Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-3989-2021
https://doi.org/10.5194/tc-15-3989-2021
Research article
 | 
23 Aug 2021
Research article |  | 23 Aug 2021

Calibration of sea ice drift forecasts using random forest algorithms

Cyril Palerme and Malte Müller

Related authors

Calibration of short-term sea ice concentration forecasts using deep learning
Cyril Palerme, Thomas Lavergne, Jozef Rusin, Arne Melsom, Julien Brajard, Are Frode Kvanum, Atle Macdonald Sørensen, Laurent Bertino, and Malte Müller
EGUsphere, https://doi.org/10.5194/egusphere-2023-2439,https://doi.org/10.5194/egusphere-2023-2439, 2023
Short summary
Validation metrics for ice edge position forecasts
Arne Melsom, Cyril Palerme, and Malte Müller
Ocean Sci., 15, 615–630, https://doi.org/10.5194/os-15-615-2019,https://doi.org/10.5194/os-15-615-2019, 2019
Short summary
Evaluation of CloudSat snowfall rate profiles by a comparison with in situ micro-rain radar observations in East Antarctica
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019,https://doi.org/10.5194/tc-13-943-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023,https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023,https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary
Spatial characteristics of frazil streaks in the Terra Nova Bay Polynya from high-resolution visible satellite imagery
Katarzyna Bradtke and Agnieszka Herman
The Cryosphere, 17, 2073–2094, https://doi.org/10.5194/tc-17-2073-2023,https://doi.org/10.5194/tc-17-2073-2023, 2023
Short summary
Modelling the evolution of Arctic multiyear sea ice over 2000–2018
Heather Regan, Pierre Rampal, Einar Ólason, Guillaume Boutin, and Anton Korosov
The Cryosphere, 17, 1873–1893, https://doi.org/10.5194/tc-17-1873-2023,https://doi.org/10.5194/tc-17-1873-2023, 2023
Short summary
A quasi-objective single-buoy approach for understanding Lagrangian coherent structures and sea ice dynamics
Nikolas O. Aksamit, Randall K. Scharien, Jennifer K. Hutchings, and Jennifer V. Lukovich
The Cryosphere, 17, 1545–1566, https://doi.org/10.5194/tc-17-1545-2023,https://doi.org/10.5194/tc-17-1545-2023, 2023
Short summary

Cited articles

Ahijevych, D., Pinto, J. O., Williams, J. K., and Steiner, M.: Probabilistic Forecasts of Mesoscale Convective System Initiation Using the Random Forest Data Mining Technique, Weather Forecast., 31, 581–599, https://doi.org/10.1175/WAF-D-15-0113.1, 2016. a
Berkman, P. A., Fiske, G., Røyset, J.-A., Brigham, L. W., and Lorenzini, D.: Next-Generation Arctic Marine Shipping Assessments, Springer International Publishing, 241–268, https://doi.org/10.1007/978-3-030-25674-6_11, 2020. a
Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean Model., 4, 55–88, https://doi.org/10.1016/S1463-5003(01)00012-9, 2002. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a, b
Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 881–889, https://doi.org/10.5194/tc-6-881-2012, 2012. a
Download
Short summary
Methods have been developed for calibrating sea ice drift forecasts from an operational prediction system using machine learning algorithms. These algorithms use predictors from sea ice concentration observations during the initialization of the forecasts, sea ice and wind forecasts, and some geographical information. Depending on the calibration method, the mean absolute error is reduced between 3.3 % and 8.0 % for the direction and between 2.5 % and 7.1 % for the speed of sea ice drift.