Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-4005-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4005-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles
Dylan R. Harp
CORRESPONDING AUTHOR
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
current address: Science and Analytics Team, The Freshwater Trust, 700 SW Taylor Street, Suite 200, Portland, OR 97205, USA
Vitaly Zlotnik
Earth and Atmospheric Sciences Department, University of Nebraska, Lincoln, NE 68588-0340, USA
Charles J. Abolt
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
Bob Busey
International Arctic Research Center, University of Alaska, Fairbanks, AK 99775, USA
Sofia T. Avendaño
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
Brent D. Newman
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
Adam L. Atchley
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
Elchin Jafarov
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
Cathy J. Wilson
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
Katrina E. Bennett
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
Related authors
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022, https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
Short summary
Recent research indicates the importance of lateral transport of dissolved carbon in the polygonal tundra, suggesting that the freeze-up period could further promote lateral carbon transport. We conducted subsurface tracer simulations on high-, flat-, and low-centered polygons to test the importance of the freeze–thaw cycle and freeze-up time for tracer mobility. Our findings illustrate the impact of hydraulic and thermal gradients on tracer mobility, as well as of the freeze-up time.
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, and Cathy J. Wilson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-100, https://doi.org/10.5194/tc-2020-100, 2020
Manuscript not accepted for further review
Short summary
Short summary
Polygon shaped land forms present in relatively flat Arctic tundra result in complex landscape scale water drainage. The drainage pathways and the time to transition from inundated conditions to drained have important implications for heat and carbon transport. Using fundamental hydrologic principles, we investigate the drainage pathways and timing of individual polygons providing insights into the effects of polygon geometry and preferential flow direction on drainage pathways and timing.
Elchin E. Jafarov, Dylan R. Harp, Ethan T. Coon, Baptiste Dafflon, Anh Phuong Tran, Adam L. Atchley, Youzuo Lin, and Cathy J. Wilson
The Cryosphere, 14, 77–91, https://doi.org/10.5194/tc-14-77-2020, https://doi.org/10.5194/tc-14-77-2020, 2020
Short summary
Short summary
Improved subsurface parameterization and benchmarking data are needed to reduce current uncertainty in predicting permafrost response to a warming climate. We developed a subsurface parameter estimation framework that can be used to estimate soil properties where subsurface data are available. We utilize diverse geophysical datasets such as electrical resistance data, soil moisture data, and soil temperature data to recover soil porosity and soil thermal conductivity.
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Dylan R. Harp
The Cryosphere, 12, 1957–1968, https://doi.org/10.5194/tc-12-1957-2018, https://doi.org/10.5194/tc-12-1957-2018, 2018
Short summary
Short summary
We investigate the relationship between ice wedge polygon topography and near-surface ground temperature using a combination of field work and numerical modeling. We analyze a year-long record of ground temperature across a low-centered polygon, then demonstrate that lower rims and deeper troughs promote warmer conditions in the ice wedge in winter. This finding implies that ice wedge cracking and growth, which are driven by cold conditions, can be impeded by rim erosion or trough subsidence.
D. R. Harp, A. L. Atchley, S. L. Painter, E. T. Coon, C. J. Wilson, V. E. Romanovsky, and J. C. Rowland
The Cryosphere, 10, 341–358, https://doi.org/10.5194/tc-10-341-2016, https://doi.org/10.5194/tc-10-341-2016, 2016
Short summary
Short summary
This paper investigates the uncertainty associated with permafrost thaw projections at an intensively monitored site. Permafrost thaw projections are simulated using a thermal hydrology model forced by a worst-case carbon emission scenario. The uncertainties associated with active layer depth, saturation state, thermal regime, and thaw duration are quantified and compared with the effects of climate model uncertainty on permafrost thaw projections.
A. L. Atchley, S. L. Painter, D. R. Harp, E. T. Coon, C. J. Wilson, A. K. Liljedahl, and V. E. Romanovsky
Geosci. Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, https://doi.org/10.5194/gmd-8-2701-2015, 2015
Short summary
Short summary
Development and calibration of a process-rich model representation of thaw-depth dynamics in Arctic tundra is presented. Improved understanding of polygonal tundra thermal hydrology processes, of thermal conduction, surface and subsurface saturation and snowpack dynamics is gained by using measured field data to calibrate and refine model structure. The refined model is then used identify future data needs and observational studies.
Elchin E. Jafarov, Helene Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-158, https://doi.org/10.5194/gmd-2024-158, 2024
Preprint under review for GMD
Short summary
Short summary
Thawing permafrost could greatly impact global climate. Our study improves modeling of carbon cycling in Arctic ecosystems. We developed an automated method to fine-tune a model that simulates carbon and nitrogen flows, using computer-generated data. Using computer-generated data, we tested our method and found it enhances accuracy and reduces the time needed for calibration. This work helps make climate predictions more reliable in sensitive permafrost regions.
Tao Liu, Luke A. McGuire, Ann M. Youberg, Charles J. Abolt, and Adam L. Atchley
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-151, https://doi.org/10.5194/nhess-2024-151, 2024
Preprint under review for NHESS
Short summary
Short summary
After a fire, soil infiltration decreases, increasing flash flood risks, worsened by intense rainfall from climate change. Using data from a burned watershed in Arizona and a hydrological model, we examined postfire soil changes under medium and high emissions scenarios. Results showed soil infiltration increased sixfold from the first to third postfire year. Both scenarios suggest that rainfall intensification will extend high flood risks after fires by late century.
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2024-2249, https://doi.org/10.5194/egusphere-2024-2249, 2024
Short summary
Short summary
Temporally continuous snow depth estimates are vital for understanding changing snow patterns and impacts on permafrost in the Arctic. In this work, we develop an approach to predict snow depth from variability in snow-ground interface temperature using small temperature sensors that are cheap and easy-to-deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that was not previously possible.
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023, https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968, https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Short summary
Snow depth has a strong impact on soil temperatures and carbon cycling in the arctic. Because of this, we want to understand why snow is deeper in some places than others. Using cameras mounted on a drone, we mapped snow depth, vegetation height, and elevation across a watershed in Alaska. In this paper, we develop novel techniques using image processing and machine learning to characterize the influence of topography and shrubs on snow depth in the watershed.
Xiang Huang, Charles J. Abolt, and Katrina E. Bennett
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-8, https://doi.org/10.5194/tc-2023-8, 2023
Manuscript not accepted for further review
Short summary
Short summary
Near-surface humidity is a sensitive parameter for predicting snow depth. Greater values of the relative humidity are obtained if the saturation vapor pressure was calculated with over-ice correction compared to without during the winter. During the summer thawing period, the choice of whether or not to employ an over-ice correction corresponds to significant variability in simulated thaw depths.
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448, https://doi.org/10.5194/gmd-15-7421-2022, https://doi.org/10.5194/gmd-15-7421-2022, 2022
Short summary
Short summary
Lakes in the Arctic are important reservoirs of heat. Under climate warming scenarios, we expect Arctic lakes to warm the surrounding frozen ground. We simulate water temperatures in three Arctic lakes in northern Alaska over several years. Our results show that snow depth and lake ice strongly affect water temperatures during the frozen season and that more heat storage by lakes would enhance thawing of frozen ground.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Rachael E. McCaully, Carli A. Arendt, Brent D. Newman, Verity G. Salmon, Jeffrey M. Heikoop, Cathy J. Wilson, Sanna Sevanto, Nathan A. Wales, George B. Perkins, Oana C. Marina, and Stan D. Wullschleger
The Cryosphere, 16, 1889–1901, https://doi.org/10.5194/tc-16-1889-2022, https://doi.org/10.5194/tc-16-1889-2022, 2022
Short summary
Short summary
Degrading permafrost and shrub expansion are critically important to tundra biogeochemistry. We observed significant variability in soil pore water NO3-N in an alder-dominated permafrost hillslope in Alaska. Proximity to alder shrubs and the presence or absence of topographic gradients and precipitation events strongly influence NO3-N availability and mobility. The highly dynamic nature of labile N on small spatiotemporal scales has implications for nutrient responses to a warming Arctic.
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022, https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
Short summary
Recent research indicates the importance of lateral transport of dissolved carbon in the polygonal tundra, suggesting that the freeze-up period could further promote lateral carbon transport. We conducted subsurface tracer simulations on high-, flat-, and low-centered polygons to test the importance of the freeze–thaw cycle and freeze-up time for tracer mobility. Our findings illustrate the impact of hydraulic and thermal gradients on tracer mobility, as well as of the freeze-up time.
Baptiste Dafflon, Stijn Wielandt, John Lamb, Patrick McClure, Ian Shirley, Sebastian Uhlemann, Chen Wang, Sylvain Fiolleau, Carlotta Brunetti, Franklin H. Akins, John Fitzpatrick, Samuel Pullman, Robert Busey, Craig Ulrich, John Peterson, and Susan S. Hubbard
The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022, https://doi.org/10.5194/tc-16-719-2022, 2022
Short summary
Short summary
This study presents the development and validation of a novel acquisition system for measuring finely resolved depth profiles of soil and snow temperature at multiple locations. Results indicate that the system reliably captures the dynamics in snow thickness, as well as soil freezing and thawing depth, enabling advances in understanding the intensity and timing in surface processes and their impact on subsurface thermohydrological regimes.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
A. D. Collins, C. G. Andresen, L. M. Charsley-Groffman, T. Cochran, J. Dann, E. Lathrop, G. J. Riemersma, E. M. Swanson, A. Tapadinhas, and C. J. Wilson
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-M-2-2020, 1–8, https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-1-2020, https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-1-2020, 2020
Kurt C. Solander, Brent D. Newman, Alessandro Carioca de Araujo, Holly R. Barnard, Z. Carter Berry, Damien Bonal, Mario Bretfeld, Benoit Burban, Luiz Antonio Candido, Rolando Célleri, Jeffery Q. Chambers, Bradley O. Christoffersen, Matteo Detto, Wouter A. Dorigo, Brent E. Ewers, Savio José Filgueiras Ferreira, Alexander Knohl, L. Ruby Leung, Nate G. McDowell, Gretchen R. Miller, Maria Terezinha Ferreira Monteiro, Georgianne W. Moore, Robinson Negron-Juarez, Scott R. Saleska, Christian Stiegler, Javier Tomasella, and Chonggang Xu
Hydrol. Earth Syst. Sci., 24, 2303–2322, https://doi.org/10.5194/hess-24-2303-2020, https://doi.org/10.5194/hess-24-2303-2020, 2020
Short summary
Short summary
We evaluate the soil moisture response in the humid tropics to El Niño during the three most recent super El Niño events. Our estimates are compared to in situ soil moisture estimates that span five continents. We find the strongest and most consistent soil moisture decreases in the Amazon and maritime southeastern Asia, while the most consistent increases occur over eastern Africa. Our results can be used to improve estimates of soil moisture in tropical ecohydrology models at multiple scales.
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, and Cathy J. Wilson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-100, https://doi.org/10.5194/tc-2020-100, 2020
Manuscript not accepted for further review
Short summary
Short summary
Polygon shaped land forms present in relatively flat Arctic tundra result in complex landscape scale water drainage. The drainage pathways and the time to transition from inundated conditions to drained have important implications for heat and carbon transport. Using fundamental hydrologic principles, we investigate the drainage pathways and timing of individual polygons providing insights into the effects of polygon geometry and preferential flow direction on drainage pathways and timing.
Nathan A. Wales, Jesus D. Gomez-Velez, Brent D. Newman, Cathy J. Wilson, Baptiste Dafflon, Timothy J. Kneafsey, Florian Soom, and Stan D. Wullschleger
Hydrol. Earth Syst. Sci., 24, 1109–1129, https://doi.org/10.5194/hess-24-1109-2020, https://doi.org/10.5194/hess-24-1109-2020, 2020
Short summary
Short summary
Rapid warming in the Arctic is causing increased permafrost temperatures and ground ice degradation. To study the effects of ice degradation on water distribution, tracer was applied to two end members of ice-wedge polygons – a ubiquitous landform in the Arctic. End member type was found to significantly affect water distribution as lower flux was observed with ice-wedge degradation. Results suggest ice degradation can influence partitioning of sequestered carbon as carbon dioxide or methane.
Christian G. Andresen, David M. Lawrence, Cathy J. Wilson, A. David McGuire, Charles Koven, Kevin Schaefer, Elchin Jafarov, Shushi Peng, Xiaodong Chen, Isabelle Gouttevin, Eleanor Burke, Sarah Chadburn, Duoying Ji, Guangsheng Chen, Daniel Hayes, and Wenxin Zhang
The Cryosphere, 14, 445–459, https://doi.org/10.5194/tc-14-445-2020, https://doi.org/10.5194/tc-14-445-2020, 2020
Short summary
Short summary
Widely-used land models project near-surface drying of the terrestrial Arctic despite increases in the net water balance driven by climate change. Drying was generally associated with increases of active-layer depth and permafrost thaw in a warming climate. However, models lack important mechanisms such as thermokarst and soil subsidence that will change the hydrological regime and add to the large uncertainty in the future Arctic hydrological state and the associated permafrost carbon feedback.
Elchin E. Jafarov, Dylan R. Harp, Ethan T. Coon, Baptiste Dafflon, Anh Phuong Tran, Adam L. Atchley, Youzuo Lin, and Cathy J. Wilson
The Cryosphere, 14, 77–91, https://doi.org/10.5194/tc-14-77-2020, https://doi.org/10.5194/tc-14-77-2020, 2020
Short summary
Short summary
Improved subsurface parameterization and benchmarking data are needed to reduce current uncertainty in predicting permafrost response to a warming climate. We developed a subsurface parameter estimation framework that can be used to estimate soil properties where subsurface data are available. We utilize diverse geophysical datasets such as electrical resistance data, soil moisture data, and soil temperature data to recover soil porosity and soil thermal conductivity.
Katrina E. Bennett, Jessica E. Cherry, Ben Balk, and Scott Lindsey
Hydrol. Earth Syst. Sci., 23, 2439–2459, https://doi.org/10.5194/hess-23-2439-2019, https://doi.org/10.5194/hess-23-2439-2019, 2019
Short summary
Short summary
Remotely sensed snow observations may improve operational streamflow forecasting in remote regions, such as Alaska. In this study, we insert remotely sensed observations of snow extent into the operational framework employed by the US National Weather Service’s Alaska Pacific River Forecast Center. Our work indicates that the snow observations can improve snow estimates and streamflow forecasting. This work provides direction for forecasters to implement remote sensing in their operations.
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Cathy J. Wilson
The Cryosphere, 13, 237–245, https://doi.org/10.5194/tc-13-237-2019, https://doi.org/10.5194/tc-13-237-2019, 2019
Short summary
Short summary
We present a workflow that uses a machine-learning algorithm known as a convolutional neural network (CNN) to rapidly delineate ice wedge polygons in high-resolution topographic datasets. Our workflow permits thorough assessments of polygonal microtopography at the kilometer scale or greater, which can improve understanding of landscape hydrology and carbon budgets. We demonstrate that a single CNN can be trained to delineate polygons with high accuracy in diverse tundra settings.
Kang Wang, Elchin Jafarov, Irina Overeem, Vladimir Romanovsky, Kevin Schaefer, Gary Clow, Frank Urban, William Cable, Mark Piper, Christopher Schwalm, Tingjun Zhang, Alexander Kholodov, Pamela Sousanes, Michael Loso, and Kenneth Hill
Earth Syst. Sci. Data, 10, 2311–2328, https://doi.org/10.5194/essd-10-2311-2018, https://doi.org/10.5194/essd-10-2311-2018, 2018
Short summary
Short summary
Ground thermal and moisture data are important indicators of the rapid permafrost changes in the Arctic. To better understand the changes, we need a comprehensive dataset across various sites. We synthesize permafrost-related data in the state of Alaska. It should be a valuable permafrost dataset that is worth maintaining in the future. On a wider level, it also provides a prototype of basic data collection and management for permafrost regions in general.
Kazuyuki Saito, Go Iwahana, Hiroki Ikawa, Hirohiko Nagano, and Robert C. Busey
Geosci. Instrum. Method. Data Syst., 7, 223–234, https://doi.org/10.5194/gi-7-223-2018, https://doi.org/10.5194/gi-7-223-2018, 2018
Short summary
Short summary
A DTS system, using fibre-optic cables as a temperature sensor, measured surface and subsurface temperatures at a boreal forest underlain by permafrost in the interior of Alaska for 2 years every 30 min at 0.5-metre intervals along 2.7 km to monitor the daily and seasonal temperature changes, whose temperature ranges between −40 ºC in winter and 30 ºC in summer. This instrumentation illustrated characteristics of temperature variations and snow pack dynamics under different land cover types.
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Dylan R. Harp
The Cryosphere, 12, 1957–1968, https://doi.org/10.5194/tc-12-1957-2018, https://doi.org/10.5194/tc-12-1957-2018, 2018
Short summary
Short summary
We investigate the relationship between ice wedge polygon topography and near-surface ground temperature using a combination of field work and numerical modeling. We analyze a year-long record of ground temperature across a low-centered polygon, then demonstrate that lower rims and deeper troughs promote warmer conditions in the ice wedge in winter. This finding implies that ice wedge cracking and growth, which are driven by cold conditions, can be impeded by rim erosion or trough subsidence.
Katrina E. Bennett, Theodore J. Bohn, Kurt Solander, Nathan G. McDowell, Chonggang Xu, Enrique Vivoni, and Richard S. Middleton
Hydrol. Earth Syst. Sci., 22, 709–725, https://doi.org/10.5194/hess-22-709-2018, https://doi.org/10.5194/hess-22-709-2018, 2018
Short summary
Short summary
We applied the Variable Infiltration Capacity hydrologic model to examine scenarios of change under climate and landscape disturbances in the San Juan River basin, a major sub-watershed of the Colorado River basin. Climate change coupled with landscape disturbance leads to reduced streamflow in the San Juan River basin. Disturbances are expected to be widespread in this region. Therefore, accounting for these changes within the context of climate change is imperative for water resource planning.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Short summary
The diversity in hydrologic models has led to controversy surrounding the “correct” approach to hydrologic modeling. In this paper we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, summarize modeling advances that address these challenges, and define outstanding research needs.
Kevin Schaefer and Elchin Jafarov
Biogeosciences, 13, 1991–2001, https://doi.org/10.5194/bg-13-1991-2016, https://doi.org/10.5194/bg-13-1991-2016, 2016
Short summary
Short summary
Respiration in frozen soils is limited to within the thin water films surrounding soil particles. We parameterize volumetric water content (VWC) in frozen soil to represent the fraction of thawed carbon to simulate substrate availability. Simulated VWC and respiration match in situ and soil incubation data. The parameterization is most applicable when simulating carbon dynamics in permafrost for time scales of 100 years or greater.
Elchin Jafarov and Kevin Schaefer
The Cryosphere, 10, 465–475, https://doi.org/10.5194/tc-10-465-2016, https://doi.org/10.5194/tc-10-465-2016, 2016
Short summary
Short summary
To improve the uncertainty in modeling of the permafrost carbon emission associated with the predicted climate warming, it is important to improve the simulation of the current permafrost carbon stock. This work shows how simulation of the frozen carbon in land system models can be improved by better addressing the coupling between plant photosynthesis, soil biogeochemistry, and soil thermodynamics.
A. A. Ali, C. Xu, A. Rogers, R. A. Fisher, S. D. Wullschleger, E. C. Massoud, J. A. Vrugt, J. D. Muss, N. G. McDowell, J. B. Fisher, P. B. Reich, and C. J. Wilson
Geosci. Model Dev., 9, 587–606, https://doi.org/10.5194/gmd-9-587-2016, https://doi.org/10.5194/gmd-9-587-2016, 2016
Short summary
Short summary
We have developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacities at the global scale based on the optimization of key leaf-level metabolic processes. LUNA model predicts that future climatic changes would mostly affect plant photosynthetic capabilities in high-latitude regions and that Earth system models using fixed photosynthetic capabilities are likely to substantially overestimate future global photosynthesis.
D. R. Harp, A. L. Atchley, S. L. Painter, E. T. Coon, C. J. Wilson, V. E. Romanovsky, and J. C. Rowland
The Cryosphere, 10, 341–358, https://doi.org/10.5194/tc-10-341-2016, https://doi.org/10.5194/tc-10-341-2016, 2016
Short summary
Short summary
This paper investigates the uncertainty associated with permafrost thaw projections at an intensively monitored site. Permafrost thaw projections are simulated using a thermal hydrology model forced by a worst-case carbon emission scenario. The uncertainties associated with active layer depth, saturation state, thermal regime, and thaw duration are quantified and compared with the effects of climate model uncertainty on permafrost thaw projections.
A. L. Atchley, S. L. Painter, D. R. Harp, E. T. Coon, C. J. Wilson, A. K. Liljedahl, and V. E. Romanovsky
Geosci. Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, https://doi.org/10.5194/gmd-8-2701-2015, 2015
Short summary
Short summary
Development and calibration of a process-rich model representation of thaw-depth dynamics in Arctic tundra is presented. Improved understanding of polygonal tundra thermal hydrology processes, of thermal conduction, surface and subsurface saturation and snowpack dynamics is gained by using measured field data to calibrate and refine model structure. The refined model is then used identify future data needs and observational studies.
Related subject area
Discipline: Frozen ground | Subject: Frozen ground hydrology
Short-term cooling, drying, and deceleration of an ice-rich rock glacier
Massive mobilization of toxic elements from an intact rock glacier in the Central Eastern Alps: insights into ice melt dynamics
Future permafrost degradation under climate change in a headwater catchment of Central Siberia: quantitative assessment with a mechanistic modelling approach
Brief communication: Mountain permafrost acts as an aquitard during an infiltration experiment monitored with electrical resistivity tomography time-lapse measurements
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 1: Geophysics-based estimates from three different regions
Impact of lateral groundwater flow on hydrothermal conditions of the active layer in a high-Arctic hillslope setting
Soil infiltration characteristics and pore distribution under freezing–thawing conditions
Invited perspective: What lies beneath a changing Arctic?
Sub-permafrost methane seepage from open-system pingos in Svalbard
Soil moisture and hydrology projections of the permafrost region – a model intercomparison
Alexander Bast, Robert Kenner, and Marcia Phillips
The Cryosphere, 18, 3141–3158, https://doi.org/10.5194/tc-18-3141-2024, https://doi.org/10.5194/tc-18-3141-2024, 2024
Short summary
Short summary
We monitor ground temperature, water pressure, and relative ice/water contents in a creeping ice-rich rock glacier in mountain permafrost to study its characteristics during a deceleration period with dry conditions and a summer heat wave. The snowpack has an important role as a provider of water and as a thermal insulator. Snow-poor winters, followed by dry summers, induce cooling and drying of the permafrost, leading to rock glacier deceleration.
Hoda Moradi, Gerhard Furrer, Michael Margreth, David Mair, and Christoph Wanner
EGUsphere, https://doi.org/10.5194/egusphere-2024-789, https://doi.org/10.5194/egusphere-2024-789, 2024
Short summary
Short summary
Number of high-altitude streams with high concentrations of toxic elements (Al, F, Mn, Ni) due to pyrite weathering and sulfuric acid production is increasing in the Eastern Alps. In contact of sulfuric acid, these elements are released from rocks and stored in ice in rock glaciers. Today, climate change accelerates rock glacier ice melt which leads to a quick and focused element export in summer. Our research tries to assess consequences of accelerated rock glacier melt on streamwater quality.
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
EGUsphere, https://doi.org/10.5194/egusphere-2023-3074, https://doi.org/10.5194/egusphere-2023-3074, 2024
Short summary
Short summary
Permafrost (permanently frozen soil at depth) is thawing as a result of climate change. However, estimating its future degradation is particularly challenging due to the complex multi-physical processes involved. In this work, we designed and ran numerical simulations for months on a supercomputer to quantify the impact of climate change in a forested valley of Central Siberia. There, climate change could increase the thickness of the seasonally thawed soil layer in summer by up to 45 % by 2100.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023, https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
Short summary
In the last decades, geochemical investigations at the springs of rock glaciers have been used to estimate their drainage processes, and the frozen layer is typically considered to act as an aquiclude or aquitard. In this work, we evaluated the hydraulic behavior of a mountain permafrost site by executing a geophysical monitoring experiment. Several hundred liters of salt water have been injected into the subsurface, and geoelectrical measurements have been performed to define the water flow.
Christin Hilbich, Christian Hauck, Coline Mollaret, Pablo Wainstein, and Lukas U. Arenson
The Cryosphere, 16, 1845–1872, https://doi.org/10.5194/tc-16-1845-2022, https://doi.org/10.5194/tc-16-1845-2022, 2022
Short summary
Short summary
In view of water scarcity in the Andes, the significance of permafrost as a future water resource is often debated focusing on satellite-detected features such as rock glaciers. We present data from > 50 geophysical surveys in Chile and Argentina to quantify the ground ice volume stored in various permafrost landforms, showing that not only rock glacier but also non-rock-glacier permafrost contains significant ground ice volumes and is relevant when assessing the hydrological role of permafrost.
Alexandra Hamm and Andrew Frampton
The Cryosphere, 15, 4853–4871, https://doi.org/10.5194/tc-15-4853-2021, https://doi.org/10.5194/tc-15-4853-2021, 2021
Short summary
Short summary
To investigate the effect of groundwater flow on the active layer on slopes in permafrost landscapes, we conducted several modeling experiments. We find that groundwater moving downslope in the subsurface causes areas uphill to be warmer than downhill. This effect is explained by differences in heat capacity, conductivity, and infiltration. Therefore, in a changing climate, higher soil moisture could have a cooling effect on the active layer and attenuate warming from higher air temperatures.
Ruiqi Jiang, Tianxiao Li, Dong Liu, Qiang Fu, Renjie Hou, Qinglin Li, Song Cui, and Mo Li
The Cryosphere, 15, 2133–2146, https://doi.org/10.5194/tc-15-2133-2021, https://doi.org/10.5194/tc-15-2133-2021, 2021
Short summary
Short summary
This paper outlines the results from laboratory tests of soil freezing impacts on infiltration rates, hydraulic conductivity, and soil pore distribution characteristics. The results indicated that macropores (> 5 mm) accounted for < 1 % of the pore-volume-contributed half of the flow in unfrozen conditions and that the freezing of macropores resulted in considerable decreases in hydraulic conductivity. The results should be of interest for cold region hydrology in general.
Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor F. Bense, Daniel Fortier, Christopher Spence, and Christophe Grenier
The Cryosphere, 15, 479–484, https://doi.org/10.5194/tc-15-479-2021, https://doi.org/10.5194/tc-15-479-2021, 2021
Short summary
Short summary
Groundwater is an underappreciated catalyst of environmental change in a warming Arctic. We provide evidence of how changing groundwater systems underpin surface changes in the north, and we argue for research and inclusion of cryohydrogeology, the study of groundwater in cold regions.
Andrew J. Hodson, Aga Nowak, Mikkel T. Hornum, Kim Senger, Kelly Redeker, Hanne H. Christiansen, Søren Jessen, Peter Betlem, Steve F. Thornton, Alexandra V. Turchyn, Snorre Olaussen, and Alina Marca
The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, https://doi.org/10.5194/tc-14-3829-2020, 2020
Short summary
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Christian G. Andresen, David M. Lawrence, Cathy J. Wilson, A. David McGuire, Charles Koven, Kevin Schaefer, Elchin Jafarov, Shushi Peng, Xiaodong Chen, Isabelle Gouttevin, Eleanor Burke, Sarah Chadburn, Duoying Ji, Guangsheng Chen, Daniel Hayes, and Wenxin Zhang
The Cryosphere, 14, 445–459, https://doi.org/10.5194/tc-14-445-2020, https://doi.org/10.5194/tc-14-445-2020, 2020
Short summary
Short summary
Widely-used land models project near-surface drying of the terrestrial Arctic despite increases in the net water balance driven by climate change. Drying was generally associated with increases of active-layer depth and permafrost thaw in a warming climate. However, models lack important mechanisms such as thermokarst and soil subsidence that will change the hydrological regime and add to the large uncertainty in the future Arctic hydrological state and the associated permafrost carbon feedback.
Cited articles
Abnizova, A., Siemens, J., Langer, M., and Boike, J.: Small ponds with major
impact: The relevance of ponds and lakes in permafrost landscapes to carbon
dioxide emissions, Global Biogeochem. Cy., 26, 1–9, 2012. a
Abolt, C. J., Young, M. H., Atchley, A. L., and Harp, D. R.: Microtopographic control on the ground thermal regime in ice wedge polygons, The Cryosphere, 12, 1957–1968, https://doi.org/10.5194/tc-12-1957-2018, 2018. a
Abolt, C. J., Young, M. H., Atchley, A. L., and Wilson, C. J.: Brief communication: Rapid machine-learning-based extraction and measurement of ice wedge polygons in high-resolution digital elevation models, The Cryosphere, 13, 237–245, https://doi.org/10.5194/tc-13-237-2019, 2019. a
Abolt, C. J., Young, M. H., Atchley, A. L., Harp, D. R., and Coon, E. T.:
Feedbacks between surface deformation and permafrost degradation in ice wedge
polygons, Arctic Coastal Plain, Alaska, J. Geophys. Res.-Earth, 125, e2019JF005349, https://doi.org/10.1029/2019JF005349, 2020. a, b
Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J., Liljedahl, A. K., and Romanovsky, V. E.: Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83), Geosci. Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, 2015. a, b
Billings, W. and Peterson, K.: Vegetational change and ice-wedge polygons
through the thaw-lake cycle in Arctic Alaska, Arct. Alp. Res., 12,
413–432, 1980. a
Brown, J., Ferrians Jr, O., Heginbottom, J., and Melnikov, E.: Circum-Arctic
map of permafrost and ground-ice conditions, US Geological Survey Reston, VA,
1997. a
Brown, V. A., McDonnell, J. J., Burns, D. A., and Kendall, C.: The role of
event water, a rapid shallow flow component, and catchment size in summer
stormflow, J. Hydrol., 217, 171–190, 1999. a
Conway, T. and Steele, L.: Carbon dioxide and methane in the Arctic atmosphere,
J. Atmos. Chem., 9, 81–99, 1989. a
Cory, R. M., Ward, C. P., Crump, B. C., and Kling, G. W.: Sunlight controls
water column processing of carbon in arctic fresh waters, Science, 345,
925–928, 2014. a
Cresto Aleina, F., Brovkin, V., Muster, S., Boike, J., Kutzbach, L., Sachs, T., and Zuyev, S.: A stochastic model for the polygonal tundra based on Poisson–Voronoi diagrams, Earth Syst. Dynam., 4, 187–198, https://doi.org/10.5194/esd-4-187-2013, 2013. a, b
Harp, D. R., Atchley, A. L., Painter, S. L., Coon, E. T., Wilson, C. J., Romanovsky, V. E., and Rowland, J. C.: Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis, The Cryosphere, 10, 341–358, https://doi.org/10.5194/tc-10-341-2016, 2016. a, b
Heikoop, J. M., Throckmorton, H. M., Newman, B. D., Perkins, G. B., Iversen, C. M., Roy Chowdhury, T., Romanovsky, V., Graham, D. E., Norby, R. J., Wilson, C. J., and Wullschleger, S. D.: Isotopic identification of soil and permafrost nitrate
sources in an Arctic tundra ecosystem, J. Geophys. Res.-Biogeo., 120, 1000–1017, 2015. a, b
Hinzman, L., Busey, B., Cable, W., and Romanovsky, V.: Surface meteorology,
Barrow, Alaska, Area A, B, C and D, ongoing from 2012, Next Generation
Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory,
U.S. Department of Energy, Oak Ridge, Tennessee, USA, Data accessed on
28 December 2020, https://doi.org/10.5440/1164893, 2014. a
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014. a
Jafarov, E., Parsekian, A., Schaefer, K., Liu, L., Chen, A., Panda, S., and
Zhang, T.: Estimating active layer thickness and volumetric water content
from ground penetrating radar measurements in Barrow, Alaska, Geosci. Data
J., 4, 72–79, 2017. a
Jan, A., Coon, E. T., Graham, J. D., and Painter, S. L.: A subgrid approach for
modeling microtopography effects on overland flow, Water Resour. Res.,
54, 6153–6167, 2018a. a
Jan, A., Coon, E. T., Painter, S. L., Garimella, R., and Moulton, J. D.: An
intermediate-scale model for thermal hydrology in low-relief
permafrost-affected landscapes, Computat. Geosci., 22, 163–177,
2018b. a
Jan, A., Coon, E. T., and Painter, S. L.: Evaluating integrated
surface/subsurface permafrost thermal hydrology models in ATS (v0.88)
against observations from a polygonal tundra site, Geosci. Model
Dev., 13, 2259–2276, 2020. a
Jorgenson, M. T., Shur, Y. L., and Pullman, E. R.: Abrupt increase in
permafrost degradation in Arctic Alaska, Geophys. Res. Lett., 33, 1–4,
2006. a
Jorgenson, M. T., Kanevskiy, M., Shur, Y., Moskalenko, N., Brown, D., Wickland,
K., Striegl, R., and Koch, J.: Role of ground ice dynamics and ecological
feedbacks in recent ice wedge degradation and stabilization, J.
Geophys. Res.-Earth, 120, 2280–2297, 2015. a
King, T. V., Neilson, B. T., Overbeck, L. D., and Kane, D. L.: A distributed
analysis of lateral inflows in an Alaskan Arctic watershed underlain by
continuous permafrost, Hydrol. Process., 34, 633–648, 2020. a
Lachenbruch, A. H.: Mechanics of thermal contraction cracks and ice-wedge
polygons in permafrost, Vol. 70, Geol. Soc. Am., 70, 1–63, 1962. a
Lara, M. J., McGuire, A. D., Euskirchen, E. S., Tweedie, C. E., Hinkel, K. M.,
Skurikhin, A. N., Romanovsky, V. E., Grosse, G., Bolton, W. R., and Genet,
H.: Polygonal tundra geomorphological change in response to warming alters
future CO2 and CH4 flux on the Barrow Peninsula, Glob. Change Biol., 21,
1634–1651, 2015. a
Larouche, J. R., Abbott, B. W., Bowden, W. B., and Jones, J. B.: The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams, Biogeosciences, 12, 4221–4233, https://doi.org/10.5194/bg-12-4221-2015, 2015. a
Laurion, I. and Mladenov, N.: Dissolved organic matter photolysis in Canadian
arctic thaw ponds, Environ. Res. Lett., 8, 035026, https://doi.org/10.1088/1748-9326/8/3/035026, 2013. a, b
Lewkowicz, A. G.: Ice-wedge rejuvenation, fosheim peninsula, ellesmere Island,
Canada, Permafrost Periglac., 5, 251–268, 1994. a
Liljedahl, A. K. and Wilson, C. J.: Ground Water Levels for NGEE Areas A, B, C
and D, Barrow, Alaska, 2012–2014, Next Generation Ecosystem Experiments
Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of
Energy, Oak Ridge, Tennessee, USA, Data accessed on 8 February 2020,
https://doi.org/10.5440/1183767, 2016. a, b, c, d
Mackay, J. R.: The world of underground ice, Ann. Assoc.
Am. Geogr., 62, 1–22, 1972. a
Mackay, J. R.: Active layer slope movement in a continuous permafrost
environment, Garry Island, Northwest Territories, Canada, Can. J.
Earth Sci., 18, 1666–1680, 1981. a
Mackay, J. R.: Some observations on the growth and deformation of epigenetic,
syngenetic and anti-syngenetic ice wedges, Permafrost Periglac., 1, 15–29, 1990. a
Matsuoka, N. and Moriwaki, K.: Frost heave and creep in the Sør Rondane
Mountains, Antarct. Arct. Alp. Res., 24, 271–280, 1992. a
McDonnell, J., Owens, I. F., and Stewart, M.: A case study of shallow flow
paths in a steep zero-order basin 1, J. Am. Water
Resour. Assoc., 27, 679–685, 1991. a
Minke, M., Donner, N., Karpov, N. S., de Klerk, P., and Joosten, H.:
Distribution, diversity, development and dynamics of polygon mires: examples
from Northeast Yakutia (Siberia), Peatlands Internation, 36–40, 2007. a
Moore, T. and Dalva, M.: Methane and carbon dioxide exchange potentials of peat
soils in aerobic and anaerobic laboratory incubations, Soil Biol.
Biochem., 29, 1157–1164, 1997. a
Newman, B. D., Throckmorton, H. M., Graham, D. E., Gu, B., Hubbard, S. S.,
Liang, L., Wu, Y., Heikoop, J. M., Herndon, E. M., Phelps, T. J., Wilson,
C. J., and Wullschleger, S. D.: Microtopographic and depth controls on active
layer chemistry in Arctic polygonal ground, Geophys. Res. Lett., 42,
1808–1817, 2015. a, b, c, d, e
Nitzbon, J., Langer, M., Westermann, S., Martin, L., Aas, K. S., and Boike, J.: Pathways of ice-wedge degradation in polygonal tundra under different hydrological conditions, The Cryosphere, 13, 1089–1123, https://doi.org/10.5194/tc-13-1089-2019, 2019. a, b, c, d
Norby, R. J., Sloan, V. L., Iversen, C. M., and Childs, J.: Controls on
fine-scale spatial and temporal variability of plant-available inorganic
nitrogen in a polygonal tundra landscape, Ecosystems, 22, 528–543, 2019. a
O'Shea, S. J., Allen, G., Gallagher, M. W., Bower, K., Illingworth, S. M., Muller, J. B. A., Jones, B. T., Percival, C. J., Bauguitte, S. J.-B., Cain, M., Warwick, N., Quiquet, A., Skiba, U., Drewer, J., Dinsmore, K., Nisbet, E. G., Lowry, D., Fisher, R. E., France, J. L., Aurela, M., Lohila, A., Hayman, G., George, C., Clark, D. B., Manning, A. J., Friend, A. D., and Pyle, J.: Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012, Atmos. Chem. Phys., 14, 13159–13174, https://doi.org/10.5194/acp-14-13159-2014, 2014. a
Painter, S. L.: Three-phase numerical model of water migration in partially
frozen geological media: model formulation, validation, and applications,
Comput. Geosci., 15, 69–85, 2011. a
Pollock, M. D., O'Donnell, G., Quinn, P., Dutton, M., Black, A., Wilkinson, M. E., Colli, M., Stagnaro, M., Lanza, L. G., Lewis, E., and Kilsby, C. G.: Quantifying and
mitigating wind-induced undercatch in rainfall measurements, Water Resour.
Res., 54, 3863–3875, 2018. a
Popper, K.: The logic of scientific discovery, Routledge, 2005. a
Quinton, W. and Marsh, P.: A conceptual framework for runoff generation in a
permafrost environment, Hydrol. Process., 13, 2563–2581, 1999. a
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., and Kortelainen, P.: Global carbon
dioxide emissions from inland waters, Nature, 503, 355–359, 2013. a
Raynolds, M. K., Walker, D. A., Ambrosius, K. J., Brown, J., Everett, K. R.,
Kanevskiy, M., Kofinas, G. P., Romanovsky, V. E., Shur, Y., and Webber,
P. J.: Cumulative geoecological effects of 62 years of infrastructure and
climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield,
Alaska, Glob. Change Biol., 20, 1211–1224, 2014. a
Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., and Entin, J. K.: The
global land data assimilation system, Bull. Am. Meteorol.
Soc., 85, 381–394, 2004. a
Romanovsky, V., Cable, W., and Dolgikh, K.: Subsurface temperature, moisture,
thermal conductivity and heat flux, Barrow, Area A, B, C, D, Next Generation
Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory,
U.S. Department of Energy, Oak Ridge, Tennessee, USA, Data accessed on
29 December 2020, https://doi.org/10.5440/1126515, 2017. a, b
Schuh, C., Frampton, A., and Christiansen, H. H.: Soil moisture redistribution and its effect on inter-annual active layer temperature and thickness variations in a dry loess terrace in Adventdalen, Svalbard, The Cryosphere, 11, 635–651, https://doi.org/10.5194/tc-11-635-2017, 2017. a
Schuur, E. A., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H., and Mazhitova, G.:
Vulnerability of permafrost carbon to climate change: Implications for the
global carbon cycle, BioScience, 58, 701–714, 2008. a
Shiklomanov, N. I., Streletskiy, D. A., Nelson, F. E., Hollister, R. D.,
Romanovsky, V. E., Tweedie, C. E., Bockheim, J. G., and Brown, J.: Decadal
variations of active-layer thickness in moisture-controlled landscapes,
Barrow, Alaska, J. Geophys. Res.-Biogeo., 115, 1–14, 2010. a
Tarnocai, C., Canadell, J., Schuur, E. A., Kuhry, P., Mazhitova, G., and Zimov,
S.: Soil organic carbon pools in the northern circumpolar permafrost region,
Global Biogeochem. Cy., 23, 1–11, 2009. a
Throckmorton, H. M., Heikoop, J. M., Newman, B. D., Altmann, G. L., Conrad, M. S., Muss, J. D., Perkins, G. B., Smith, L. J., Torn, M. S., Wullschleger, S. D., and Wilson, C. J.: Pathways and transformations of dissolved methane and
dissolved inorganic carbon in Arctic tundra watersheds: Evidence from
analysis of stable isotopes, Global Biogeochem. Cy., 29, 1893–1910,
2015. a, b
Transtrum, M. K., Machta, B. B., and Sethna, J. P.: Geometry of nonlinear least
squares with applications to sloppy models and optimization, Phys. Rev.
E, 83, 036701, https://doi.org/10.1103/PhysRevE.83.036701, 2011. a
Vaughn, L. J., Conrad, M. E., Bill, M., and Torn, M. S.: Isotopic insights into
methane production, oxidation, and emissions in Arctic polygon tundra, Glob.
Change Biol., 22, 3487–3502, 2016. a
Wainwright, H. M., Dafflon, B., Smith, L. J., Hahn, M. S., Curtis, J. B., Wu,
Y., Ulrich, C., Peterson, J. E., Torn, M. S., and Hubbard, S. S.: Identifying
multiscale zonation and assessing the relative importance of polygon
geomorphology on carbon fluxes in an Arctic tundra ecosystem, J.
Geophys. Res.-Biogeo., 120, 788–808, 2015. a, b
Wales, N. A., Gomez-Velez, J. D., Newman, B. D., Wilson, C. J., Dafflon, B., Kneafsey, T. J., Soom, F., and Wullschleger, S. D.: Understanding the relative importance of vertical and horizontal flow in ice-wedge polygons, Hydrol. Earth Syst. Sci., 24, 1109–1129, https://doi.org/10.5194/hess-24-1109-2020, 2020. a, b, c, d, e, f, g, h, i, j, k, l
Wolter, J., Lantuit, H., Fritz, M., Macias-Fauria, M., Myers-Smith, I., and
Herzschuh, U.: Vegetation composition and shrub extent on the Yukon coast,
Canada, are strongly linked to ice-wedge polygon degradation, Polar Res.,
35, 27489, https://doi.org/10.3402/polar.v35.27489, 2016. a
Wright, N., Hayashi, M., and Quinton, W. L.: Spatial and temporal variations in
active layer thawing and their implication on runoff generation in
peat-covered permafrost terrain, Water Resour. Res., 45, 1–13, 2009. a
Zhu, X., Zhuang, Q., Gao, X., Sokolov, A., and Schlosser, C. A.: Pan-Arctic
land–atmospheric fluxes of methane and carbon dioxide in response to climate
change over the 21st century, Environ. Res. Lett., 8, 045003, https://doi.org/10.1088/1748-9326/8/4/045003,
2013.
a
Short summary
Polygon-shaped landforms present in relatively flat Arctic tundra result in complex landscape-scale water drainage. The drainage pathways and the time to transition from inundated conditions to drained have important implications for heat and carbon transport. Using fundamental hydrologic principles, we investigate the drainage pathways and timing of individual polygons, providing insights into the effects of polygon geometry and preferential flow direction on drainage pathways and timing.
Polygon-shaped landforms present in relatively flat Arctic tundra result in complex...