Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-4031-2021
https://doi.org/10.5194/tc-15-4031-2021
Research article
 | 
24 Aug 2021
Research article |  | 24 Aug 2021

Ice roughness estimation via remotely piloted aircraft and photogrammetry

James Ehrman, Shawn Clark, and Alexander Wall

Related subject area

Discipline: Other | Subject: Freshwater Ice
Measurements of frazil ice flocs in rivers
Chuankang Pei, Jiaqi Yang, Yuntong She, and Mark Loewen
The Cryosphere, 18, 4177–4196, https://doi.org/10.5194/tc-18-4177-2024,https://doi.org/10.5194/tc-18-4177-2024, 2024
Short summary
Assessment of the impact of dam reservoirs on river ice cover – an example from the Carpathians (central Europe)
Maksymilian Fukś
The Cryosphere, 18, 2509–2529, https://doi.org/10.5194/tc-18-2509-2024,https://doi.org/10.5194/tc-18-2509-2024, 2024
Short summary
Forward modelling of synthetic-aperture radar (SAR) backscatter during lake ice melt conditions using the Snow Microwave Radiative Transfer (SMRT) model
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024,https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
A comparison of constant false alarm rate object detection algorithms for iceberg identification in L- and C-band SAR imagery of the Labrador Sea
Laust Færch, Wolfgang Dierking, Nick Hughes, and Anthony P. Doulgeris
The Cryosphere, 17, 5335–5355, https://doi.org/10.5194/tc-17-5335-2023,https://doi.org/10.5194/tc-17-5335-2023, 2023
Short summary
Fusion of Landsat 8 Operational Land Imager and Geostationary Ocean Color Imager for hourly monitoring surface morphology of lake ice with high resolution in Chagan Lake of Northeast China
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023,https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary

Cited articles

Aberle, J. and Nikora, V.: Statistical properties of armored gravel bed surfaces, Water Resour. Res., 42, W11414, https://doi.org/10.1029/2005WR004674, 2006. a, b, c
Alfredsen, K., Haas, C., Tuhtan, J. A., and Zinke, P.: Brief Communication: Mapping river ice using drones and structure from motion, The Cryosphere, 12, 627–633, https://doi.org/10.5194/tc-12-627-2018, 2018. a, b
Ashton, G. D. (Ed.): River and lake ice engineering, Water Resources Publication, Chelsea, Michigan, USA, 261–361, ISBN 0-918334-59-4, 1986. a
Beltaos, S. (Ed.): River Ice Formation, The Committee on River Ice Processes and the Environment, Edmonton, Alberta, Canada, 218–232, ISBN 978-0-9920022-0-6, 2013. a, b, c, d
Buffin-Belanger, T., Demers, S., and Olsen, T.: Quantification of under ice cover roughness, in: 18th Workshop on the Hydraulics of Ice Covered Rivers, CGU HS Committee on River Ice Processes and the Environment, Quebec City, QC, Canada, 2015. a, b
Download
Short summary
This research proposes and tests new methods for the estimation of the surface roughness of newly formed river ice covers. The hypothesis sought to determine if surface ice roughness was indicative of the subsurface. Ice roughness has consequences for winter flow characteristics of rivers and can greatly impact river ice jams. Remotely piloted aircraft and photogrammetry were used, and good correlation was found between the observed surface ice roughness and estimated subsurface ice roughness.