponding to isolated settling effects. Panel (a) depicts vertical velocity over snow
height. The profiles show the state of the snowpack at initiation, after 16 and after 48 h. It is clearly visible that vertical velocity and absolute
snow height decrease with time. Panel (b) depicts the ice volume fraction over time. We interpret the lower, lighter part of the plot, where
changes in the ice volume fraction are clearly discernible, as the lower layer and the darker, upper part of the plot as the upper layer. Changes
in ice volume fraction are visible in the lower layer; it increases the most at the bottom of the snowpack.

Figure 5. Snow density profiles (x axis) over snow height (y axis)
at initiation and after 16, 32 and 48 h. Snowpack height decreases
and snow density increases with time at all locations, but they do so
the most in the lower part of the snowpack.

of the vertical velocity (Fig. 4a) and the ice volume fraction
(Fig. 4b). The vertical velocity decreases from top to bottom
and relaxes during the first 48 h. Vertical velocity varies more
in the lower layer compared to in the upper layer within one
time step. This pattern remains prominent as time proceeds
while the overall velocity variation decreases. This effect is
due to the increase in the overburdened snow mass from top
to bottom. Settling proceeds the fastest just after the start of
the simulation, when the snowpack is at maximum height,
and correspondingly its snow density is the lowest. In the
course of time the ice volume fraction increases faster in
the lower layer than in the upper layer, and it is the high-
est at the bottom of the snowpack (Fig. 4b). This observation
is also visualized in Fig. 5, which depicts profiles of snow
density. Furthermore, the extent of the upper layer decreases
only slightly, approximately 3.5 cm, over the simulation time,
whereas the lower layer reduces to half of its initial height
(approximately 12.5 cm). These effects are expected and re-

flect the correlation between the amount of compaction and
the total overburdened mass. The total settlement of 14 cm
after 2 d means a 30 % snow height reduction. Bartelt and
Christen (2007) simulated an 11.6 to 54.8 cm snow height
reduction after 5 d for an initially 90 cm high snowpack of
115 kgm3 density, which is a snow height reduction of 12 %
to 60 %. Taking into account that snow settles more slowly
with increasing density, our results fit to the highest settling
rate derived by Bartelt and Christen (2007).

4.2 Heat transport in the absence and presence of
settling (Cases 2 and 3)

In this subsection, we first consider isolated heat transport.
This simulation scenario refers to Case 2 in Table 2. Tem-
perature (Fig. 6a) and temperature gradients (Fig. 6c) reach
a stationary state after approximately 60 h. Heat flux differ-
ences between the two layers are clearly visible in the tem-
perature gradient plot. Next, heat transport is superposed by
mechanical settling (Fig. 6b and d), representing Case 3. As a
result, snow height decreases while the internal temperature
profiles evolve. Active mechanical processes yield a steep-
ened temperature gradient and hence a higher value of the
heat flux (Fig. 6d). This effect can be attributed to

– the decrease in snow height while keeping the tempera-
tures at the boundaries fixed and

– the permanent change in thermal conductivity and ther-
mal diffusivity due to their dependency on variations in
the ice volume (Eq. A3).

The temperature profile will reach the stationary state once
the ice volume fraction has reached its maximum value.
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Figure 6. Panels (a) and (c) show the results for Case 2 of Table 2 corresponding to heat transport being solely active. Panels (b) and (d) show
the results for Case 3 of Table 2 corresponding to active heat transport and mechanical settling. For each plot the y axis represents snow
height and x axis time. The plots in the top row (a, b) show the temperature evolution, and the plots in the bottom row (c, d) show the
respective temperature gradients. In (a) and (c) settling is inactive, so the boundary of upper layer and lower layer is at the snowpack center.
In (b) and (d), we interpret the upper, darker part, which is characterized by higher gradients, as the upper layer and the lower, lighter area
with lower gradients as the lower layer. The initial conditions for both cases are equivalent (see Fig. 3). In Case 2 the temperature profile (a)
has reaches the stationary, piecewise linear profile after approximately 60 h. In Case 3 the temperature profile (b) is not yet stationary at the
end of the simulation (96 h) as mechanical processes are still yielding a change in the ice volume fraction. The temperature gradient (c) will
become constant only when the maximum ice volume fraction has been reached.

4.3 Heat and vapor transport in the absence and
presence of settling (Cases 4 and 5)

By using the vapor formulation from Hansen and Foslien
(2015), transport of vapor through and phase changes in
the snowpack both require an apparent temperature gradient
such that the evolution of vapor transport can only be consid-
ered in conjunction with heat transport. In Fig. 7a, we com-
pare the deposition rate (negative for sublimation) due to heat
and vapor transport only (Case 4 in Table 2) with the depo-
sition rate obtained when considering additional settling pro-
cesses, representing the fully coupled processes (Case 5 in
Table 2). Both profiles are characterized by moderate depo-
sition rates throughout the snow column with a pronounced
negative (sublimation) peak at the center of the snow column,
which is located in the transition area of the layers. The pro-
file for the fully coupled processes shows a higher sublima-
tion peak (approximately 4 times higher). Figure 7b shows
the time evolution of the fully coupled processes (Case 5). In
the first hours, sublimation is low in the transition area. After
approximately 6 h, the pronounced sublimation rate peak, as
already described for (Fig. 7a), develops and increases until

the end of the simulation (48 h). The increased sublimation in
the layer transition area may be driven by strong vapor den-
sity gradients (Fig. 7c) above the transition area that can be
inferred from a strong, local temperature gradient (Fig. 7d).
This temperature gradient is further enhanced (Fig. 6d) by
compaction due to settling for Case 5, which yields even
stronger variations in the material properties in the transi-
tion area than without compaction and explains the stronger
sublimation rates for the fully coupled processes.

Furthermore, both profiles in Fig. 7a show a small peak in
the deposition rate (positive x direction) just above the afore-
mentioned sublimation rate peak. This peak is very weak for
Case 4 and more prominent for Case 5. This deposition rate
peak is highly interesting as it is interpreted as the onset of
spatio-temporal oscillations as observed and investigated in
greater detail in the companion paper (Schürholt et al., 2021).
Schürholt et al. (2021) describe these wiggles as “smooth os-
cillations” that are “intrinsic features” of the equations. The
results in Fig. 7a nicely demonstrate that (a) our Eulerian–
Lagrangian scheme can capture this behavior and (b) the in-
stability prevails and even increases in the presence of set-
tling processes. The results suggest that mechanics likely in-
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Figure 7. Panel (a) shows two deposition rate profiles over the normalized snow height after 2 d. The solid line represents the results of heat
and vapor transport in the absence of settling for Case 4 of Table 2. The dashed line refers to Case 5 of Table 2, which additionally accounts
for settling. Sublimation rates (negative deposition rates) for Case 5 (fully coupled processes) are increased by approximately a factor of 4
with respect to Case 4 without settling. At the top of the sublimation peak for both cases, a slight peak in the deposition rate is visible.
Panel (b) shows the deposition rate profile evolution for Case 5. A pronounced sublimation rate peak in the transition area is first visible after
approximately 6 h and increases with time. We interpret this area of increased sublimation (red line in the center) as the boundary of the upper
and lower layer. Panel (c) shows the evolution of the vapor density gradient. The gradient at the bottom of the upper layer (at approximately
20 and 15 cm height after 16 and 48 h) increases with time. Panel (d) shows the evolution of the temperature gradient with time. Overall the
temperature gradient is higher in the upper compared to in the lower layer. The lobes at the top and bottom at the start of the simulation in
(b–d) are due to the strong phase change activity and heat flux triggered by the initial and boundary conditions.

crease local phase change activity in the vicinity of layer
boundaries, which potentially has a large effect on weak
layer formation.

The deposition rates obtained with our model are between
−2 and 2 kgm−3 d−1, which fits to the range of −1.728 to
1.728 kgm−3 d−1 presented in Jafari et al. (2020). Sublima-
tion rate peaks on the order of 0.1 to 1.2 kgm−3 d−1 have
also been computed with the numerical test cases by Hansen
and Foslien (2015). For comparison with experiments, de-
position rates can be derived via SSA · vn · ρi, with vn be-
ing the ice crystal’s interface growth velocities and SSA the
ice’s specific surface area (see Calonne et al., 2014, Eq. 21
therein). For a simple characteristic scale analysis, we con-
sidered SSA in the range of 0.6× 104 to 1×104 m−1 (Schleef
et al., 2014) and an interface growth velocity on the order
of 1× 10−9ms−1 (Krol and Löwe, 2016; Calonne et al.,
2014). Combining these literature values yields deposition
rates on the order of 0.5× 104 kgm−3 d−1, which is signif-
icantly larger than our simulation results. Interface growth
velocities on the order of 10−13 or 10−14 ms−1 would match
with the simulated magnitudes for the deposition rate.

Lastly, we evaluate the impact of included higher-order
mesh errorsET andEc (see Sect. 3.4) on the temperature dis-
tribution. We determine the error by computing the temper-
ature deviation between the solution that considers higher-
order mesh errors and the solution that does not. The devi-
ation is then quantified in an L1 norm. The error increases
with simulation time and is 0.13 K after 24 h, 0.23 K after
36 h and 0.28 K after 48 h. After 48 h the deviation is highest
for the computational nodes just above the layer transition,
where high temperature gradients are present (see Fig. 6).
Note that the error for the deposition rate could be derived
similarly. From the temperature error, the deposition rate er-
ror can be derived as the deposition rate is directly derived
from temperature via the vapor transport equation; we con-
sider one error measure as sufficient to emphasize the impact
of mesh errors.
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Figure 8. The plots show ice volume fraction profiles over the normalized snow height after 2 d. (a) Case 1 (Table 2) depicts the ice volume
fraction corresponding to solely active settling, and Case 5 refers to the fully coupled processes. Panel (b) zooms in to the density transition
area of (a). The kink in the profile of Case 5 shows the effect of the increased sublimation in Fig. 7 that yields a local decrease in the ice
volume fraction. In order to better resolve the kink of Case 5, we increased the number of grid nodes to 251.

Figure 9. The plots show the evolution of the ice volume fraction (a) and viscosity (b) for 4 d for Case 7 of Table 2, which refers to the fully
coupled processes combined with a dynamically varying viscosity. Snow height is depicted on the y axis. The upper and lower layers are
interpreted in both plots as the darker areas in the upper part and the lighter areas in the lower part. In (a) ice volume fraction increases most
at the bottom of the upper layer. The lower layer consolidates less than the upper layer. In (b) viscosity increases more slowly in the upper
layer and increases faster (by up to 1 order of magnitude) in the lower layer.

4.4 Settling-induced evolution of the ice volume
fraction in the absence and presence of transport
(Cases 1 and 5)

In this section, we compare isolated settling (Case 1 in Ta-
ble 2) and the fully coupled processes (Case 5 in Table 2)
with respect to their impact on the evolving ice volume frac-
tion. Figure 8 shows the corresponding ice volume fraction
profiles after 2 d. Both profiles are very similar (Fig. 8a),
which suggests that the density evolution is dominated by
settling processes and coupled heat and vapor transport play
a minor role. When focusing on the upper boundary of the
transition area (Fig. 8b), we find however a locally decreased
ice volume fraction for the fully coupled processes (Case 5).
This suggests a local ice volume decay for active vapor trans-
port and implies phase changes. This observation is consis-
tent with the enhanced sublimation rate observed in Fig. 7
and indicates the formation of a density heterogeneity.

4.5 Heat and vapor transport coupled to settling with a
dynamic viscosity (Cases 4, 6, and 7)

Figure 9 shows the evolution of the ice volume fraction and
viscosity over 4 d for Case 7 (Table 2), which is the fully cou-
pled processes coupled to dynamic viscosity. The ice volume
fraction increases gradually throughout the snow column
(Fig. 9a). In Fig. 9b, we see that the viscosity of the upper
layer has smaller values, and they also increase more slowly
compared to viscosity values in the lower layer. In contrast,
viscosity increases by approximately 1 order of magnitude in
the lower layer. This derives from the applied viscosity for-
mula that is controlled by the variables of temperature and ice
volume fraction. Based on the formula, viscosity varies more
with respect to ice volume fraction changes than to temper-
ature changes. The ice volume fraction varies more in the
lower layer, which then also yields more variation in viscos-
ity. Additionally, the height of the lower layer decreases less
than that of the upper layer. This outcome may be related to
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Figure 10. Panel (a) shows the ice volume fraction over the normalized snow height after a 3 d simulation time obtained with a dynamic
viscosity. Case 6 (Table 2) corresponds to mechanical settling solely, and Case 7 represents the fully coupled processes. Panel (b) shows
the deposition rate over the normalized snow height for Case 7 and Case 4 after a 3 d simulation time. Case 4 represents heat and vapor
transport in the absence of settling. For the fully coupled processes (Case 7) the sublimation rate peak at the layer transition is slightly lower
compared with inactive settling (Case 4). Both peaks are approximately at the same location of the normalized snow height. Case 7 shows
reduced deposition rates in the area above the peak compared with Case 4. Case 7 also has a small peak in the deposition rate just above the
sublimation rate peak.

the lower layer’s higher viscosity (higher resistance to defor-
mation).

Figure 10a compares the ice volume fraction profiles af-
ter a 3 d simulation time of Case 7 to those of Case 6 (fully
coupled processes, non-dynamic viscosity). For the dynamic
viscosity, the ice volume fraction is higher in the lower layer
and lower in the upper layer compared to that of constant vis-
cosity. This is due to the dynamic viscosity’s temperature de-
pendence. Temperatures at the bottom are close to the melt-
ing point and yield lower viscosities. Thus, settling proceeds
faster and compaction is stronger in the lower part. The oppo-
site is true for the upper layer. Since we used an intermediate
value of 263 K to derive the constant viscosity, variations in
the center of the snowpack are less pronounced. Figure 10b
shows the deposition rate of Case 7 compared with Case 4,
which refers to deactivated settling. Similarly to Fig. 7 both
deposition rate profiles have a sublimation rate peak in the
transition area. Dissimilar to Fig. 7b is that the peaks are ap-
proximately at the same normalized snow height and that the
peak of the fully coupled processes is not higher than the one
of deactivated settling. Instead Case 7 shows less deposition
in the vicinity of the transition area above the sublimation
rate peak compared to Case 4. This suggests that the subli-
mation rate peak is less pronounced when coupled to the pro-
posed dynamic viscosity, but settling still has an effect on the
deposition rate. Additionally, Case 7 shows the small peak in
deposition rate just above the sublimation rate peak, which is
similar to Case 4 and discussed in Sect. 4.3.

4.6 Non-linear Glen’s law in a fully coupled
dry-snowpack model of constant viscosity (Case 8)

In this simulation scenario, we present the results of the fully
coupled processes for the non-linear Glen’s law (Eq. 3 with
m= 3, Case 8). As discussed before (Sect. 2.3), the viscos-
ity closure (whether it is a constant value or an empirical
closure) strongly depends on the choice of the Glen parame-
ter m. This requires us to adjust the constant-viscosity value
accordingly; see Sect. 2.3 for details.

Figure 11a (Case 8 in Table 2) shows vertical velocity pro-
files and the evolution of the ice volume fraction with time.
The vertical velocity is almost constant in the upper layer
and then decreases in the lower layer. This effect is similar
to the vertical velocity profiles as presented and explained
for the linear version of Glen’s law (Fig. 4a), but it is more
pronounced due to the non-linearity in the constitutive law.
Compared with previous scenarios, the overall vertical ve-
locity is lower. This is probably related to the magnitude of
the constant viscosity and cannot be directly related to the
non-linear constitutive law. A further sensitivity study in the
future would be most informative.

In Fig. 11b the upper layer’s ice volume fraction and thick-
ness remain almost constant with time. In contrast, the lower
layer decreases 9 cm in height while the ice volume fraction
increases with time from top to bottom.

As shown for Case 7 (Fig. 7a) the deposition rate profile
shows a sublimation peak in the layer transition area (Ap-
pendix D1) that increases with time. Overall, however, depo-
sition rates tend to be lower compared to those of preceding
computations. The reduced phase change activity in the layer
transition area can be directly related to smaller vertical vari-
ations in the temperature profile. This effect may be due to
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Figure 11. The plots show vertical velocity profiles over snow height (a) and the evolution of the ice volume fraction (b) for Case 8 of
Table 2, which refers to the fully coupled processes combined with a non-linear Glen’s law. Velocity (a) varies less compared with a linear
version of Glen’s law, which yields a more uniform evolution of the snowpack’s ice volume fraction (b). In (b) we interpret the locations of
the upper layer as the darker area with an almost constant extent in the upper part and that of the lower layer as the slightly lighter area below.

less variation in the vertical velocities that yield a more uni-
form deformation and a less pronounced variation in the ice
volume fraction across the layer transition area.

4.7 Comparison against layer-based schemes (based on
Case 6)

In this section, we compare results of our proposed Eulerian–
Lagrangian scheme with conventional layer-based models.
We would like to emphasize that a two-layer snowpack
model certainly constitutes an extremely simplified case, as
layer-based schemes are usually operated with a significantly
higher number of snow layers. Yet it is informative to con-
duct this analysis to point out differences, as these can cer-
tainly accumulate during long simulation times.

In layer-based snowpack models state variables are as-
signed layerwise, and the two-layer snowpack (Fig. 3) would
have three computational nodes at the following locations:
at the bottom of the lower layer, at the top of the lower layer
and at the top of the upper layer. The two nodes located at the
top of the lower and upper layers would then represent the
physical state of the lower and the upper layer, respectively.
Velocity is again derived from stress exerted by the overbur-
den snow mass. Since the upper layer is represented by the
computational node at the top, it is unloaded and requires a
special treatment for stress. We adopt the approach by Vion-
net et al. (2012) and apply a “non-physical stress” equivalent
to half of the layer’s own weight, yet we apply it to the upper-
most computational node (Sect. 3.4 in Vionnet et al., 2012).
Next, vertical velocity is computed likewise with Eq. (7) and
viscosity with Eq. (4). We compare both approaches based on
Case 6 of Table 2, hence in the presence of mechanical set-
tling and for a dynamic viscosity closure. Since we neglect
heat and vapor transport, the viscosity changes over time are
solely due to the evolution of the ice volume fraction alone.

In Fig. 12, we see that the layer-based scheme sustains a
layerwise vertical velocity (Fig. 12a) and ice volume fraction

evolution (Fig. 12c): one value for the velocity and one value
for the ice volume fraction describe an entire layer. In con-
trast, using the generalized Lagrangian approach described in
Sect. 3, we yield a sublayer resolution of the vertical veloci-
ties (Fig. 12b) and ice volume fractions (Fig. 12d). For both
approaches (layer-based and Eulerian–Lagrangian) the verti-
cal velocity is higher in the top part of the snowpack and zero
at the bottom. For early times, the layer-based scheme deter-
mines a vertical velocity that is 1 order of magnitude higher
than values computed with the Eulerian–Lagrangian scheme.
This may be related to the comparably high (non-physical)
stress at the top of the upper layer. At the end of the simu-
lation, the snowpack has settled almost twice as much with
the layer-based scheme, which highlights the impact of this
conceptual difference. This effect may result from an over-
estimation of velocity with layer-based schemes. Following
our proposed method, the ice volume fraction is higher in
the lower part of the snowpack and reaches higher values
(Fig. 12d). Furthermore, the ice volume fraction at the top
of the snowpack does not change during the simulation since
there is no stress from overburden mass. In contrast, for the
layer-based scheme ice volume fraction grows at this location
(Fig. 12c). This is again due to the chosen stress condition at
the top. Of course this discrepancy becomes smaller as we
increase the number of layers, and this effect may reduce.
However this slight offset in the stress condition will always
be present and lead to uncertainties. In the proposed compu-
tational approach the spatial resolution of processes can be
easily changed to assess its impact on snowpack evolution. In
a future study, it might be interesting to quantitatively com-
pare results against Jafari et al. (2020), who also rely on a
rather fine spatial resolution.
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Figure 12. The plots show the temporal evolution of vertical velocity (top row) and the ice volume fraction (bottom row) for Case 6 of
Table 2 corresponding to solely active mechanical settling. The y axis depicts snow height. For (b) and (d), we applied our highly discretized
settling scheme, and for (a) and (c), we mimicked the layerwise discretization of layer-based schemes. Snow viscosity is controlled by the
ice volume fraction alone, since heat transport is inactive. In (a) and (c) the lower and upper layer are resolved as the darker upper and
brighter lower parts of the snowpack. Their respective values refer to the computational nodes at the top and between the two layers. The
values retrieved for the lowest node do not represent an entire layer and are depicted at height zero. For the layer-based scheme, one velocity
or ice volume fraction value represents the movement or density of the entire layer. In contrast, with our approach vertical velocity varies
throughout each layer in (b) so that the ice volume fraction increases within layers and develops a gradual pattern (d). For (b) and (d), we
interpret the locations of the upper and lower layers as the darker upper and brighter lower areas, respectively, in (d).

4.8 Thin layers at the top and bottom of the snowpack
(Case 5)

For the final scenario we implement a thin layer at the top
and at the bottom of the two-layer snowpack. With this test
case we want to show our model’s feasibility for a potential
future comparison with operational snowpack models such
as Crocus that sustain layers at the top and bottom of the
snowpack (Vionnet et al., 2012).

The initial condition for snow density is in principle equiv-
alent to Fig. 3 except that the upper and lower 2 cm now
form a new layer each, of 50 and 200 kgm−3, respectively.
The transition to the neighboring layer is linearly smoothed
out over 1 cm for both thin layers. Figure 13a shows the ice
volume fraction profiles for three times. The profile for 0 h
reflects the initial condition for the ice volume fraction. The
three layer transitions are discernible as steps in the profiles.
Figure 13b depicts the deposition rate evolution. Sublimation
is stronger at the layer transitions but shows a different evo-
lution at all transitions. While the uppermost layer transition
remains at a constant sublimation rate with time, sublimation

at the lowermost layer transition is very strong in the begin-
ning and then decreases. The central layer transition shows
that sublimation continuously increases until the end of the
simulation time. This is consistent with our observations in
Fig. 7b. Figure 7a and b show that after 48 h the lowermost
thin layer has been reduced to less than half its initial height
while the upper thin layer’s thickness has remained almost
constant. We suggest that the initially strong sublimation for
the lowermost transition area is related to high temperature
gradients at the lower boundary at the start of the simulation.
Sublimation then reduces due to effects from consolidation.
The effects of settling are very small in the vicinity of the
uppermost layer transition, and the density difference in the
layers is only 25 kgm−3, which explains the constant and in-
termediate sublimation rate.

5 Summary and conclusions

In this paper, we described in detail a hybrid Eulerian–
Lagrangian computational approach to model the evolution
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Figure 13. The simulations were carried out based on Case 5 of Table 2, which is the fully coupled processes with constant viscosity.
Panel (a) shows the profiles for the ice volume fraction (x axis) over snow height (y axis) for a test case that has a thin layer at the top and
bottom of the snowpack. The line corresponding to 0 h shows the initial condition for the ice volume fraction. The thin layers at the top and
bottom each have a thickness of 2 cm. Panel (b) depicts the evolution of the deposition rate. The three transition areas of the four layers are
characterized by increased sublimation rates (after 16 h at snow heights 42, 20 and 2 cm). The lobes at the top and bottom at the start of the
simulation are due to the strong phase change activity triggered by the initial and boundary conditions.

of a dry snowpack. The model accounts for transport of heat
and vapor, phase changes (sublimation and deposition), and
mechanical settling processes. The ice mass balance is ex-
plicitly accounted for in the model formulation. It captures
the evolution of the ice volume fraction in response to settling
and phase changes. It constitutes an advection-dominated
partial differential equation of hyperbolic type and is there-
fore conveniently solved with the method of characteristics,
a popular Lagrangian-type scheme for such processes. Here,
Lagrangian refers to the fact that the scheme tracks the mo-
tion of small reference volumes within the snow column by
adjusting the node positions while at the same time account-
ing for phase changes within the moving snow. Solving the
ice mass balance requires us to specify the vertical velocity as
well as the mass production rate (sublimation rate/deposition
rate). A closure for the velocity is derived by combining a
common mechanical stress–strain relation with Glen’s law
and numerically approximating the resulting integrals. The
deposition rate is due to vapor transport through a varying
temperature field and can be determined from a diffusive-
type process model that accounts for simultaneous heat and
vapor transport. Due to its diffusive type (parabolic), a fixed-
grid approach is most appropriate, referred to as an Eulerian
approach. More specifically, we solved coupled heat and va-
por transport by means of a first-order implicit-in-time finite-
difference approximation. The Eulerian scheme for the pro-
cess model’s diffusive part complies with the non-uniform
mesh that results from the Lagrangian scheme for the ice
volume fraction evolution. In order to solve the complete
dry-snow process model for the coupled evolution of the ice
volume fraction, temperature field, vapor field and settling
processes, the Eulerian and Lagrangian parts are iteratively
applied following a straightforward operator split approach.

We have implemented our proposed numerical scheme as a
series of sequential updates within one simulation time step.
The implementation follows a modular, extendable approach,
such that each process building block can easily be consid-
ered or neglected for verification or validation purposes. We
applied our numerical core to conduct a series of simulation
scenarios comprising isolated processes (pure settling, pure
heat transport), two-process coupling scenarios (heat trans-
port in the presence of settling, coupled heat and vapor trans-
port) and fully coupled processes (heat and vapor transport
in the presence of settling). We furthermore investigated dif-
ferent viscosity closures as well as a linear and a non-linear
version of Glen’s law. A two-layer snowpack, consisting of
a lower layer of higher density and an upper layer of lower
density, served as a test case to demonstrate the feasibility of
our approach. We simulated fields and profiles for the tem-
perature, deposition rate, ice volume fraction and vertical ve-
locity with a high spatial (∼mm to cm) and temporal (∼ s
to min) resolution.

We showed that our model implementation facilitates the
comparison of various parametrizations and processes. This
is enabled by the following:

– Our Eulerian–Lagrangian scheme along with its vector-
ized implementation is flexible and extendable. Alterna-
tive model closures, e.g., for the viscosity and the ver-
tical velocity, can easily be integrated. To close for the
velocity, we have successfully tested a non-linear strain
rate closure commonly used in firn models (Lundin
et al., 2017). The Lagrangian part of the solver (that
accounts for the evolution of the ice volume fraction)
can be singled out and coupled to an alternative process
model, e.g., when accounting for firn conditions instead
of dry snow.
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– The combination of an implicit Eulerian routine for the
diffusion-dominated operators (that controls the time
stepping) and a Lagrangian routine for the advection-
dominated operators ran stably and robustly for all con-
sidered simulation cases (different viscosity closures,
different versions of Glen’s law).

– The numerical scheme allows for a high spatial reso-
lution that resolves processes on the sublayer level. By
construction, it relies on a mechanically consistent ver-
tical velocity. This improves the accuracy since it makes
the ad hoc specification of an artificial stress value for
the uppermost layer (e.g., Vionnet et al., 2012), as re-
quired for conventional layer-based schemes, obsolete.

– The modular setup of the software allows a systematic
study of various model formulations, in which we se-
lectively considered different combinations of process
building blocks without fine-tuning the stability of the
solver. This is important to enable empirical–numerical
investigations of the relevance of different process cou-
plings.

– The incorporation of the higher-order mesh errors into
the vapor and heat transport equations that account for
deviations due to the non-uniform mesh increases accu-
racy especially in areas of large variations in node dis-
tance and of high temperature gradients.

In this paper, we mostly relied on numerical approxima-
tions that are of either first order (time integration and oper-
ator splitting) or second order (diffusion operator); the cor-
responding numerical solvers can be extended without con-
ceptual difficulty, e.g., changing from a first-order time inte-
gration to a higher-order-in-time integrator. We commented
on this in the relevant section (Sect. 3). Our simulation con-
sistently showed that vapor transport and phase change in
the presence of strong temperature gradients can induce a
stronger phase change activity and in particular a localized
sublimation rate peak above the transition area between two
layers. We furthermore showed that this has the potential
to result in a localized ice volume fraction reduction above
the transition area. This in itself is not new, as a similar be-
havior has been deduced in Hansen and Foslien (2015) and
analyzed in detail in our companion paper (Schürholt et al.,
2021). In addition to the existing results, we have shown that
the increased phase change activity persists in the presence
of settling (even more pronounced), for a constant-viscosity
closure in combination with a linear as well as a non-linear
version of Glen’s law.

6 Future work and challenges

In our paper, we deliberately focused on discussing modu-
larity and extendability in the context of snowpack model-
ing, e.g., by assessing a whole process cascade for one rela-
tively simplified physical setting. In order to discuss these
aspects in depth, we restricted ourselves to one relatively
simple physical setting. We are well aware that as of today,
our proposed numerical approach is not ready for operational
use, and that was not our intention. At this point in time, we
rather would like to contribute to the discussion on how fu-
ture snowpack modeling can benefit from a consistently for-
mulated, hybrid Eulerian–Lagrangian solver. Nevertheless,
it is important to discuss whether the suggested scheme is
amenable to further extensions required for an operational
snowpack model.

Most importantly, the proposed scheme would need
a generalization for surface mass gain (precipitation) or
losses (sublimation). This bears two technical challenges.
First, concurrent settling and precipitation result in a non-
monotonic vertical motion of the snowpack’s upper surface,
for which several techniques have been proposed in the past,
e.g., based on a regularization approach (Wingham, 2000) or
via kinetic boundary conditions as applied to sedimentation
on ocean floors in Audet and Fowler (1992). A straightfor-
ward approach based on appending the computational grid
sequentially during precipitation events likewise seems com-
putationally feasible. A second challenge associated with the
incorporation of precipitation events is the question of how
to initialize the complete state (temperature, vapor and de-
position rate) in the new snow layers. The latter is less crit-
ical in conventional layer-based schemes, as the necessary
information reduces to “one value per layer”. While the first
challenge mostly consists in overcoming technical subtleties
in the actual implementation, the second requires a thought-
ful formulation of physically consistent boundary conditions.
Neither of the two challenges seems to pose a severe risk.

Another important addition to our proposed snowpack
model is the presence of liquid water in the snow. Concep-
tually, similar modeling approaches could be used to derive a
model for wet snow. While including potential phase changes
from melting and freezing could be straightforwardly im-
plemented via the source term c, it is the advective trans-
port of liquid water that is more demanding. Liquid water
transport is commonly modeled via the Richards equation
(Wever et al., 2014) which would benefit from existing hy-
brid Eulerian–Lagrangian solution strategies, as shown for
saturated media without mechanical settling (Huang et al.,
1994). Furthermore, a model for wet snow requires a sec-
ond energy balance to account for the liquid water tempera-
ture. Once set up, it can be integrated into our computational
workflow (Fig. 2).

Finally, operational models generally include the capabil-
ity to account for topological change within the snow col-
umn, to capture either layer coalescence if two initially sep-
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arated snow layers merge into one or layer separation if an
initially homogeneous layer splits into two. By construction,
our computational approach does not require a dedicated
treatment for layer coalescence or separation. Both are im-
plicitly accounted for in the continuous description of stratig-
raphy as long as the feature that is to be resolved is larger than
the chosen spatial resolution of the computational grid. In
the current version of our model we use a dynamic time step
adaptation based on the mesh Fourier number, which leads to
a decreasing time step size from 40 s at initiation to 3 s after
48 h. Layer coalescence, e.g., after certain time intervals or
whenever a specific time step size is undercut, could facili-
tate longer simulations runs. Otherwise the resolution can be
increased to avoid layer split-ups for regions with high gra-
dients. Furthermore, our approach prevents the complete de-
generation of layers as the ice volume fraction is constrained
by the snow’s maximum apparent density per construction
of the scheme. Yet, while the theory suggests that layer coa-
lescence and separation are not problematic, there might still
be troublesome realistic test cases, especially when thinking
about long simulation times. In order to address these and
verify robustness, a series of benchmark tests have to be con-
ducted. If necessary, the Eulerian–Lagrangian scheme in its
current version can be equipped with occasional re-meshing
(along with a re-sampling of field variables) triggered by the
degeneration of well-defined mesh quality criteria.

We believe that a flexible and extendable computational
approach, such as the one described in this paper, will be
key for future snowpack modeling to facilitate the use of
standardized benchmark problems (potentially used during a
continuous integration) and allow us to systematically assess
the model’s predictive power, including uncertainty quantifi-
cation, parameter estimation and model selection.

Appendix A: Formulas required for the process model

A1 Vapor saturation density

An empirical expression for the vapor saturation density
ρ

eq
v (T ) in terms of temperature T is formulated based on

the empirical formulation for vapor saturation pressure from
Libbrecht (1999) and reads

ρ
eq
v (T )=

exp
(
−
Tref
T

)
f T

(
a0+ a1(T − Tm)+ a2(T − Tm)

2
)
, (A1)

with coefficients a0= 3.6636× 1012 kgm−1 s−2,
a1=−1.3086× 108 kgm−1 s−2 K−1,
a2=−3.3793× 106 kgm−1 s−2 K−2,
f = 461.31 Jkg−1 K−1, Tm= 273.15 K and Tref= 6150 K.
f is the specific gas constant for water vapor. Note that
division by f T accounts for the conversion from pressure
(Pa) (as used in Part 1) to density (kgm−3).

A2 Model parameters in the transport and phase
change equations

The effective vapor mass diffusion coefficient Deff(φi) in
terms of the ice volume fraction φi is taken from Calonne
et al. (2014) but is extended by the heaviside function 2 to
hinder vapor diffusion for ice volumes above two-thirds:

Deff(φi)=D0

(
1−

3
2
φi

)
2

(
2
3
−φi

)
, (A2)

with D0= 2.036× 10−5 m2 s−1 being the vapor diffusion
constant in air.

The effective thermal conductivity keff(φi) in terms of the
ice volume fraction φi is taken from Calonne et al. (2011)
and reads

keff(φi)= a0+ a1(φiρi)+ a2(ρiφi)
2, (A3)

with coefficients a0= 0.024, a1=−1.23× 10−4 and
a2= 2.5× 10−6 and ice density ρi.

The effective heat capacity (ρC)eff(φi) in terms of the ice
volume fraction φi is taken from Calonne et al. (2014) and
Hansen and Foslien (2015) and reads

(ρC)eff(φi)= φiρiCi+ (1−φi)ρa,Ca , (A4)

with Ci being ice heat capacity, Ca air heat capacity, ρi ice
density and ρa air density.

A3 Constant viscosity for the two-layer case

A3.1 Linear Glen’s law, ηconst,m=1

We derived intermediate ice volume fraction
φi,const= 0.1125 and temperature Tconst= 263 K values
from the initial condition of the two-layer case and insert
them as constants into Eq. (4).

A3.2 Non-linear Glen’s law ηconst,m=3

Equation (4) does not hold for the Glen exponent m= 3;
therefore we derive an adjusted constant viscosity ηconst,m=3
via the constitutive equation (Eq. 3)

ε̇lit =
1

ηconst,m=3
σmax , (A5)

with ε̇lit ≡ 10−6 s−1 being a strain rate value from the liter-
ature (Johnson, 2011) and σmax ≡ 547.71 Pa the maximum
stress value obtained from the initial snow density profile of
the two-layer case. Equation (A5) is then solved for the con-
stant viscosity ηconst,m=3.

A3.3 Restrict infinite ice volume growth

To hinder infinite ice volume growth, the constant viscos-
ity ηconst,m is combined with a power law that yields expo-
nential growth of viscosity for cells with φi > 0.95:

PL(φi)= exp(pl1φi−pl2)+ 1, (A6)
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with pl1= 690 and pl2= 650. The constant viscosity is
then multiplied with the power law (ηconst,mPL(φi)) so that
computational nodes with φi > 0.95 are assigned and viscos-
ity grows exponentially. Note that for better readability the
multiplication with the power law is omitted in the equations
of this paper.

Appendix B: Higher-order mesh errors to correct for
non-uniform mesh

For the temperature equation (Eq. 22) the higher-order mesh
error is

ET

(
T n+1
k+1 ,T

n+1
k−1

)
=

2βT ,k(
1znk

)2
+
(
1znk−1

)2 1znk −1znk−1

1znk +1z
n
k−1

·

(
T n+1
k+1 − T

n+1
k−1

)
, (B1)

and for the vapor transport equation (Eq. 23) it is

Ec

(
T n+1
k+1 ,T

n+1
k−1

)
=

2βc,k(
1znk

)2
+
(
1znk−1

)2 1znk −1znk−1

1znk +1z
n
k−1

·

(
T n+1
k+1 − T

n+1
k−1

)
. (B2)

For the matrix equations Eqs. (25) and (24) the higher-
order mesh errors are defined as ET and Ec.

Appendix C: Matrices from temperature and vapor
transport equations

Matrix A is defined as follows:

A=



Anm,0 0 0 · · · 0 0 0
Anl,1 Anm,1 Anu,1 · · · 0 0 0

0 Anl,2 Anm,2 · · · 0 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 0 0 · · · Anm,nz−2 Anu,nz−2 0
0 0 0 · · · Anl,nz−1 Anm,nz−1 Anu,nz−1
0 0 0 · · · 0 0 Anm,nz


. (C1)

For the heat equation (Eq. 24) (AT) the entries are

Anl,k =1t
n

(
βnT ,k+1−β

n
T ,k−1(

1znk +1z
n
k−1

)2 −DnT ,k
)
, (C2)

Anu,k =−1t
n

(
βnT ,k+1−β

n
T ,k−1(

1znk +1z
n
k−1

)2 +DnT ,k
)
, (C3)

Anm,k= α
n
T ,k + 21tnDnT ,k , with Anm,0 = 1 and Anm,nz = 1, (C4)

and for the vapor transport (Eq. 25) (Ac) the entries are

Anl,k =−
βnc,k+1−β

n
c,k−1

(1znk +1z
n
k−1)

2 +D
n
c,k , (C5)

Anu,k =
βnc,k+1−β

n
c,k−1

(1znk +1z
n
k−1)

2 +D
n
c,k, (C6)

Anm,k =−
αnc,k

1tn
− 2Dnc,k , with Anm,0 =−

αnc,0

1tn
and Anm,nz

=−
αnc,nz

1tn
,

(C7)

with

Dnf,k =
2βnf,k

(1znk )
2+ (1znk−1)

2 forf ∈ {T ,c}. (C8)

Matrix B is defined as follows:

B=



αnm,0 0 0 · · · 0 0 0
0 αnm,1 0 · · · 0 0 0
0 0 αnm,2 · · · 0 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 0 0 · · · αnm,nz−2 0 0
0 0 0 · · · 0 αnm,nz−1 0
0 0 0 · · · 0 0 αnm,nz


. (C9)

For Eq. (24) (BT) the entries are

αnm,k = α
n
T ,k , (C10)

and for Eq. (25) (Bc) they are

αnm,k =
αnc,k

1tn
. (C11)

Matrix E is defined as follows:

E=



0 0 0 · · · 0 0 0
Enl,0 0 Enu,1 · · · 0 0 0

0 Enl,1 0 · · · 0 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 0 0 · · · 0 Enu,nz−2 0
0 0 0 · · · Enl,nz−1 0 Enu,nz−1
0 0 0 · · · 0 0 0


, (C12)

consisting of the terms for the heat equation (ET) (Eq. 24)

Enl,k =−1t
nDnT ,k

1znk −1z
n
k−1

1znk +1z
n
k−1

and (C13)

Enu,k =1t
nDnT ,k

1znk −1z
n
k−1

1znk +1z
n
k−1

(C14)

and for the vapor equation (Ec) (Eq. 25)

Enl,k =D
n
c,k
1znk −1z

n
k−1

1znk +1z
n
k−1

and (C15)

Enu,k =−D
n
c,k
1znk −1z

n
k−1

1znk +1z
n
k−1

. (C16)
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Appendix D: Additional figures

D1 Non-linear Glen’s law

Figure D1. The plot shows the deposition rate profiles for 16, 32
and 48 h simulation times for Case 8 (Table 2), which is the fully
coupled processes combined with the non-linear version of Glen’s
law. The y axis depicts snow height.
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