
The Cryosphere, 15, 4031–4046, 2021
https://doi.org/10.5194/tc-15-4031-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Ice roughness estimation via remotely piloted aircraft and
photogrammetry
James Ehrman, Shawn Clark, and Alexander Wall
Department of Civil Engineering, 15 Gillson St., University of Manitoba, Winnipeg, MB R3T 5V6, Canada

Correspondence: Shawn Clark (shawn.clark@umanitoba.ca)

Received: 7 January 2021 – Discussion started: 29 March 2021
Revised: 16 July 2021 – Accepted: 20 July 2021 – Published: 24 August 2021

Abstract. The monitoring of fluvial ice covers can be time
intensive, dangerous, and costly if detailed data are required.
Ice covers on a river surface cause resistance to water flow,
which increases upstream water levels. Ice with a higher de-
gree of roughness causes increased flow resistance and there-
fore even higher upstream water levels. Aerial images col-
lected via remotely piloted aircraft (RPA) were processed
with structure from motion photogrammetry to create a dig-
ital elevation model (DEM) and then produce quantitative
measurements of surface ice roughness. Images and surface
ice roughness values were collected over 2 years on the
Dauphin River in Manitoba, Canada. It was hypothesized
that surface ice roughness would be indicative of subsur-
face ice roughness. This hypothesis was tested by compar-
ing RPA-measured surface ice roughness values to those pre-
dicted by the Nezhikhovskiy equation, wherein subsurface
ice roughness is proportional to ice thickness. Various sta-
tistical metrics were used to represent the roughness height
of the DEMs. Strong trends were identified in the compar-
ison of RPA-measured ice surface roughness to subsurface
ice roughness values predicted by the Nezhikhovskiy equa-
tion, as well as with comparisons to ice thickness. The stan-
dard deviation and interquartile range of roughness heights
were determined to be the most representative statistical met-
rics and several properties of the DEMs of fluvial ice covers
were calculated and observed. No DEMs were found to be
normally distributed. This first attempt at using RPA-derived
measurements of surface ice roughness to estimate river ice
flow resistance is shown to have considerable potential and
will hopefully be verified and improved upon by subsequent
measurements on a wide variety of rivers and ice covers.

1 Introduction

The consequences of ice on the flow regimes of rivers in cold
climates can be dramatic, sometimes leading to loss of life
and damage to infrastructure. In-stream infrastructure such as
bridge piers, hydraulic control structures, and hydro-electric
generating stations are subject to immense forces due to river
ice, which is a critical factor in the design of such structures.
Understanding fluvial ice roughness is a critical step in bet-
ter understanding the evolution and hydraulic impacts of flu-
vial ice covers. Currently, fluvial ice roughness is either esti-
mated through empirical means, such as the Nezhikhovskiy
(1964) equation, or through complex and expensive methods,
such as hydraulic modelling. Direct measurements can also
be made (Buffin-Belanger et al., 2015; Crance and Frothing-
ham, 2008), or roughness can be inferred from a measured
velocity profile (Gerard and Andres, 1984). However, these
direct measurement methods require personnel to conduct
work on ice covers, which are frequently unsafe, thus lim-
iting the types of ice cover that can be studied.

The surface roughness of sea ice and land ice (typically
glaciers) has been more extensively researched (Fitzpatrick
et al., 2019; Dammann et al., 2018; Yitayew et al., 2018) than
that of fluvial ice covers. This discrepancy is due in part to the
scale of the these ice sheets, which allows for high-altitude
remote sensing from manned aircraft using lidar and imagery
and satellites using synthetic aperture radar (Dammann et al.,
2018). The size and thickness of these ice formations also
makes in situ measurements generally more feasible from a
safety perspective. The goal of obtaining roughness data for
glaciers and sea ice surfaces often relates to the determina-
tion of aerodynamic roughness length, an important parame-
ter in the estimation of heat fluxes (Fitzpatrick et al., 2019),
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although Dammann et al. (2018) evaluated sea ice roughness
for the use of transportation planning.

An obvious solution to improve the safety of fluvial ice
cover studies is through the use of aerial vehicles. Heli-
copters, small fixed-wing aircraft, and satellites have long
been used for the study of Earth surface phenomena. All are
prohibitively expensive to be solely dedicated to the study of
fluvial ice covers, and none can produce images of sufficient
resolution for surface roughness studies. Recently, remotely
piloted aircraft (RPA) have become much more accessi-
ble, inexpensive, and reliable. Coupled with high-resolution
image-stabilized digital cameras, they offer the opportunity
to document and study otherwise inaccessible areas at a frac-
tion of the cost of any other method. Structure-from-motion
photogrammetry has been used extensively to process RPA-
acquired digital photos (RPA photogrammetry) (Colomina
and Molina, 2014). The evaluation of surface roughness has
also been studied using RPA photogrammetry on land sur-
faces (Kirby, 1991) and non-fluvial ice surfaces (Dammann
et al., 2018; Chudley et al., 2019).

Although qualitative assessments of river ice roughness
have been made based on visual observation, and quantita-
tive estimates have been made through hydraulic modelling
efforts, to date there has been no reliable means of quantita-
tively assessing river ice roughness over a large area. This
study uses RPA photogrammetry to address this need and
provides the first detailed description of the non-uniform
three-dimensional roughness of a river ice surface. This re-
search hypothesizes that the surface ice roughness of a newly
frozen fluvial ice cover is indicative of the subsurface ice
roughness of the same cover. The basis of this theory stems
from field observations of ice mechanics on the Dauphin
River, as observed by Wazney et al. (2018). Smooth, ther-
mally grown ice was observed to have a smooth texture both
at the top and bottom of the ice cover. Ice pans that flowed
downstream and met an obstruction were observed to stack
in a fashion that presumably had similar surface and subsur-
face roughness. When the external forces acting on the ice
cover overcame its internal strength, the ice would consol-
idate, becoming thicker and noticeably rougher on the top
surface. Even though direct measurements of the underside
of the ice cover were not possible, increases in water level
upstream indicated that an increase in flow resistance from
a rougher bottom of ice was likely. Subsurface ice rough-
ness investigations have been conducted on mature ice cov-
ers (Beltaos, 2013; Buffin-Belanger et al., 2015; Crance and
Frothingham, 2008). It is likely that subsurface ice roughness
measurements taken well after freeze-up will under-predict
peak ice roughness due to smoothening of the subsurface ice
over time by flowing water. While the surface and subsurface
of an ice cover are subject to very different external forces,
the hypothesis that the roughness of the ice cover at the sur-
face is proportional to the subsurface roughness focuses on
newly formed ice covers. Given past experience with this
river system, it is expected that the surface and subsurface

ice roughness values will not appreciably change within 1
week of ice cover formation.

The objectives of this study are as follows:

– evaluate the capabilities of a consumer-grade RPA
coupled with a professional photogrammetry software
package for the measurement of surface roughness of
fluvial ice covers,

– present quantitative metrics of surface ice roughness
measurements for a range of river ice roughness con-
ditions,

– test the hypothesis that the surface ice roughness of a
newly frozen fluvial ice cover is indicative of the sub-
surface ice roughness of the same cover.

To the authors’ knowledge, no investigations of surface
or subsurface ice roughness have been conducted on newly
frozen fluvial ice covers. This work constitutes the first at-
tempt at using RPA photogrammetry for the purposes of ice
roughness measurements. Since the scope of this work was
limited to a single study site, any conclusions drawn from
this work would benefit from further evaluation at other study
sites.

2 Background

2.1 Field site description

The Dauphin River is located approximately 250 km north
of the city of Winnipeg, in Manitoba, Canada, as shown in
Fig. 1. The indicated sites are part of a larger network of
monitoring sites numbered sequentially from upstream (Lake
St. Martin) to downstream (Lake Winnipeg). The prefix of
each site (DRLL) stands for Dauphin River Levelogger, indi-
cating a site which has equipment for continuous water level
monitoring. A Water Survey of Canada (WSC) gauge station
(05LM006), located ≈ 100 m downstream of site DRLL03,
logs water surface elevation and flow at 5 min intervals and
reports daily values. The data are periodically adjusted for
ice effects during the winter.

The Dauphin River is 52 km long and has steep, shallow
banks that range between 110 and 160 m wide. The surficial
geology of the area is composed of till with erratics, boul-
ders, cobbles, and gravels observed throughout the channel.
The most upstream 40 km of channel (Upper Dauphin River)
has a mild slope (0.029 %) and is meandering. The bed com-
position of the Upper Dauphin River was observed to be pri-
marily silt. The most downstream 12 km of channel (Lower
Dauphin River) transitions into a well-defined riffle-pool sys-
tem with a relatively high slope (0.16 %). Riffle sections in
the Lower Dauphin River were observed to have a gravel bed
with some boulders and erratics. Pool sections were observed
to be silt bottomed. During winter ice formation, dramatic
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Figure 1. Key map of the study location.

ice consolidation events, jams, and flooding have been re-
ported by Wazney et al. (2018) on the Lower Dauphin River.
Lake Winnipeg water levels can have a significant effect on
the most downstream 2 km of this reach, which is typically
where the largest toe of the ice jam would form.

2.2 Flow resistance

Surface roughness is an important parameter in the predic-
tion of fluid flow along solid boundaries. This roughness cre-
ates drag along fluid boundary layers, generating the log-
arithmic fluid velocity distribution observed in open chan-
nel hydraulics. Rougher surfaces have been shown to ex-
hibit greater flow resistance; however, it is not straightfor-
ward to quantify non-uniform, three-dimensional roughness
elements. Nikuradse (1950) helped develop the concept of
roughness height through equivalent sand grain roughness
representing the height of sand particles fixed to the inside
of pipes. More recently, an extensive discussion of methods
used to represent the roughness of a heterogeneous three-
dimensional surface layer from a surface profile was pro-
vided in Gadelmawla et al. (2002). Many of these methods
involve statistical analysis of the entire sample or some sub-
set of the sample (i.e. peaks, valleys, etc.). Gomez (1993)
used the difference between peaks and a locally derived av-
erage bed surface for the investigation of gravel bed rough-
ness. Nikora et al. (1998) recorded surface data derived from
natural gravel point bars and found that the second-order mo-
ment of the frequency distribution yielded a suitable estimate
of roughness height when compared to in situ field measure-
ments. Aberle and Nikora (2006) also investigated higher-

order statistics but confirmed the use of sample standard
deviation (SD) as an appropriate representation of gravel
bed roughness height. For non-normal data, the interquartile
range (IQR) is a more suitable representation of the spread
of the data.

For uniform flow conditions, Manning’s equation is used
to relate the discharge in an open-water or ice-covered chan-
nel to the water level. Flow resistance in this equation is in-
troduced using Manning’s n, which can be estimated from
the roughness height of the channel boundary (in addition
to many other modes of flow resistance that are outside the
scope of the current study). Equation (1) shows a widely used
quantitative method of estimating Manning’s n from rough-
ness height (D [m]) measurements proposed by Strickler
(1923). Strickler suggested a value of cn = 0.047 for general
use, but this can be adapted for specific applications (Sturm,
2001).

n≈ cnD
1/6 (1)

Fluvial ice formation has a significant impact on the
roughness characteristics of northern rivers. Ice covers in-
crease hydraulic resistance in fluvial systems by replacing
the relatively friction-free air–water boundary with a rougher
ice–water boundary. This expands the wetted perimeter of the
channel and, if the ice cover completely bridges the chan-
nel, may or may not pressurize flow. The added source of
roughness and constriction of flow results in upstream stag-
ing (Beltaos, 2013). As with estimates of channel bound-
ary roughness, ice roughness can also be judged qualita-
tively based on general observations with some success. The
Nezhikhovskiy (1964) equation is a widely used empirical
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formula that provides a quantitative estimate of ice rough-
ness in the form of Manning’s n, as illustrated in Eq. (2). In
this equation, ni is the Manning’s n of the underside of the
ice cover and ti [m] is the ice thickness in metres. In both
cases, the subscript i refers to parameters related to ice.

ni ≈ 0.0252ln(ti)+ 0.0706 (2)

This relationship is based on measurements conducted on
rivers in Russia several decades ago, and it has served well as
an estimation tool for engineering applications. Using more
complex data, Eq. (1) was adapted by Beltaos (2013) for use
in the estimation of the roughness of newly formed ice jams,
resulting in Eq. (3).

ni ≈ 0.095D1/2R1/3 (3)

The value given for cn = 0.095 has been determined to be
representative for ice jams. Additionally, the inclusion of the
hydraulic radius R [m] accounts for the fact that the rough-
ness elements of ice jams are often of such magnitude as to
increase relative roughness to the point where it has a signifi-
cant impact on the hydraulic radius. This relationship is only
valid for newly formed ice jams; immediately after forma-
tion, the ice is subject to shear forces from the water flowing
underneath, which slowly smoothens the subsurface of the
ice cover (Ashton, 1986).

2.3 Remotely piloted aircraft photogrammetry

RPAs equipped with high-resolution digital cameras have
been used extensively in the collection of near-surface photo-
graphic and topographic data (Colomina and Molina, 2014;
Watts et al., 2012). They are smaller and more cost-effective
than conventional aircraft, allowing for much more versa-
tile data collection. Compared to manual surveying meth-
ods they can collect a greater volume of data in less time
and greatly reduce risk to personnel. For the purposes of
topographic data collection, the current common practice
is to further process images collected with an RPA using
structure from motion (SfM) photogrammetry (Fraser and
Cronk, 2009). SfM photogrammetry is a technique that in-
fers a three-dimensional structure from a series of overlap-
ping, offset two-dimensional images (Westoby et al., 2012).
Niethammer et al. (2012) used this method to monitor the
progression of the Super-Sauze landslide, a task too danger-
ous to monitor manually. Eisenbeiss et al. (2005) employed
RPA photogrammetry to document the layout of ancient ru-
ins in Peru, which if done manually would have risked the in-
tegrity of the site. Hamshaw et al. (2019) found use for RPAs
in the monitoring of riverbank erosion. RPAs were even used
by Alfredsen et al. (2018) in the mapping of river ice in Nor-
way.

3 Methodology

Five field sites were selected in this study, their relative lo-
cation along the bed profile of the Lower Dauphin River is
illustrated in Fig. 2. Data were gathered during the winter
months of 2017–2019. A relatively smooth, unconsolidated
ice cover has been observed to form at DRLL03b in all pre-
vious study years, due to its low bed slope (0.029 %). Sites
DRLL05 and DRLL06 exhibited substantial ice dynamics,
as they are within the higher gradient (0.16 %) portion of the
Lower Dauphin River (Wazney et al., 2019). Sites DRLL08
and DRLL08a had much milder water surface slopes, due to
the backwater effect from Lake Winnipeg. The toe of an ice
jam has formed in previous years near sites DRLL08a and
DRLL08. These sites were selected in an effort to compare
the efficacy of the RPA photogrammetry method on different
ice conditions and to determine if the methods can distin-
guish roughness differences between sites.

3.1 Field methods

3.1.1 Photogrammetry

Remote monitoring of weather conditions informed the se-
lection of field visit dates, with most data collected less than
1 week after the onset of ice formation on the study sites. A
total of ten 1 m2 high-visibility medium-density fibreboard
targets were distributed on the grounded ice near the left bank
of each site and on snow near Provincial Road (PR) 513.
A typical layout of targets is shown in Fig. 3, which illus-
trates how the targets are placed exclusively on the left bank
of the river. The targets were grouped in this way since the
right bank was inaccessible. Ideally, the targets would have
been evenly distributed across the entire study area (Alfred-
sen et al., 2018; Gini et al., 2013). In Sect. 3.1.3, the effects
of target distribution on digital elevation model (DEM) accu-
racy are tested.

After targets were placed, their centres were surveyed us-
ing a Leica Viva GS14® survey-grade real-time kinematic
(RTK) Global Navigation Satellite System (GNSS) base-
and-rover system, which is typically observed to have an
in-field reported horizontal error of ≈ 2 cm and a vertical
error of ≈ 3 cm. The Canadian Geodetic Vertical Datum of
2013 (CGVD2013) geoid was used in the recording of all
surveyed elevations. Localization was assessed using a Man-
itoba Infrastructure (MI) benchmark located near DRLL03
and verified using the Natural Resources of Canada Canadian
Spatial Reference System Precise Point Positioning (CSRS-
PPP) service. Further benchmarks were established using the
CSRS-PPP and “leap-frogging” to further benchmarks. In
the 2019–2020 season, some RPA flights were completed
without targets to allow for more flights to be completed
during the field visit. A comparison between the represen-
tative metrics calculated from a DEM with and without geo-
rectification is presented in Sect. 4.1.
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Figure 2. Channel bed profile of the Lower Dauphin River, with selected study locations. Flow is 86 m3/s.

Figure 3. Typical target distribution.

Once all field personnel had finished active tasks, the RPA
was launched, and field staff remained stationary for the du-
ration of the RPA flight. A DJI Phantom 4 Professional®

RPA was flown at an approximate altitude of 30 m, with over-
lapping photos taken every 10 m, at a 0◦ or 20◦ camera tilt.
The on-board 20 megapixel camera had an 84◦ field of view
with a 1 in. CMOS sensor. The RPA flight transected the
river and included PR 513 and forest on the left and right
bank, respectively. The RPA was flown only if wind speeds
measured by a handheld digital anemometer were less than
36 km/h. Since light conditions could drastically impact the
quality of images taken, the RPA was flown only during day-
time and during clear or lightly overcast conditions. Typi-
cal capture dimensions of an RPA flight were 90 m in the
stream-wise ordinate and 230 m across the river. During the
2019–2020 field season, the RPA mission planning appli-
cation Pix4Dcapture® was used to plan and automate RPA

flights over study areas. This greatly reduced the required
flight time and produced similar (if not better) photo cover-
age.

3.1.2 Hydraulic parameters

Water pressure was recorded every 8 min at the study sites
using Solinst Levelogger® Edge 3001 M5 pressure trans-
ducers and accompanying nearby Solinst Barologger® Edge
3001. The listed accuracy of these devices is ±0.003 m and
±0.05 kPa, respectively. These instruments were installed
before the ice season began (typically October), removed
for download and maintenance after the end of the ice sea-
son (typically April–May), and were then subsequently re-
installed for summer observations. During installation, the
water surface was surveyed for use in post-processing to
determine the absolute water surface elevation of the ob-
servations in metres above sea level (m a.s.l.). Additionally,
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the observed barometric pressure, converted to its equiva-
lent depth of water, was subtracted from the pressure obser-
vations. The observed water level and previously measured
channel bathymetry were used to estimate hydraulic radius at
each of the study sites using a one-dimensional at-a-station
hydraulic model based on Manning’s equation.

During the 2019–2020 field season, holes were drilled in
the ice cover at safe locations to determine ice thickness;
however, not all locations allowed such convenient means of
measurement. Ice thickness measurements of a rough, con-
solidating ice cover are impossible to conduct, and thus indi-
rect measurement procedures were necessary, depending on
the local conditions. In some cases, when it was clear that
the ice cover was comprised of one or two layers of ice
pans of known dimension, ice thicknesses were estimated
through visual observation and photographs taken by sta-
tionary trail cameras. For highly consolidated thick ice cov-
ers, mid-winter RTK surveys were conducted to measure top
of ice along the Lower Dauphin River. Lateral ice transects
were conducted at locations where ice became grounded.
The previously surveyed ground elevations were subtracted
from these top-of-grounded-ice measurements to provide es-
timates of ice thickness. Late in the winter (typically Febru-
ary) after a stable ice cover had formed, a top-of-ice elevation
survey was undertaken along the Lower Dauphin River using
the base-and-rover system. Truncated transects of ice thick-
ness were also surveyed at locations where ground elevation
had previously been surveyed. A transect was performed at
the DRLL06 and DRLL05 sites but not at DRLL08 due to
safety concerns. During the 2019–2020 field season, holes
were drilled in the ice cover at safe locations following es-
tablished safe work procedures to determine ice thickness.

3.1.3 Field accuracy tests

There was a need to quantify the impact of the required
ground control grouping on the left bank of the study area.
The field methods described in Sect. 3.1.1 were repeated at
River’s Edge Nursery in La Barriere, Manitoba. A fully dry
land study area of equivalent size to typical study areas flown
at the Dauphin River was delineated, and 15 targets were dis-
tributed. The targets were conceptually grouped into three
areas: typical, middle, and end. The “typical” group repre-
sented a target distribution that was generally produced dur-
ing fieldwork at the Dauphin River sites. The “middle” and
“end” target groups were supplemental and would be added
or subtracted from the photogrammetry analysis to test their
respective impacts on DEM accuracy. The distribution of tar-
gets in the study area is represented in Fig. 4. Finally, after
the RPA flight was conducted, 10 independent and unmarked
locations were captured by RTK-GNSS survey as a check for
accuracy in subsequent data analysis.

Figure 4. Accuracy test experimental setup: (a) typical, (b) middle,
(c) end.

Figure 5. Example point cloud: DRLL06, 21 November 2018.

3.2 Laboratory methods

3.2.1 Photogrammetry

The photogrammetry processing software selected for this
study was PhotoScan Professional® from AgiSoft LLC. Gini
et al. (2013) compared their custom research-grade pho-
togrammetry algorithms to results obtained from Pix4UAV
Desktop® and PhotoScan Professional®. Their findings sug-
gested that these commercial packages performed similarly
to their software, with PhotoScan Professional® perform-
ing somewhat better than Pix4UAV Desktop®. PhotoScan
Professional® is also considered to be a relatively fully fea-
tured and complex (Eltner and Schneider, 2015) tool com-
pared to other options.

Images were imported into PhotoScan Professional®, and
aligned to create a sparse point cloud of tie points. Where tar-
gets were used, they were identified in all images containing
them, and their coordinates were imported to provide geo-
rectification of the resultant point cloud. A dense point cloud
was then generated, followed by a DEM. An example point
cloud consisting of ≈ 15 million points and the correspond-
ing DEM are shown in Figs. 5 and 6, respectively.

3.2.2 Accuracy testing

The impact of placing all control points on an extreme end of
the study area was tested through a detailed trial on an open
field. Groups of targets were used as input to the photogram-
metry software, and the resultant DEMs were compared to
the 10 independent survey points. The DEM generated using
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Figure 6. Example DEM: DRLL06, 21 November 2018.

all available targets was assumed to be the most correct rep-
resentation of the land surface, against which all other target
groupings were compared. A maximum acceptable vertical
difference of 0.03 m between the DEMs and the independent
survey points was adopted. This value was chosen based on
the typical error observed in the data gathered by the RTK
GNSS base-and-rover system. This system was the limiting
factor for accuracy in this study since it was the tool which
informs the absolute spatial position of all field equipment.
The following target scenarios were tested: “all points”, uti-
lizing all ground control targets; “typical points”, using all
the targets identified in the typical subset; “three points”, us-
ing a subset of three targets from the typical subset; and “two
points”, using a subset of two targets from the typical sub-
set. In the two- and three-point tests, the most spatially dis-
tributed targets within the typical subset were selected. An
additional test was required to determine if systemic errors
were introduced in DEMs generated without the use of geo-
rectification targets. This scenario is referred to as the “no
points” case. Data collected at site DRLL06 on 13 Novem-
ber 2019 were prepared with and without the inclusion of
control point data. A maximum acceptable error of 5 % was
adopted to evaluate the results of this test.

3.2.3 Roughness characterization

To avoid unwanted influences in the surface slope and tex-
ture, a 50 m2 subsample from the centre of the river was
taken, which excluded all overbank objects and sections of
the ice cover that were near to the bank. Additionally, a three-
dimensional plane of best fit linear model (LM) was found
for each sample and then subtracted from the surface data.
The goal of this was to normalize each dataset, setting the
average surface elevation to 0 and removing the river slope
from the sample data. Gadelmawla et al. (2002) noted that
the average surface elevation is the most commonly used and
most sensible reference standard from which to assess rough-
ness height. By shifting the elevation data down to a base ele-

vation of 0 and removing unwanted patterns, each data point
was transformed from an elevation to a roughness height.

A two-dimensional fast Fourier transform (FFT) was then
applied to each subsample, with the goal of filtering the in-
put data and removing other surface trends beyond those ad-
dressed with the plane of best fit. The combination of the
LM and FFT adjustment and filtering processes will be re-
ferred to as LMFFT. Through an analysis of dominant fre-
quencies it was found that the lowest frequencies (< 1 m−1)
had the largest amplitudes, while the highest-frequency sig-
nals (> 5 m−1) had the lowest amplitudes. A bandpass filter
constructed with a low-pass value of 0.08 m was generally
found to produce the best results. The high-pass component
of the filter was adjusted through extensive iterative visual
analysis of the image. High-pass cutoff values that were too
aggressive caused obvious edge distortion, while values that
were too conservative caused insufficient trend removal. The
chosen high-pass wavelength cut-off values for all images
ranged from 70 to 70.5 m. Figure 7a and b show the DEM
before and after the application of this filter.

A representative value of roughness height was required
from each dataset for further analysis and comparison. Based
on a review of relevant literature in the fields of photogram-
metry, fluvial geomorphology, and roughness characteriza-
tion, various statistical methods for roughness height char-
acterization were considered, and several were chosen for
further consideration in this study (Table 1). The full two-
dimensional processed roughness height data, hereafter re-
ferred to as LMFFT-full, was then further analysed to cre-
ate a second dataset that was comprised of only peak val-
ues of roughness height. This dataset, called LMFFT-peaks,
was developed by extracting peak roughness heights using
a three-dimensional implementation of the “peakpick” algo-
rithm (Weber et al., 2014) available in the R programming
language.

Once the various metrics of roughness height at each site
were determined using the LMFTT-full and LMFTT-peaks
datasets, the corresponding hydraulic radius for each site was
determined using a simple one-dimensional hydraulic model
based on Manning’s equation. The model used the observed
water level, estimated ice thickness, surveyed channel cross
section, and an assumed specific gravity of ice of 0.916.
Equation (3) was then used to calculate the RPA-measured
ice surface Manning’s n for each site.

In addition to a numerical characterization of roughness,
a qualitative classification of roughness type was undertaken
using k-means clustering, which is the most commonly used
clustering approach (Jain, 2010). The input data were IQR
and kurtosis of the LMFFT-full and LMFFT-peaks data and
the median of the LMFFT-peaks data. Mean and median of
the LMFFT-full data were excluded since they were set to 0
through the LMFFT process. Interestingly, the kurtosis was
found to be a more useful metric for this analysis than the
mean, standard deviation, or skewness. Since they was used
in the computation of kurtosis, SD and skewness were re-
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Figure 7. Summary of impacts of filtering through Fourier analysis for DRLL06, 13 November 2019: (a) original ice surface DEM and (b)
LMFFT-processed ice surface DEM.

Table 1. Selected statistical metrics used to quantify RPA-measured ice surface roughness.

Method Data group Reference

IQR LMFFT-full Aberle and Nikora (2006)
SD LMFFT-full Aberle and Nikora (2006)
Minimum peak value LMFFT-peaks Gadelmawla et al. (2002)
Maximum peak value LMFFT-peaks Gadelmawla et al. (2002)
Average of peaks LMFFT-peaks Gadelmawla et al. (2002), Gomez (1993)
84th percentile of peaks LMFFT-peaks Beltaos (2013)

moved from both datasets. The data were then mean-centred,
and the optimal number of clusters was determined using the
average silhouette method. The Euclidean distance formula
was used in determination of the k-means clustering.

3.2.4 Roughness comparison

The RPA-measured ice surface Manning’s n values from
each site and using each of the roughness metrics were com-
pared to Manning’s n values computed using the commonly
used Nezhikhovskiy equation (Eq. 2), as it has been found
to make reasonable predictions of flow resistance of the un-
derside of an ice cover. A similar comparison between RPA-
measured ice surface Manning’s n and the site ice thickness
was also made. This was undertaken since ice thickness is
the sole input parameter of the Nezhikhovskiy equation and
could perhaps provide another perspective on the data. A lin-
ear regression was computed for the data in each plot. The
quality of regressions were evaluated using the correlation
coefficient (R2), F statistic (F ), p value (p), and root-mean-
square error (RMSE) values. The p value corresponds to the
probability that the data show a significant trend through ran-
dom chance and not an actual relationship. The criteria for
significance in the p value was set to α ≤ 0.05. The F value
is a component of the p value and is another method of test-
ing the significance of a linear regression when compared to
its critical value Fcrit, which is calculated in Sect. 5.2. The

validity of using linear regression modelling with these data
was evaluated by testing the normality of residuals using the
Shapiro–Wilk test for normality (p > 0.05). This test was se-
lected due to its wide usage in data analysis and its superior
power compared to many other widely used normality tests
(Razali and Wah, 2011). Q–Q plots of residuals were used to
confirm the test statistics.

4 Results

4.1 RPA performance

The RPA chosen for this study performed well during all field
visits in various weather and cloud conditions. In extreme
cold (−20 ◦C and below) the RPA performed all functions
well, although the battery life was reduced by approximately
50 %. It was found that the RPA had to be powered on in a
warm area, such as the heated cab of the field vehicle. Once
powered on, it could then be placed outside for normal oper-
ations.

RPA photogrammetry performed very well across a vari-
ety of scenarios in the land-based field accuracy tests. The
worst observed DEM accuracy was found in the two points
scenario, with an average vertical difference of 6.30 m calcu-
lated between the DEM and the 10 independently surveyed
test points. The three points, typical points, and all points sce-
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narios all had the same average vertical difference of 0.03 m.
These three scenarios were all within the acceptable ver-
tical difference criteria of 0.03 m identified in Sect. 3.2.2.
The maximum error of the DEM was determined to be the
sum of the expected vertical accuracy of the RTK-GNSS
unit, 0.03 m, and the observed vertical difference between the
DEMs and surveyed locations, 0.03 m, for a total expected
error of 0.06 m. The results of the no points test case, which
sought to determine if a lack of geo-rectification targets in-
troduces systemic errors into the DEM data, are presented in
Table 2.

4.2 Dauphin River results

During the 2018–2019 and 2019–2020 field seasons, the
Dauphin River experienced much lower flows than those ob-
served in the previous few years. The mean seasonal flow
between November and March for each season was 74 and
90 m3/s for 2018–2019 and 2019–2020, respectively, com-
pared to 178 and 195 m3/s in 2016–2017 and 2017–2018, re-
spectively, although in prior years lower flows were noted.
This resulted in notably thinner ice covers, more thermal ice
growth, and less extensive ice jamming than was reported
by Wazney et al. (2018). The average values of observed ice
thickness reduced from 2.9 m at site DRLL05 and DRLL06
in 2017–2018 to 1.8 and 0.8 m in 2018–2019 and 2019–2020,
respectively.

4.2.1 Statistical properties of ice roughness height
distributions

Several different forms of ice roughness were observed in
DEMs produced using RPA photogrammetry. Figure 8 illus-
trates three different ice roughness forms observed at a single
site, and their appearance in cross section along the indicated
transects. The “rough” form of ice roughness was classified
visually as any type of ice formed by the accretion and con-
solidation of frazil pans or broken pieces of border ice. The
“smooth” form of ice roughness was classified as ice that
appeared to have formed under quiescent conditions from a
combination of transported and thermally grown ice that did
not consolidate. Ice that exhibited pressure ridges on other-
wise smooth ice was termed “ridged”.

Two samples were observed to contain ridged ice, both
of which occurred at site DRLL08a on 23 November 2017
and 23 November 2019. Ridged ice presented a unique sit-
uation for the evaluation of ice roughness based on surface
ice characteristics. In sea ice, it is generally the case that
the height of an observed pressure ridge above the ice cover
(sail) is less than the depth to which the ridge extends below
the ice cover (keel) (Johnston et al., 2009). In the fluvial set-
ting this relationship is unknown, potentially complicating
the hypothesis of this work. Therefore, samples exhibiting
pressure ridge formations were discarded from subsequent
comparisons between calculated ice roughness and k-means

Figure 8. Examples of three types of roughness observed in ice sur-
face roughness samples along the indicated transects (dotted lines)
at DRLL08a, 13 November 2019.

clustering. However, these data were retained for the general
discussion of surface ice roughness characteristics found in
Sect. 5.3.

Cluster analysis was conducted using k-means clustering.
The optimal number of clusters was found to be two when us-
ing average silhouette analysis. Table 3 illustrates the group-
ing of clusters in the data. The within cluster sum of squares
was found to be 5.44 and 11.96 for clusters 1 and 2 respec-
tively.

5 Discussion

5.1 Accuracy of the RPA photogrammetry method for
fluvial ice analysis

The results of the dry-land RPA photogrammetry accuracy
test showed that if three or more targets were used, verti-
cal differences of no more than 0.03 m were observed be-
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Table 2. Percent and absolute difference between various statistical metrics computed from geo-rectified and non-geo-rectified (no ground
control points) DEMs produced from data collected at DRLL06, 13 November 2019.

Mean Median IQR SD Skew. Kurt.

Absolute <0.01 m <0.01 m <0.01 m <0.01 m 0.02 0.08
Percent <1 6 2 2 5 2

Table 3. Categorization of ice roughness via cluster analysis.

Site Date Clus.

DRLL06 11/21/2018 1
DRLL06 2/20/2019 1
DRLL06 11/12/2019 1
DRLL06 11/13/2019 1
DRLL06 11/26/2019 1
DRLL03b 11/14/2019 2
DRLL05 11/12/2019 2
DRLL05 11/13/2019 2
DRLL08 11/13/2019 2
DRLL08a 11/26/2019 2

tween resultant DEMs and independently surveyed points.
This amount of vertical difference was deemed acceptable
when compared to the maximum acceptable vertical differ-
ence of 0.03 m established in Sect. 3.2.2. No excessive tilt
was observed in DEMs as a result of grouping targets on one
side of the study area. AgiSoft PhotoScan Professional® ap-
peared to be able to find an adequate number of tie points
between images principally comprised of snow.

As described in Eltner et al. (2016), systemic errors caus-
ing deficiencies in DEM accuracy differ due to local-scale
errors causing deficiencies in DEM precision. Systemic er-
rors include those incurred by improper sampling technique
and by limitations in the analysis. These errors were largely
assumed to have been handled to the maximum extent pos-
sible in this research by the automated processes in AgiSoft
PhotoScan Professional®. Eltner and Schneider (2015) found
that AgiSoft PhotoScan Professional® also performed well
in reproducing the texture of complex natural surfaces. Di-
rect comparisons could not be made in this research between
the naturally occurring ice surfaces and the RPA photogram-
metry reproductions. However, the magnitude of such results
as the maximum ice peak value matched visual observations
and field notes. The accuracy test performed at the La Bar-
rier field site confirmed that with appropriate ground control
points this method could accurately reproduce snow-covered
land surfaces. It also showed that the method could precisely
reproduce features of the same order of magnitude as the
chunks of ice expected to be measured on the Dauphin River.

Comparison of geo-rectified and non-geo-rectified DEMs
yielded deviations for most metrics well within the 5 %
threshold. The percent difference of the median was greater

than 5 %; however, its absolute deviation was < 0.01 m,
which is much less than the maximum vertical error (0.06 m).
These results confirm that geo-rectification was not strictly
necessary for the analysis of surface ice roughness, since
the analysis is principally concerned with surface variation
rather than absolute location and orientation. However, geo-
rectification would be necessary for most other applications
of RPA photogrammetry of ice surfaces, such as those pro-
posed in Sect. 5.4.

5.2 Comparison of ice roughness estimates

It was unclear which statistical metric would produce
the most representative value of roughness height for the
LMFFT-full and LMFFT-peak data. Since this has not been
attempted in the field of fluvial ice research, a total of six po-
tential options for the calculation of roughness height were
selected, and once converted to Manning’s n using Eq. (3),
they were compared to the Nezhikhovskiy-predicted subsur-
face ice Manning’s n (Fig. 9) and ice thickness (Fig. 10). A
linear regression was attempted in each plot, and the corre-
sponding statistical parameters are presented in Table 4. The
reported F statistic (F1,4) has 1 and 4 degrees of freedom for
the numerator and denominator, respectively. Using the sig-
nificance value of α ≤ 0.05 established in Sect. 3.2.4, a value
of Fcrit of 0.0045 was found. Values of F1,4 greater than this
value indicate a significant relationship.

Figure 9 highlights the fact that the Nezhikhovskiy-
predicted subsurface ice Manning’s n was generally greater
than the RPA-measured values and plotted over a fairly nar-
row range. Most RPA-derived roughness values did not fall
on the 1 : 1 line, indicating that the RPA-measured ice sur-
face Manning’s n was not identical to the values predicted
using a common empirical relationship. It should be noted,
however, that ice cover with relatively high RPA-measured
surface ice Manning’s n had high Nezhikhovskiy-predicted
subsurface ice Manning’s n and vice versa.

5.2.1 RPA-measured ice surface Manning’s n vs.
Nezhikhovskiy-predicted subsurface ice
Manning’s n

The p statistic found that all relationships were significant
(α ≤ 0.05) in this comparison. The F1,4 statistic exceeded the
Fcrit value of 0.0045 in all cases. All metrics illustrated strong
correlation with high R2 values and low RMSE. The SD and
IQR performed the best of all metrics, with the highest R2
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Table 4. Performance statistics of applied linear models.

RPA-measured ice surface Manning’s n vs. Nezhikhovskiy-predicted
subsurface ice Manning’s n

Metric Slope R2 F1,4 p RMSE

SD 0.493 0.913 42.136 0.003 0.001
IQR 0.675 0.913 42.077 0.003 0.002
Min. peak 0.913 0.840 21.074 0.010 0.004
Max. peak 1.360 0.888 31.760 0.005 0.004
Mean peak 1.146 0.819 18.139 0.013 0.005
84th percentile of peaks 1.331 0.822 18.492 0.013 0.006

RPA-measured ice surface Manning’s n vs. ice thickness

Metric Slope R2 F1,4 p RMSE

SD 0.014 0.987 300.379 <0.001 0.001
IQR 0.019 0.986 289.531 <0.001 0.001
Min. peak 0.026 0.948 72.658 0.001 0.002
Max. peak 0.037 0.882 29.764 0.005 0.005
Mean peak 0.033 0.936 58.070 0.002 0.003
84th percentile of peaks 0.038 0.935 57.587 0.002 0.003

values and lowest p and RMSE results. These results indi-
cate the ice roughness values derived from RPA photogram-
metry were proportional to roughness values predicted using
the Nezhikhovskiy equation.

5.2.2 RPA-measured ice surface Manning’s n vs. ice
thickness

Since the only input parameter for the Nezhikhovskiy equa-
tion is ice thickness, the RPA-measured ice surface Man-
ning’s n values were compared directly to their associated ice
thickness measurements (and estimates) as shown in Fig. 10.
All metrics of roughness height taken from the DEMs were
found to generate RPA-measured ice surface Manning’s n
values that were strongly correlated with ice thickness. The
corresponding regression statistics are reported in Table 4.
The IQR and SD again performed the best, with the high-
est R2 value and lowest RMSE, although all metrics per-
formed exceptionally well. The p statistic showed that all
relationships were significant (α ≤ 0.05), and the F1,4 statis-
tic exceeded the Fcrit value of 0.0045 in all cases. Further
research would be required to determine if this relationship
may be used to estimate ice thickness based on observed sur-
face roughness.

5.3 Statistical properties of ice surface roughness
heights

All observations at site DRLL06 were found to belong to
cluster “1”, while observations at site DRLL03b, DRLL05,
DRLL08, and DRLL08a belonged to cluster “2”. The clus-
ter results were enforced by observations taken at the time
of sample collection. The samples were broadly separated

Table 5. Minimum, mean, and maximum values of surface SD for
clusters.

Cluster Min. Mean Max.

1 (rough) 0.06 0.08 0.11
2 (smooth) 0.02 0.03 0.05

into two groups corresponding to the visual extent of rough
or smooth ice, as defined earlier in this section. Samples in
cluster 1 were observed to be rough, while samples in clus-
ter 2 were observed to be smooth. Considering the SD of
the LMFFT-full data, which was the best performing metric
in Sect. 5.2, Table 5 provides the minimum, mean, and maxi-
mum values of the sites within each identified cluster. Cluster
1, the rough cluster, corresponded to ice surfaces with higher
SD values, while cluster 2, the smooth cluster, has lower SD
values. The range of values are mutually exclusive, indicat-
ing a strong divide between the two groups.

For each site, the LMFTT-full data as well as the LMFTT-
peaks data subset were analysed in detail. Figure 11 presents
typical examples of rough, smooth, and ridged ice. The rough
and smooth samples corresponded to sites from each of the
rough and smooth clusters. The ridged samples were those
identified in Sect. 4.2.1. To the authors’ knowledge this is
the first time that roughness of a river ice cover’s surface has
been quantified in such detail. The LMFTT-full histograms
were observed to have distributions that appeared Gaussian
in a qualitative sense, as shown in Fig. 11. Despite the ap-
pearance, all distributions failed the Shapiro–Wilk normality
test, with p� 0.05, using a randomized subsample (≈ 5000
points) of the data. Considering the distribution of peak val-
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Figure 9. Comparison of RPA-measured surface ice Manning’s n calculated from various statistical metrics or roughness height to
Nezhikhovskiy-predicted subsurface ice Manning’s n.

ues only, all sites exhibited clearly non-normal distributions
that were heavily biased to the extreme left of the chart. This
was interpreted to mean that the majority of peaks were small
compared to the maximum peak values.

It was noted that the rough and smooth samples differed
primarily in the width and height of their distributions. The
rough samples tended to have wider distributions with a
lower peak count, while the smooth distributions had a higher
peak count and a narrower distribution of roughness heights.
The distributions of peak roughness height also differed, with
the rough samples having more larger peaks than the smooth
samples. The ridged samples exhibited more irregular distri-
butions than the rough or smooth cases but were more similar
to rough distributions in being wider and having lower peak
counts than smooth distributions.

5.4 Alternative uses for RPA photogrammetry

A common problem in river ice elevation surveys is the se-
lection of a single, representative value to define the average
ice surface elevation in a given area, especially when the ice
cover is quite rough. It is up to the practitioner to use their
best judgement to visually select a single representative point
to survey while walking along the river bank, and the simple
choice of resting the survey rod on the top of a piece of ice
or the bottom of that same piece of ice will cause the local
ice elevation measurement to vary considerably. During mas-
sive ice jam events, this field task is dangerous and frequently
impossible. The above research shows that RPA photogram-
metry can be used to accurately survey ice areas for the pur-
pose of observing local topography, with much lower risks to
field personnel than traditional ice surveying methods. Once
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Figure 10. Comparison of RPA-measured ice surface Manning’s n calculated from various statistical metrics to site ice thickness.

a geo-rectified DEM has been established, a representative
ice elevation value of the entire rough ice surface can be de-
termined using the LM approach introduced in Sect. 3.2.3.
This analysis could be extended to examine shear walls and
determine maximum ice elevation of a freeze-up jam after
the fact.

6 Conclusions

The research presented in this work has developed novel
methods for the capture and analysis of fluvial ice surface
elevation and roughness data. Through field trials and con-
trolled land-based experiments, it was determined that RPA
photogrammetry produced an accurate digital representation
of rough or smooth ice covers, with a maximum vertical er-
ror of 0.06 m if using three or more ground control points

over a 200 m by 100 m area. For the sole purpose of rough-
ness characterization, it was determined that geo-rectification
was unnecessary using our equipment. The relatively inex-
pensive consumer-grade RPA was able to operate in harsh
winter field conditions, with an approximately 50 % reduced
battery life. For the first time in the river ice engineering field,
the top-of-ice surface roughness has been quantified in detail
using high-resolution RPA photogrammetry. A combination
of linear processing and Fourier filtering were proposed, and
bulk statistical properties of the ice roughness samples have
been computed. Histograms of different ice types have been
presented for the first time, and k-means clustering analy-
sis has identified two distinct classes of surface ice rough-
ness. Through evaluation of the statistical properties of the
distribution of DEM heights observed via RPA photogram-
metry, several interesting patterns were found. All distribu-
tions were found to be non-normal when evaluated with the
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Figure 11. Comparison of representative roughness height histograms across three identified ice types.

Shapiro–Wilk normality test; however, they display a quali-
tatively normal appearance.

The hypothesis of this research, i.e. that the surface
roughness of a newly frozen fluvial ice cover is indicative
of subsurface roughness, was tested. When comparing the
Nezhikhovskiy-predicted values to the RPA-measured val-
ues, all roughness height metrics produced significant re-
lationships, many with R2 > 0.9. In this comparison IQR
and SD had the lowest p values, highest R2 values, and
lowest RMSE values. It can be concluded that even though
the RPA-measured ice surface Manning’s n was not equiv-
alent to Nezhikhovskiy-predicted subsurface ice Manning’s
n, the correlations were strong enough to suggest that RPA-
measured surface ice roughness and subsurface ice rough-
ness increase in tandem.

Very strong positive correlation was observed between
the RPA-measured surface ice roughness and ice thickness
across all tested metrics. Once again the SD and IQR of the
roughness height DEM were found to be the best metrics for
roughness height, with the highest R2 and lowest RMSE and
p values. This relationship also supports the hypothesis that
surface ice roughness is related to subsurface ice roughness,
since the data show that RPA-measured ice surface rough-
ness increases with ice thickness and a widely used empirical
formula predicts the same relationship. Future work should
focus on increasing the number of field observations taken

using these methods, across a wider range of ice roughness
values and on different rivers of various size and flow condi-
tions.

The methods presented in this research can conceivably
be applied to further uses in the field of fluvial ice monitor-
ing. For example, the high-resolution DEMs produced by this
method can be used to determine a more representative spot
measurement of ice elevation, which has the potential to sig-
nificantly increase the accuracy of river ice jam profile plots.
This could potentially improve ice jam numerical model de-
velopment since model performance is consistently evaluated
by comparing simulated jam profiles to measured ice jam
profiles. Furthermore, shear walls may be captured and anal-
ysed in their entirety, even immediately after or during break-
up. This research also presents a possible link between sur-
face ice roughness and ice thickness, which may provide for
a method of estimating ice thickness using RPA photogram-
metry. The use of RPA photogrammetry for the monitoring of
fluvial ice covers offers a quicker, safer, and cheaper alterna-
tive to any previous method of high-resolution topographic
data collection, and its applications are open for develop-
ment.

Data availability. Data related to this study, including raw images,
point clouds, and summary data, are available upon request from
the corresponding author.
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