Articles | Volume 15, issue 9
The Cryosphere, 15, 4445–4464, 2021
https://doi.org/10.5194/tc-15-4445-2021
The Cryosphere, 15, 4445–4464, 2021
https://doi.org/10.5194/tc-15-4445-2021
Research article
14 Sep 2021
Research article | 14 Sep 2021

Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland)

Lander Van Tricht et al.

Related authors

Thermal regime of the Grigoriev ice cap and the Sary-Tor glacier in the Inner Tien Shan, Kyrgyzstan
Lander Van Tricht and Philippe Huybrechts
EGUsphere, https://doi.org/10.5194/egusphere-2022-195,https://doi.org/10.5194/egusphere-2022-195, 2022
Short summary

Related subject area

Discipline: Glaciers | Subject: Remote Sensing
Three different glacier surges at a spot: what satellites observe and what not
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022,https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Correlation dispersion as a measure to better estimate uncertainty in remotely sensed glacier displacements
Bas Altena, Andreas Kääb, and Bert Wouters
The Cryosphere, 16, 2285–2300, https://doi.org/10.5194/tc-16-2285-2022,https://doi.org/10.5194/tc-16-2285-2022, 2022
Short summary
Glacier and rock glacier changes since the 1950s in the La Laguna catchment, Chile
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022,https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Brief communication: Increased glacier mass loss in the Russian High Arctic (2010–2017)
Christian Sommer, Thorsten Seehaus, Andrey Glazovsky, and Matthias H. Braun
The Cryosphere, 16, 35–42, https://doi.org/10.5194/tc-16-35-2022,https://doi.org/10.5194/tc-16-35-2022, 2022
Short summary
Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021,https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary

Cited articles

Anderson, L. S. and Anderson, R. S.: Modeling debris-covered glaciers: response to steady debris deposition, The Cryosphere, 10, 1105–1124, https://doi.org/10.5194/tc-10-1105-2016, 2016. 
Benoit, L., Gourdon, A., Vallat, R., Irarrazaval, I., Gravey, M., Lehmann, B., Prasicek, G., Gräff, D., Herman, F., and Mariethoz, G.: A high-resolution image time series of the Gorner Glacier – Swiss Alps – derived from repeated unmanned aerial vehicle surveys, Earth Syst. Sci. Data, 11, 579–588, https://doi.org/10.5194/essd-11-579-2019, 2019. 
Berthier, E. and Vincent, C.: Relative contribution of surface mass-balance and ice-flux changes to the accelerated thinning of Mer de Glace, French Alps, over 1979–2008, J. Glaciol., 58, 501–512, https://doi.org/10.3189/2012JoG11J083, 2012. 
Bisset, R. R., Dehecq, A., Goldberg, D. N., Huss, M., Bingham, R. G., and Gourmelen, N.: Reversed Surface-Mass-Balance Gradients on Himalayan Debris-Covered Glaciers Inferred from Remote Sensing, Remote Sensing, 12, https://doi.org/10.3390/rs12101563, 2020. 
Braithwaite, R. J.: Glacier mass balance: the first 50 years of international monitoring, Prog. Phys. Geogr., 26, 76–95, https://doi.org/10.1191/0309133302pp326ra, 2002. 
Download
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.