Articles | Volume 15, issue 11
https://doi.org/10.5194/tc-15-5205-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5205-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal evolution of Antarctic supraglacial lakes in 2015–2021 and links to environmental controls
Mariel C. Dirscherl
CORRESPONDING AUTHOR
German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Münchener Straße 20, 82234 Weßling, Germany
Andreas J. Dietz
German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Münchener Straße 20, 82234 Weßling, Germany
Claudia Kuenzer
German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Münchener Straße 20, 82234 Weßling, Germany
Institute of Geography and Geology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
Related authors
No articles found.
Andreas J. Dietz and Sebastian Roessler
The Cryosphere, 19, 3873–3877, https://doi.org/10.5194/tc-19-3873-2025, https://doi.org/10.5194/tc-19-3873-2025, 2025
Short summary
Short summary
The "Global SnowPack" product of the German Aerospace Center (DLR) contains binary information about the presence or absence of snow on a global scale since the year 2000. Now incorporating new input datasets, it was possible to increase the spatial resolution to 370 m. The detailed accuracy assessment proves the feasibility of the applied methods to remove data gaps caused by clouds and polar darkness.
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
The Cryosphere, 19, 2407–2429, https://doi.org/10.5194/tc-19-2407-2025, https://doi.org/10.5194/tc-19-2407-2025, 2025
Short summary
Short summary
We generated annual maps of snow melt-out days at 20 m resolution over a period of 38 years from 10 different satellites. This study fills a knowledge gap regarding the evolution of mountain snow in Europe by covering a much longer period and characterizing trends at much higher resolutions than previous studies. We found a trend for earlier melt-out with average reductions of 5.51 d per decade over the French Alps and 4.04 d per decade over the Pyrenees for the period 1986–2023.
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data, 17, 65–78, https://doi.org/10.5194/essd-17-65-2025, https://doi.org/10.5194/essd-17-65-2025, 2025
Short summary
Short summary
Glacier calving front positions are important for understanding glacier dynamics and constraining ice modelling. We apply a deep-learning framework to multi-spectral Landsat imagery to create a calving front record for 42 key outlet glaciers of the Antarctic Peninsula Ice Sheet. The resulting data product includes 4817 calving front locations from 2013 to 2023 and achieves sub-seasonal temporal resolution.
Thorsten Hoeser, Stefanie Feuerstein, and Claudia Kuenzer
Earth Syst. Sci. Data, 14, 4251–4270, https://doi.org/10.5194/essd-14-4251-2022, https://doi.org/10.5194/essd-14-4251-2022, 2022
Short summary
Short summary
The DeepOWT (Deep-learning-derived Offshore Wind Turbines) data set provides offshore wind energy infrastructure locations and their temporal deployment dynamics from July 2016 until June 2021 on a global scale. It differentiates between offshore wind turbines, platforms under construction, and offshore wind farm substations. It is derived by applying deep-learning-based object detection to Sentinel-1 imagery.
Celia A. Baumhoer, Andreas J. Dietz, Christof Kneisel, Heiko Paeth, and Claudia Kuenzer
The Cryosphere, 15, 2357–2381, https://doi.org/10.5194/tc-15-2357-2021, https://doi.org/10.5194/tc-15-2357-2021, 2021
Short summary
Short summary
We present a record of circum-Antarctic glacier and ice shelf front change over the last two decades in combination with potential environmental variables forcing frontal retreat. Along the Antarctic coastline, glacier and ice shelf front retreat dominated between 1997–2008 and advance between 2009–2018. Decreasing sea ice days, intense snowmelt, weakening easterly winds, and relative changes in sea surface temperature were identified as enabling factors for glacier and ice shelf front retreat.
Cited articles
Alley, K. E., Scambos, T. A., Miller, J. Z., Long, D. G., and MacFerrin, M.:
Quantifying vulnerability of Antarctic ice shelves to hydrofracture using
microwave scattering properties, Remote Sens. Environ., 210, 297–306,
https://doi.org/10.1016/j.rse.2018.03.025, 2018.
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica, The Cryosphere, 14, 4103–4120,
https://doi.org/10.5194/tc-14-4103-2020, 2020a.
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Recent understanding of Antarctic supraglacial lakes using satellite
remote sensing, Prog. Phys. Geogr., 44, 837–869, https://doi.org/10.1177/0309133320916114, 2020b.
Banwell, A. F. and Macayeal, D. R.: Ice-shelf fracture due to viscoelastic
flexure stress induced by fill/drain cycles of supraglacial lakes, Antarct.
Sci., 27, 587–597, https://doi.org/10.1017/S0954102015000292, 2015.
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013.
Banwell, A. F., Willis, I. C., Macdonald, G. J., Goodsell, B., and MacAyeal,
D. R.: Direct measurements of ice-shelf flexure caused by surface meltwater
ponding and drainage, Nat. Commun., 10, 1–10, https://doi.org/10.1038/s41467-019-08522-5, 2019.
Banwell, A. F., Datta, R. T., Dell, R. L., Moussavi, M., Brucker, L., Picard, G., Shuman, C. A., and Stevens, L. A.: The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula, The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021, 2021.
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole, A.: Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier, Nat. Geosci., 3, 408–411, https://doi.org/10.1038/ngeo863, 2010.
Baumhoer, C. A., Dietz, A. J., Kneisel, C., Paeth, H., and Kuenzer, C.:
Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades, The Cryosphere, 15, 2357–2381, https://doi.org/10.5194/tc-15-2357-2021, 2021.
Bell, R. E., Chu, W., Kingslake, J., Das, I., Tedesco, M., Tinto, K. J., Zappa, C. J., Frezzotti, M., Boghosian, A., and Lee, W. S.: Antarctic ice shelf potentially stabilized by export of meltwater in surface river,
Nature, 544, 344–348, https://doi.org/10.1038/nature22048, 2017.
Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic
surface hydrology and impacts on ice-sheet mass balance, Nat. Clim. Change,
8, 1044, https://doi.org/10.1038/s41558-018-0326-3, 2018.
Bengtsson, L., Koumoutsaris, S., and Hodges, K.: Large-Scale Surface Mass
Balance of Ice Sheets from a Comprehensive Atmospheric Model, Surv. Geophys., 32, 459–474, https://doi.org/10.1007/s10712-011-9120-8, 2011.
Berthier, E., Scambos, T. A., and Shuman, C. A.: Mass loss of Larsen B
tributary glaciers (Antarctic Peninsula) unabated since 2002, Geophys. Res.
Lett., 39, L13501, https://doi.org/10.1029/2012GL051755, 2012.
Bevan, S., Luckman, A., Hendon, H., and Wang, G.: The 2020 Larsen C Ice Shelf surface melt is a 40-year record high, The Cryosphere, 14, 3551–3564,
https://doi.org/10.5194/tc-14-3551-2020, 2020.
Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie,
D., Paulsen, S. J., Granneman, B., and Gorodetzky, D.: The Landsat Image
Mosaic of Antarctica, Remote Sens. Environ., 112, 4214–4226,
https://doi.org/10.1016/j.rse.2008.07.006, 2008.
BOM: Climate Driver Update, available at: http://www.bom.gov.au/climate/enso/, last access: 22 June 2021.
Buzzard, S., Feltham, D. L., and Flocco, D.: Modelling the fate of surface
melt on the Larsen C Ice Shelf, The Cryosphere, 12, 3565–3575,
https://doi.org/10.5194/tc-12-3565-2018, 2018.
Cape, M. R., Vernet, M., Skvarca, P., Marinsek, S., Scambos, T., and Domack,
E.: Foehn winds link climate-driven warming to ice shelf evolution in
Antarctica, J. Geophys. Res.-Atmos., 120, 11037–11057, https://doi.org/10.1002/2015JD023465, 2015.
Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves
on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77–98, https://doi.org/10.5194/tc-4-77-2010, 2010.
Datta, R. T., Tedesco, M., Fettweis, X., Agosta, C., Lhermitte, S., Lenaerts, J. T. M., and Wever, N.: The Effect of Foehn-Induced Surface Melt on Firn Evolution Over the Northeast Antarctic Peninsula, Geophys. Res. Lett., 46, 3822–3831, https://doi.org/10.1029/2018GL080845, 2019.
Dell, R., Arnold, N., Willis, I., Banwell, A., Williamson, A., Pritchard, H., and Orr, A.: Lateral meltwater transfer across an Antarctic ice shelf, The Cryosphere, 14, 2313–2330, https://doi.org/10.5194/tc-14-2313-2020, 2020.
Dirscherl, M.: Antarctic Supraglacial Lake Extents 2015–2021, available at: https://download.geoservice.dlr.de/ANTARCTICLAKES/files/, DLR Portal [data set], last access: 18 October 2021.
Dirscherl, M., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated Mapping
of Antarctic Supraglacial Lakes Using a Machine Learning Approach, Remote
Sens., 12, 1203, https://doi.org/10.3390/rs12071203, 2020.
Dirscherl, M., Dietz, A. J., Kneisel, C., and Kuenzer, C.: A Novel Method
for Automated Supraglacial Lake Mapping in Antarctica Using Sentinel-1 SAR
Imagery and Deep Learning, Remote Sens., 13, 197, https://doi.org/10.3390/rs13020197, 2021.
Dow, C. F., Lee, W. S., Greenbaum, J. S., Greene, C. A., Blankenship, D. D.,
Poinar, K., Forrest, A. L., Young, D. A., and Zappa, C. J.: Basal channels
drive active surface hydrology and transverse ice shelf fracture, Sci. Adv.,
4, 6, https://doi.org/10.1126/sciadv.aao7212, 2018.
Dunmire, D., Lenaerts, J. T. M., Banwell, A. F., Wever, N., Shragge, J.,
Lhermitte, S., Drews, R., Pattyn, F., Hansen, J. S. S., Willis, I. C., Miller, J., and Keenan, E.: Observations of Buried Lake Drainage on the Antarctic Ice Sheet, Geophys. Res. Lett., 47, e2020GL087970,
https://doi.org/10.1029/2020GL087970, 2020.
Echelmeyer, K., Clarke, T. S., and Harrison, W. D.: Surficial glaciology of
Jakobshavns Isbræ, West Greenland: Part I. Surface morphology, J. Glaciol., 37, 368–382, https://doi.org/10.3189/S0022143000005803, 1991.
Foley, K. M., Ferrigno, J. G., Swithinbank, C., Williams Jr., R. S., and
Orndorff, A. L.: Coastal-Change and Glaciological Map of the Amery Ice Shelf
Area, Antarctica: 1961–2004, Int. J. Applied Earth Obs. Geoinform., 78, 1–13, https://doi.org/10.1016/j.jag.2019.01.008, 2013.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M.,
Braun, M., and Gagliardini, O.: The safety band of Antarctic ice shelves, Nat. Clim. Change, 6, 479–482, https://doi.org/10.1038/nclimate2912, 2016.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., Van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gilbert, E. and Kittel, C.: Surface Melt and Runoff on Antarctic Ice Shelves
at 1.5 ∘C, 2 ∘C, and 4 ∘C of Future Warming,
Geophys. Res. Lett., 48, 8, https://doi.org/10.1029/2020GL091733, 2021.
Glasser, N. F. and Gudmundsson, G. H.: Longitudinal surface structures (flowstripes) on Antarctic glaciers, The Cryosphere, 6, 383–391,
https://doi.org/10.5194/tc-6-383-2012, 2012.
Gossart, A., Helsen, S., Lenaerts, J. T. M., Broucke, S. V., van Lipzig, N. P. M., and Souverijns, N.: An Evaluation of Surface Climatology in
State-of-the-Art Reanalyses over the Antarctic Ice Sheet, J. Climate, 32,
6899–6915, https://doi.org/10.1175/JCLI-D-19-0030.1, 2019.
Halberstadt, A. R. W., Gleason, C. J., Moussavi, M. S., Pope, A., Trusel, L.
D., and DeConto, R. M.: Antarctic Supraglacial Lake Identification Using
Landsat-8 Image Classification, Remote Sens., 12, 1327,
https://doi.org/10.3390/rs12081327, 2020.
Hambrey, M. J., Davies, B. J., Glasser, N. F., Holt, T. O., Smellie, J. L.,
and Carrivick, J. L.: Structure and sedimentology of George VI Ice Shelf,
Antarctic Peninsula: implications for ice-sheet dynamics and landform
development, J. Geol. Soc., 172, 599–613, https://doi.org/10.1144/jgs2014-134, 2015.
Hogg, A. E., Shepherd, A., Cornford, S. L., Briggs, K. H., Gourmelen, N.,
Graham, J. A., Joughin, I., Mouginot, J., Nagler, T., Payne, A. J., Rignot, E., and Wuite, J.: Increased ice flow in Western Palmer Land linked to ocean
melting, Geophys. Res. Lett., 44, 4159–4167, https://doi.org/10.1002/2016GL072110, 2017.
Holt, T., Glasser, N. F., Quincey, D. J., and Siegfried, M. R.: Speedup and
fracturing of George VI Ice Shelf, Antarctic Peninsula, The Cryosphere, 7,
797–816, https://doi.org/10.5194/tc-7-797-2013, 2013a.
Holt, T., Glasser, N., and Quincey, D.: The structural glaciology of southwest Antarctic Peninsula Ice Shelves (ca. 2010), J. Maps, 9, 523–531,
https://doi.org/10.1080/17445647.2013.822836, 2013b.
Horwath, M., Dietrich, R., Baessler, M., Nixdorf, U., Steinhage, D., Fritzsche, D., Damm, V., and Reitmayr, G.: Nivlisen, an Antarctic ice shelf
in Dronning Maud Land: geodetic–glaciological results from a combined analysis of ice thickness, ice surface height and ice-flow observations, J.
Glaciol., 52, 17–30, https://doi.org/10.3189/172756506781828953, 2006.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674,
https://doi.org/10.5194/tc-13-665-2019, 2019.
IMBIE: Antarctica and Greenland Ice Sheet Drainage Basins, IMBIE [data set], http://imbie.org/imbie-2016/drainage-basins/ (last access: 15 June 2021), 2016.
Jiang, H., Yang, Y., Bai, Y., and Wang, H.: Evaluation of the Total, Direct,
and Diffuse Solar Radiations From the ERA5 Reanalysis Data in China, IEEE
Geosci. Remote Sens. Lett., 17, 47–51, https://doi.org/10.1109/LGRS.2019.2916410, 2020.
Jolly, K.: Machine Learning with scikit-learn Quick Start Guide, Packt Publishing Ltd., Birmingham, UK, 2018.
Kingslake, J., Ng, F., and Sole, A.: Modelling channelized surface drainage of supraglacial lakes, J. Glaciol., 61, 185–199, https://doi.org/10.3189/2015JoG14J158, 2015.
Kingslake, J., Ely, J. C., Das, I., and Bell, R. E.: Widespread movement of meltwater onto and across Antarctic ice shelves, Nature, 544, 349–352, https://doi.org/10.1038/nature22049, 2017.
Kleiner, T. and Humbert, A.: Numerical simulations of major ice streams in
Western Dronning Maud Land, Antarctica, under wet and dry basal conditions,
J. Glaciol., 60, 215–232, https://doi.org/10.3189/2014JoG13J006, 2014.
Krinner, G., Magand, O., Simmonds, I., Genthon, C., and Dufresne, J.-L.:
Simulated Antarctic precipitation and surface mass balance at the end of the
twentieth and twenty-first centuries, Clim. Dynam., 28, 215–230,
https://doi.org/10.1007/s00382-006-0177-x, 2007.
Kuipers Munneke, P., Ligtenberg, S. R. M., Broeke, M. R. V. D., and Vaughan,
D. G.: Firn air depletion as a precursor of Antarctic ice-shelf collapse, J.
Glaciol., 60, 205–214, https://doi.org/10.3189/2014JoG13J183, 2014.
Kwok, R. and Comiso, J. C.: Spatial patterns of variability in Antarctic
surface temperature: Connections to the Southern Hemisphere Annular Mode and
the Southern Oscillation, Geophys. Res. Lett., 29, 50-1–50-4,
https://doi.org/10.1029/2002GL015415, 2002.
LaBarbera, C. H. and MacAyeal, D. R.: Traveling supraglacial lakes on George VI Ice Shelf, Antarctica, Geophys. Res. Lett., 38, 24, https://doi.org/10.1029/2011GL049970, 2011.
Laffin, M. K., Zender, C. S., Singh, S., Wessem, J. M. V., Smeets, C. J. P.
P., and Reijmer, C. H.: Climatology and Evolution of the Antarctic Peninsula
Föhn Wind-Induced Melt Regime From 1979–2018, Geophys. Res. Lett., 126,
e2020JD033682, https://doi.org/10.1029/2020JD033682, 2021.
Lai, C.-Y., Kingslake, J., Wearing, M. G., Chen, P.-H. C., Gentine, P., Li,
H., Spergel, J. J., and van Wessem, J. M.: Vulnerability of Antarctica's ice
shelves to meltwater-driven fracture, Nature, 584, 574–578,
https://doi.org/10.1038/s41586-020-2627-8, 2020.
Langley, E. S., Leeson, A. A., Stokes, C. R., and Jamieson, S. S. R.: Seasonal evolution of supraglacial lakes on an East Antarctic outlet glacier, Geophys. Res. Lett., 43, 8563–8571, https://doi.org/10.1002/2016GL069511, 2016.
Leeson, A. A., Forster, E., Rice, A., Gourmelen, N., and Van Wessem, J. M.:
Evolution of supraglacial lakes on the Larsen B ice shelf in the decades
before it collapsed, Geophys. Res. Lett., 47, 4, https://doi.org/10.1029/2019GL085591, 2020.
Lenaerts, J. T. M., Vizcaino, M., Fyke, J., van Kampenhout, L., and van den
Broeke, M. R.: Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model, Clim. Dynam., 47, 1367–1381, https://doi.org/10.1007/s00382-015-2907-4, 2016.
Lenaerts, J. T. M., Lhermitte, S., Drews, R., Ligtenberg, S. R. M., Berger,
S., Helm, V., Smeets, C. J. P. P., van den Broeke, M. R., van de Berg, W.
J., van Meijgaard, E., Eijkelboom, M., Eisen, O., and Pattyn, F.: Meltwater
produced by wind–albedo interaction stored in an East Antarctic ice shelf,
Nat. Clim. Change, 7, 58–62, https://doi.org/10.1038/nclimate3180, 2017.
Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J.,
Berthier, E., and Nagler, T.: Damage accelerates ice shelf instability and
mass loss in Amundsen Sea Embayment, P. Natl. Acad. Sci. USA, 117, 24735–24741, https://doi.org/10.1073/pnas.1912890117, 2020.
Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., Cadau, E., and Gascon, F.: Sentinel-2 Sen2Cor: L2A Processor For Users, in: Proc. Living Planet Symposium 2016, Prague, Czech
Republic, 2016.
Luckman, A., Elvidge, A., Jansen, D., Kulessa, B., Munneke, P. K., King, J.,
and Barrand, N. E.: Surface melt and ponding on Larsen C Ice Shelf and the
impact of föhn winds, Antarct. Sci., 26, 625–635,
https://doi.org/10.1017/S0954102014000339, 2014.
Marshall, G. J.: Trends in the Southern Annular Mode from Observations and
Reanalyses, J. Climate, 16, 4134–4143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2, 2003.
Marshall, G. J.: The Climate Data Guide: Marshall Southern Annular Mode (SAM) Index (Station-based), National Center for Atmospheric Research Staff [data set], https://climatedataguide.ucar.edu/climate-data/marshall-southern-annular-mode-sam-index-station-based,
(last access: 20 June 2021), 2018.
McGrath, D., Steffen, K., Rajaram, H., Scambos, T., Abdalati, W., and Rignot, E.: Basal crevasses on the Larsen C Ice Shelf, Antarctica: Implications for meltwater ponding and hydrofracture, Geophys. Res. Lett., 39, 16, https://doi.org/10.1029/2012GL052413, 2012.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert,
M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar Regions,
in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., in press, 2019.
Minchew, B. M., Gudmundsson, G. H., Gardner, A. S., Paolo, F. S., and Fricker, H. A.: Modeling the dynamic response of outlet glaciers to observed
ice-shelf thinning in the Bellingshausen Sea Sector, West Antarctica, J.
Glaciol., 64, 333–342, https://doi.org/10.1017/jog.2018.24, 2018.
Mouginot, J., Scheuchl, B., and Rignot, E.: MEaSUREs Antarctic Boundaries
for IPY 2007–2009 from Satellite Radar, Version 2, [Coastline, grounding
line data], NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], Boulder, Colorado, USA, https://doi.org/10.5067/AXE4121732AD (last access: 17 October 2021), 2017.
Moussavi, M., Pope, A., Halberstadt, A. R. W., Trusel, L. D., Cioffi, L.,
and Abdalati, W.: Antarctic Supraglacial Lake Detection Using Landsat 8 and
Sentinel-2 Imagery: Towards Continental Generation of Lake Volumes, Remote
Sens., 12, 134, https://doi.org/10.3390/rs12010134, 2020.
Müller, C. and Guido, S.: Introduction to Machine Learning with Python:
A Guide for Data Scientists, O'Reilly Media, Inc., Sebastopol, USA, 2016.
Munoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus
Climate Change Service (C3S) Climate Data Store (CDS) [data set]
https://doi.org/10.24381/cds.e2161bac, 2019.
NSIDC: The Antarctic 2020 to 2021 melt season in review, available at:
http://nsidc.org/greenland-today/2021/04/the-antarctic-2020-to-2021-melt-season-in-review/,
last access: 23 June 2021.
Padman, L., Costa, D. P., Dinniman, M. S., Fricker, H. A., Goebel, M. E.,
Huckstadt, L. A., Humbert, A., Joughin, I., Lenaerts, J. T. M., Ligtenberg,
S. R. M., Scambos, T., and van den Broeke, M. R.: Oceanic controls on the
mass balance of Wilkins Ice Shelf, Antarctica, J. Geophys. Res.-Oceans, 117,
C1, https://doi.org/10.1029/2011JC007301, 2012.
Reynolds, J. M.: Lakes on George VI Ice Shelf, Antarctica, Polar Rec., 20,
425–432, https://doi.org/10.1017/S0032247400003636, 1981.
Reynolds, J. M. and Hambrey, M. J.: The structural glaciology of George VI
Ice Shelf, Antarctic Peninsula, Brit. Antarct. Surv. B., 79, 79–95, 1988.
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A., and Thomas, R.: Accelerated ice discharge from the Antarctic Peninsula following the
collapse of Larsen B ice shelf, Geophys. Res. Lett., 31, 18, https://doi.org/10.1029/2004GL020697, 2004.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting
Around Antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798, 2013.
Rignot, E., Mouginot, J., Scheuchl, B., Van den Broeke, M., Van Wessem, M.,
and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from 1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019.
Rott, H., Abdel Jaber, W., Wuite, J., Scheiblauer, S., Floricioiu, D., Van Wessem, J. M., Nagler, T., Miranda, N., and Van den Broeke, M. R.: Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016, The
Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, 2018.
Scambos, T. A., Bohlander, J. A., Shuman, C. A., and Skvarca, P.: Glacier
acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica, Geophys. Res. Lett., 31, 18, https://doi.org/10.1029/2004GL020670, 2004.
Shen, Q., Wang, H., Shum, C. K., Jiang, L., Hsu, H. T., and Dong, J.: Recent
high-resolution Antarctic ice velocity maps reveal increased mass loss in
Wilkes Land, East Antarctica, Sci. Rep., 8, 4477, https://doi.org/10.1038/s41598-018-22765-0, 2018.
Siegert, M. J., Kulessa, B., Bougamont, M., Christoffersen, P., Key, K.,
Andersen, K. R., Booth, A. D., and Smith, A. M.: Antarctic subglacial groundwater: a concept paper on its measurement and potential influence on
ice flow, Geol. Soc., 461, 197–213, https://doi.org/10.1144/SP461.8, 2018.
Spergel, J. J., Kingslake, J., Creyts, T., van Wessem, M., and Fricker, H. A.: Surface meltwater drainage and ponding on Amery Ice Shelf, East
Antarctica, 1973–2019, J. Glaciol., 67, 985–998, https://doi.org/10.1017/jog.2021.46, 2021.
Stokes, C. R., Sanderson, J. E., Miles, B. W. J., Jamieson, S. S. R., and
Leeson, A. A.: Widespread distribution of supraglacial lakes around the margin of the East Antarctic Ice Sheet, Sci. Rep., 9, 1–14,
https://doi.org/10.1038/s41598-019-50343-5, 2019.
Tetzner, D., Thomas, E., and Allen, C.: A Validation of ERA5 Reanalysis Data
in the Southern Antarctic Peninsula–Ellsworth Land Region, and Its Implications for Ice Core Studies, Geosciences, 9, 289,
https://doi.org/10.3390/geosciences9070289, 2019.
The IMBIE Team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017,
Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018.
Tong, X., Liu, S., Li, R., Xie, H., Liu, S., Qiao, G., Feng, T., Tian, Y., and Ye, Z.: Multi-track extraction of two-dimensional surface velocity by the combined use of differential and multiple-aperture InSAR in the Amery Ice Shelf, East Antarctica, Remote Sens. Environ., 204, 122–137,
https://doi.org/10.1016/j.rse.2017.10.036, 2018.
Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Kuipers Munneke,
P., van Meijgaard, E., and van den Broeke, M. R.: Divergent trajectories of
Antarctic surface melt under two twenty-first-century climate scenarios, Nat. Geosci., 8, 927–932, https://doi.org/10.1038/ngeo2563, 2015.
Tuckett, P. A., Ely, J. C., Sole, A. J., Livingstone, S. J., Davison, B. J.,
van Wessem, J. M., and Howard, J.: Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt, Nat. Commun., 10, 1–8,
https://doi.org/10.1038/s41467-019-12039-2, 2019.
Turton, J. V., Kirchgaessner, A., Ross, A. N., King, J. C., and Kuipers Munneke, P.: The influence of föhn winds on annual and seasonal surface melt on the Larsen C Ice Shelf, Antarctica, The Cryosphere, 14, 4165–4180, https://doi.org/10.5194/tc-14-4165-2020, 2020.
Urraca, R., Huld, T., Gracia-Amillo, A., Martinez-de-Pison, F. J., Kaspar, F., and Sanz-Garcia, A.: Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data, Solar Energy, 164, 339–354, https://doi.org/10.1016/j.solener.2018.02.059, 2018.
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018.
van Wessem, J. M., Steger, C. R., Wever, N., and van den Broeke, M. R.: An
exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016, The Cryosphere, 15, 695–714,
https://doi.org/10.5194/tc-15-695-2021, 2021.
Wachter, P., Beck, C., Philipp, A., Höppner, K., and Jacobeit, J.:
Spatiotemporal Variability of the Southern Annular Mode and its Influence on
Antarctic Surface Temperatures, J. Geophys. Res., 125, e2020JD033818,
https://doi.org/10.1029/2020JD033818, 2020.
Wagner, A. C.: Flooding of the ice shelf in George VI Sound, Brit. Antarct.
Surv. B., 28, 71–74, 1972.
Wessel, B., Huber, M., Wohlfart, C., Bertram, A., Osterkamp, N., Marschalk, U., Gruber, A., Reuß, F., Abdullahi, S., Georg, I., and Roth, A.: TanDEM-X PolarDEM 90 m of Antarctica: Generation and error characterization, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-19, in review, 2021.
Short summary
We provide novel insight into the temporal evolution of supraglacial lakes across six major Antarctic ice shelves in 2015–2021. For Antarctic Peninsula ice shelves, we observe extensive meltwater ponding during the 2019–2020 and 2020–2021 summers. Over East Antarctica, lakes were widespread during 2016–2019 and at a minimum in 2020–2021. We investigate environmental controls, revealing lake ponding to be coupled to atmospheric modes, the near-surface climate and the local glaciological setting.
We provide novel insight into the temporal evolution of supraglacial lakes across six major...