Articles | Volume 15, issue 11
https://doi.org/10.5194/tc-15-5205-2021
https://doi.org/10.5194/tc-15-5205-2021
Research article
 | Highlight paper
 | 
25 Nov 2021
Research article | Highlight paper |  | 25 Nov 2021

Seasonal evolution of Antarctic supraglacial lakes in 2015–2021 and links to environmental controls

Mariel C. Dirscherl, Andreas J. Dietz, and Claudia Kuenzer

Related authors

DeepOWT: a global offshore wind turbine data set derived with deep learning from Sentinel-1 data
Thorsten Hoeser, Stefanie Feuerstein, and Claudia Kuenzer
Earth Syst. Sci. Data, 14, 4251–4270, https://doi.org/10.5194/essd-14-4251-2022,https://doi.org/10.5194/essd-14-4251-2022, 2022
Short summary
Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades
Celia A. Baumhoer, Andreas J. Dietz, Christof Kneisel, Heiko Paeth, and Claudia Kuenzer
The Cryosphere, 15, 2357–2381, https://doi.org/10.5194/tc-15-2357-2021,https://doi.org/10.5194/tc-15-2357-2021, 2021
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Megadunes in Antarctica: migration and characterization from remote and in situ observations
Giacomo Traversa, Davide Fugazza, and Massimo Frezzotti
The Cryosphere, 17, 427–444, https://doi.org/10.5194/tc-17-427-2023,https://doi.org/10.5194/tc-17-427-2023, 2023
Short summary
Slowdown of Shirase Glacier, East Antarctica, caused by strengthening alongshore winds
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere, 17, 445–456, https://doi.org/10.5194/tc-17-445-2023,https://doi.org/10.5194/tc-17-445-2023, 2023
Short summary
Timescales of outlet-glacier flow with negligible basal friction: theory, observations and modeling
Johannes Feldmann and Anders Levermann
The Cryosphere, 17, 327–348, https://doi.org/10.5194/tc-17-327-2023,https://doi.org/10.5194/tc-17-327-2023, 2023
Short summary
Antarctic contribution to future sea level from ice shelf basal melt as constrained by ice discharge observations
Eveline C. van der Linden, Dewi Le Bars, Erwin Lambert, and Sybren Drijfhout
The Cryosphere, 17, 79–103, https://doi.org/10.5194/tc-17-79-2023,https://doi.org/10.5194/tc-17-79-2023, 2023
Short summary
Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries
Paul R. Holland, Gemma K. O'Connor, Thomas J. Bracegirdle, Pierre Dutrieux, Kaitlin A. Naughten, Eric J. Steig, David P. Schneider, Adrian Jenkins, and James A. Smith
The Cryosphere, 16, 5085–5105, https://doi.org/10.5194/tc-16-5085-2022,https://doi.org/10.5194/tc-16-5085-2022, 2022
Short summary

Cited articles

Alley, K. E., Scambos, T. A., Miller, J. Z., Long, D. G., and MacFerrin, M.: Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties, Remote Sens. Environ., 210, 297–306, https://doi.org/10.1016/j.rse.2018.03.025, 2018. 
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica, The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, 2020a. 
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Recent understanding of Antarctic supraglacial lakes using satellite remote sensing, Prog. Phys. Geogr., 44, 837–869, https://doi.org/10.1177/0309133320916114, 2020b. 
Banwell, A. F. and Macayeal, D. R.: Ice-shelf fracture due to viscoelastic flexure stress induced by fill/drain cycles of supraglacial lakes, Antarct. Sci., 27, 587–597, https://doi.org/10.1017/S0954102015000292, 2015. 
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013. 
Download
Short summary
We provide novel insight into the temporal evolution of supraglacial lakes across six major Antarctic ice shelves in 2015–2021. For Antarctic Peninsula ice shelves, we observe extensive meltwater ponding during the 2019–2020 and 2020–2021 summers. Over East Antarctica, lakes were widespread during 2016–2019 and at a minimum in 2020–2021. We investigate environmental controls, revealing lake ponding to be coupled to atmospheric modes, the near-surface climate and the local glaciological setting.