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Abstract. Developing accurate sea ice drift forecasts is es-
sential to support the decision-making of maritime end-
users operating in the Arctic. In this study, two calibration
methods have been developed for improving 10 d sea ice
drift forecasts from an operational sea ice prediction system
(TOPAZ4). The methods are based on random forest mod-
els (supervised machine learning) which were trained us-
ing target variables either from drifting buoy or synthetic-
aperture radar (SAR) observations. Depending on the cali-
bration method, the mean absolute error is reduced, on aver-
age, between 3.3 % and 8.0 % for the direction and between
2.5 % and 7.1 % for the speed of sea ice drift. Overall, the al-
gorithms trained with buoy observations have the best perfor-
mances when the forecasts are evaluated using drifting buoys
as reference. However, there is a large spatial variability in
these results, and the models trained with buoy observations
have particularly poor performances for predicting the speed
of sea ice drift near the Greenland and Russian coastlines
compared to the models trained with SAR observations.

1 Introduction

Passive microwave observations of sea ice concentration
have been available for more than 40 years and have shown
negative trends in Arctic sea ice extent since the beginning of
the satellite era (e.g., Cavalieri and Parkinson, 2012; Comiso
et al., 2017), with particularly strong trends during the sum-
mer (e.g., Comiso et al., 2017). There have been fewer satel-
lite observations of sea ice thickness, and these retrievals
have mainly been restricted to the winter due to issues related
to surface melting during the summer (Ricker et al., 2017;
Petty et al., 2020). Nevertheless, long-term negative trends
in sea ice thickness have also been assessed by comparing
retrievals from satellite altimeters (ICESat and CryoSat-2)

with submarine measurements during the period 1958–2000
(Kwok and Rothrock, 2009; Kwok, 2018). Furthermore, an
acceleration of sea ice drift has been observed using drifting
buoys and satellite observations (Rampal et al., 2009; Spreen
et al., 2011; Tandon et al., 2018; Tschudi et al., 2020), and
has been suggested as being a consequence of decreases in
sea ice thickness and concentration due to reduced sea ice
strength (Rampal et al., 2009; Olason and Notz, 2014; Tan-
don et al., 2018).

As a result of these changes, the Arctic Ocean is becom-
ing more accessible to marine operations, and there is an in-
crease in maritime traffic (Eriksen and Olsen, 2018; Berk-
man et al., 2020). In order to ensure maritime safety, it is
essential that accurate sea ice information is delivered to ma-
rine end-users. National ice services manually produce high-
resolution sea ice charts using retrievals from various satel-
lites, such as passive microwave radiometers, optical instru-
ments, and synthetic-aperture radars (SARs). In addition to
sea ice charts, short-term sea ice forecasts are also necessary
for planning activities and providing up-to-date information
to end-users. However, the spatial resolution of the current
sea ice models is often too coarse compared to user needs.

Short-term sea ice drift forecasts are operationally pro-
duced by numerical prediction systems but are affected by
biases despite the numerous efforts to improve the models
(Hebert et al., 2015; Schweiger and Zhang, 2015; Rabatel
et al., 2018; Williams et al., 2019). Hebert et al. (2015) eval-
uated sea ice drift speed forecasts from the U.S. Navy’s Arc-
tic Cap Nowcast/Forecast System (ACNFS). They found that
the predicted ice drift speed was slower than drifting buoys
in the summer months, and that a persistence forecast was
generally better than the forecasts from the prediction sys-
tem during the summer. In contrast, the forecasts produced
by the U.S. Navy’s ACNFS outperformed persistence fore-
casts during the winter months. Schweiger and Zhang (2015)
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evaluated forecasts of sea ice drift speed from the Marginal
Ice Zone Modeling and Assimilation System (MIZMAS) and
found root mean square errors from 4.5 to 8 km d−1 for lead
times of 1 and 9 d, respectively. These forecasts outperform a
climatological reference for all lead times (up to 9 d). Sea ice
drift forecasts from the neXtSIM-F system have been evalu-
ated by Rabatel et al. (2018) and Williams et al. (2019), and
root mean square errors of about 3 and 4 km d−1 have been
reported for lead times of 1 and 4 d, respectively (Williams
et al., 2019).

Sea ice drift is influenced by various sea ice characteris-
tics, such as concentration and thickness, and by near-surface
wind and ocean currents (Rampal et al., 2009; Spreen et al.,
2011; Olason and Notz, 2014; Yu et al., 2020). Though sea
ice drift is mainly driven by the wind in areas with a low sea
ice concentration, the relationships between these variables
and sea ice drift are complex and not linear in most of the ice-
covered areas (Yu et al., 2020). In order to improve the ac-
curacy of sea ice drift forecasts, we have developed two cali-
bration methods using random forest algorithms (Breiman,
2001), which is a supervised machine learning technique
suitable for assessing nonlinear relationships between a set
of predictors and a target variable.

While random forest methods have been widely used in
sea ice remote sensing (Miao et al., 2015; Han et al., 2016;
Lee et al., 2016; Gegiuc et al., 2018; Park et al., 2020) and in
weather forecasting (Gagne II et al., 2014; Ahijevych et al.,
2016; Herman and Schumacher, 2018; Loken et al., 2019;
Mao and Sorteberg, 2020), there has been less interest in us-
ing random forests in sea ice forecasting. Recently, Kim et al.
(2020) developed and compared 1-month sea ice concen-
tration forecasts based on random forests and convolutional
neural networks. They obtained more accurate results using
convolutional neural networks, probably due to the larger
learning capacity of convolutional neural networks compared
to random forests, in particular to extract spatial features
from the predictors (Kim et al., 2020). Furthermore, other
machine learning and statistical methods have been used for
sea ice forecasting, particularly for predicting the sea ice con-
centration and extent. Wang et al. (2019) used a vector au-
toregressive model and a vector Markov model to predict sea
ice concentration at subseasonal timescales and obtained the
best results when using the vector Markov model. The vector
Markov model also significantly outperformed the National
Centers for Environmental Prediction Climate Forecast Sys-
tem, version 2 (NCEP CFSv2), for lead times between 2 and
6 weeks. Comeau et al. (2019) used a method based on ana-
log forecasting for predicting Arctic sea ice area and volume
anomalies at seasonal timescales and obtained improvements
compared to damped persistence forecasts. Moreover, vari-
ous neural networks have been used for predicting sea ice
concentration and have been found to be skillful for 1- and
12-month forecasts (Chi and Kim, 2017; Kim et al., 2020) but
are only slightly better than persistence forecasts for short-
term prediction (Fritzner et al., 2020). Nevertheless, there has

not been any attempt to calibrate short-term sea ice drift fore-
casts using advanced statistical methods.

The random forest models developed in this study are
based on predictor variables from sea ice forecasts pro-
duced by the Copernicus Marine Environment Monitor-
ing Service’s (CMEMS) TOPAZ4 prediction system (Sakov
et al., 2012), wind forecasts from the European Centre for
Medium-Range Weather Forecasts (ECMWF), and sea ice
satellite observations from the Ocean and Sea Ice Satellite
Application Facility (OSI SAF). While all the models use
the same predictor variables, two sets of models were devel-
oped using either drifting buoy displacements or SAR obser-
vations for the target variables. The data and methods used
in this study are presented in Sects. 2 and 3, respectively.
In Sect. 4, the daily SAR observations used for analyzing the
spatial variability of the forecast errors, and for training some
of the random forest algorithms, are evaluated using buoy ob-
servations. Then, the performances of the calibrated forecasts
are evaluated and compared to those from the TOPAZ4 fore-
casts in Sect. 4. The discussion and conclusion of this study
are presented in Sect. 5.

2 Data

2.1 Sea ice drift observations

In this study, satellite sea ice drift obser-
vations from the CMEMS product named
SEAICE_GLO_SEAICE_L4_NRT_OBSERVATIONS
_011_006 (MOSAIC version 2.0; hereafter referred to
as the CMEMS SAR MOSAIC product) were used for
training some random forest algorithms (see Sect. 3) and for
analyzing the spatial variability in the performances of sea
ice drift forecasts. This product provides sea ice drift fields
derived from SAR observations acquired by the Sentinel-1
satellites with a spatial resolution of 10 km and a temporal
resolution of 24 h. Only a fraction of the Arctic is covered
by this product every day, and there are no observations
north of 87.7◦ N (Fig. 1). It is worth noting that this product
is an average of drift vectors derived from pairs of SAR
images which are not necessarily acquired around midnight,
and that the averaging process introduces uncertainties
in the product. However, this product has the advantage
of providing gridded sea ice drift fields with fixed time
spans (from midnight to midnight the next day) which are
necessary for training random forest algorithms. Moreover,
the fixed time spans ease the comparison between SAR
observations and sea ice drift forecasts with daily time steps.

In addition, data from the International Arctic Buoy Pro-
gramme (IABP) were also used for training some random
forest algorithms (see Sect. 3) and for evaluating the SAR
observations and the sea ice drift forecasts. For consistent
comparisons with the SAR observations and the sea ice drift
forecasts, the speed and direction of sea ice drift were calcu-
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Figure 1. (a) Number of buoy observations per grid cell used for training the random forest algorithms during the period from June 2013
to May 2020. (b) Number of buoy observations per grid cell used for evaluating the random forest algorithms during the period from
June 2020 to May 2021. (c) Number of SAR observations per grid cell used for training the random forest algorithms during the period from
January 2018 to May 2020. (d) Number of SAR observations per grid cell used for evaluating the random forest algorithms during the period
from June 2020 to May 2021. These four maps show the number of observations for a lead time of 1 d (similar results have been found for
other lead times).

lated using the geographical coordinates of the buoys at mid-
night (universal coordinated time – UTC). The drift vectors
from buoy observations were then projected onto the polar
stereographic grid used in the TOPAZ4 system. When sev-
eral buoys were located in the same grid cell, only the nearest
one from the grid point was taken into account. In order to
avoid inaccurate and unrealistic values, only the buoys with
a speed between 0.1 and 100 km d−1, located in an area with
a sea ice concentration higher than 10 %, and further than
50 km from the coastlines were used for verification. While
only the buoys with a speed between 0.1 and 100 km d−1

were used for training the random forest models predicting
the direction of sea ice drift, all the buoys with a speed lower

than 100 km d−1 were used for training the models predict-
ing the speed of sea ice drift in order to make them able to
predict very low speeds. During the period from June 2013 to
May 2020, about 4.5 % and 0.1 % of the buoys had a speed
lower than 0.1 km d−1 and higher than 100 km d−1, respec-
tively. The number of buoy observations used for evaluating
the forecasts during the period from June 2020 to May 2021
varies between 19 276 and 19 576, depending on the lead
time, and has been mapped in Fig. 1b).

https://doi.org/10.5194/tc-15-3989-2021 The Cryosphere, 15, 3989–4004, 2021



3992 C. Palerme and M. Müller: Calibration of sea ice drift forecasts

2.2 Predictor variables

The list of predictor variables is the same for all the models
developed in this study and can be divided into three differ-
ent categories. First, some geographical information is used
with the Cartesian coordinates of the grid points (x and y in
the stereographic projection from the TOPAZ4 system) and
the distance of the grid point to the nearest coastline in the
TOPAZ4 system. Then, the sea ice concentration from pas-
sive microwave observations during the day preceding the
forecast start date is also used as predictor variable. The vari-
ables from sea ice and wind forecasts during the predicted
lead time can be considered as the last category. These vari-
ables are the wind direction and speed from ECMWF fore-
casts, as well as the sea ice concentration, thickness, drift
speed and direction from TOPAZ4 forecasts. Furthermore,
the sea ice drift and concentration observations, as well as
ECMWF wind forecasts, were projected onto the grid used
in the TOPAZ4 prediction system using nearest-neighbor in-
terpolation before developing the random forest models.

For the sea ice concentration observations during the day
preceding the forecast start date, version 2 of the global
sea ice concentration climate data record from OSI SAF
(Lavergne et al., 2019) was used for training the algorithms.
This data set has a spatial resolution of 25 km and is avail-
able with a latency of 16 d. Therefore, it cannot be used for
producing operational forecasts. Since June 2020, calibrated
forecasts have been produced daily, and near-real-time sea
ice concentration products at 25 km resolution processed at
the Norwegian Meteorological Institute from Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2) and Special Sen-
sor Microwave Imager/Sounder (SSMIS) Defense Meteoro-
logical Satellite Program (DMSP) F16, F17, and F18 sensors
based on the algorithms introduced in Lavergne et al. (2019)
have been used. The AMSR2 observations were used when
they were available and were replaced by SSMIS observa-
tions when they were missing.

TOPAZ4 is a coupled ice–ocean model for the North At-
lantic and the Arctic which provides 10 d forecasts at a spa-
tial resolution of 12.5 km, as well as a reanalysis (Sakov
et al., 2012). It uses the version 2.2 of the Hybrid Co-
ordinate Ocean Model (HYCOM; Bleck, 2002; Chassignet
et al., 2006) coupled with a one thickness category sea ice
model using an elastic–viscous–plastic rheology (Hunke and
Dukowicz, 1997) derived from the version 4.1 of the Com-
munity Ice CodE (CICE). The model native grid created us-
ing conformal mapping has a spatial resolution between 12
and 16 km in the whole domain. An ensemble Kalman filter
is used to assimilate satellite sea ice and oceanic observations
such as sea ice concentration and drift, along-track sea level
anomalies, sea surface temperature, as well as in situ tem-
perature and salinity profiles. Moreover, TOPAZ4 is forced
by ECMWF high-resolution weather forecasts at the ocean
surface. While TOPAZ4 forecasts are produced daily, data
assimilation is only performed on Thursdays, and only the

forecasts starting on Thursdays are stored in the long-term
archive. Though the TOPAZ4 system provides forecasts with
hourly time steps, the forecasts with daily outputs were used
here due to the 24 h span of SAR observations. Previous stud-
ies have reported that the speed of sea ice drift is overesti-
mated in the TOPAZ4 system compared to buoy observations
from the IABP (Sakov et al., 2012; Xie et al., 2017).

In addition to the OSI SAF observations and TOPAZ4
forecasts, 10 m wind forecasts from ECMWF are also
used for the predictor variables in the random forest al-
gorithms. These forecasts have lead times up to 10 d, and
the model’s spatial resolution changed from about 16 to
9 km in March 2016 (https://www.ecmwf.int/en/forecasts/
documentation-and-support/changes-ecmwf-model, last ac-
cess: 18 August 2021).

3 Methods

3.1 Development of random forest models

Random forest algorithms consist of an ensemble of decision
trees used for regression or classification tasks (Breiman,
2001). In order to avoid overfitting (meaning that the models
learn from noise in the training data), independent decision
trees must be developed. The independence of decision trees
is ensured by using different subsets of the training data set
for developing each decision tree, as well as by randomly se-
lecting a fraction of the predictor variables at each node (the
node is then split using the variable maximizing a dissimilar-
ity metric among the selected predictors). Each decision tree
is trained with a data set created using the bootstrap method,
which consists of randomly selecting samples from the origi-
nal training data with replacement to create a new data set of
the same size as the original one. This results in using about
63 % of the samples from the original data set for training
each decision tree.

In this study, random forest models were developed for
regression using the Python library scikit-learn 0.23.2 (Pe-
dregosa et al., 2011), and the mean squared error was used
to measure the quality of the splits. Different models were
developed for predicting the direction and speed of sea ice
drift, as well as for different lead times (1 to 10 d). More-
over, two sets of models were developed using target vari-
ables either from buoy displacements or from SAR observa-
tions. Therefore, 20 different models were developed using
buoy displacements, and 20 other models were developed
using SAR observations. In order to optimize some parame-
ters of the algorithms, sensitivity tests were performed using
only data from the training periods (see the Supplement). For
these sensitivity tests, the random forest models were trained
using data from about 80 % of the forecast start dates (ran-
domly selected) within the training periods. Then, the data
from the remaining forecast start dates were used for evalu-
ating the forecast performances. This selection prevents the
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Figure 2. Evaluation of the Copernicus Marine Service (CMEMS) SEAICE_GLO_SEAICE_L4_NRT_OBSERVATIONS_011_006 product
(MOSAIC version 2.0) for the sea ice drift direction (a) and speed (b) during the period from January 2018 to December 2020. The axes are
bounded to 30 km d−1 for the speed for clarity, but the speed of 73 buoys exceeds 30 km d−1. However, these buoys were taken into account
when calculating the statistics shown in the figures (N – number of samples; Rc – circular correlation coefficient; Rp – Pearson correlation
coefficient; RMSE – root mean square error). The color scales represent the number of observations in each bin of 5◦ for the direction and
0.5 km d−1 for the speed.

use of neighboring grid points with very similar conditions
in the training and validation data sets and was repeated 10
times in order to obtain robust results. Furthermore, the ran-
dom forest models were evaluated using the same product as
the one used for training for these sensitivity tests (CMEMS
SAR MOSAIC product for those trained with SAR obser-
vations, and IABP buoys for those trained with buoy ob-
servations). This method was also used to evaluate the opti-
mal fraction of the grid points covered by SAR observations
used for training some random forest models (see Sect. 3.2)
and to assess the importance of the predictor variables (see
Sect. 3.5). Based on the sensitivity tests, we decided to de-
velop random forest models using 200 decision trees (there
were no significant improvements when using more trees), to
maximize the depth of the decision trees (most of the leaves
contain only one sample from the training data set), and to
set the number of predictor variables considered for splitting
the nodes at three. These parameters were chosen for all the
models developed.

The prediction from a random forest model used for re-
gression is the mean value of the predictions from all deci-
sion trees. For the direction of sea ice drift, each decision tree
predicts a value between 0 and 360◦. When averaging several
predictions close to the northward direction, this can be an is-
sue because values slightly higher than 0◦ and slightly lower
than 360◦ can be averaged, possibly leading to a mean value

close to the southward direction. In order to avoid this is-
sue, the predictions from all decision trees (in degrees) were
converted to complex numbers before averaging. Then, the
average of complex numbers was converted into an angle in
degrees. Furthermore, random forest models tend to predict
less extreme values than the target variable because the mean
value from all decision trees is used as the prediction. This
should not be an issue for predicting the direction of sea ice
drift due to the circular nature of directional data, but partic-
ularly low and high sea ice drift speed could be difficult to
predict with random forest models.

The Canadian Arctic Archipelago is excluded from our
study due to the different characteristics of sea ice drift in this
region (largely influenced by the presence of narrow channels
and landfast ice) compared to the rest of the Arctic. There-
fore, no data located in the Canadian Arctic Archipelago
were used for training and evaluating the random forest mod-
els. Furthermore, the calibrated forecasts have been produced
where the sea ice concentration predicted in the TOPAZ4
forecasts was larger than 10 %.

3.2 Training data sets

Only the TOPAZ4 forecasts starting on Thursdays are stored
in the long-term archive, and the algorithms have there-
fore been trained using weekly data. The period from Jan-
uary 2018 to May 2020 was used for training the algorithms
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with SAR observations (the CMEMS SAR MOSAIC product
has been available since January 2018). Due to the smaller
number of available observations, a longer period (June 2013
to May 2020) was used for training the algorithms with buoy
observations. While using a longer period increases the size
of the training data sets, it can also introduce inconsisten-
cies in the training data sets due to the constant development
of the prediction systems (TOPAZ4 and ECMWF Integrated
Forecasting System). Several training periods were tested be-
tween June 2012 and May 2020, and the chosen period from
June 2013 to May 2020 seems to be optimal for predicting
the direction of sea ice drift. However, using a shorter train-
ing period would have improved the forecasts for the speed
of sea ice drift (Fig. S2 in the Supplement). This is proba-
bly due to the smaller bias of TOPAZ4 sea ice drift speed in
the recent years, which results from the negative trend of the
sea ice drift speed in TOPAZ4 (in contrast with IABP obser-
vations which show an acceleration; see Fig. S6 in the Sup-
plement). Nevertheless, we decided to use the same training
period for the random forest models predicting the direction
and speed of sea ice drift for consistency.

For the algorithms trained with buoy observations, the data
from all the grid points where buoy observations were avail-
able within the TOPAZ4 domain have been used in order to
create a large database, which results in about 1.5×104 data
points for each model during the training period. However, a
different approach was used for the algorithms trained with
SAR observations. Taking into account all the grid points
where SAR observations were available in the TOPAZ4 do-
main would result in using many highly correlated points for
training the algorithms, which increases the probability of
overfitting. In order to minimize this issue, but also taking
into account a sufficient number of grid points, sensitivity
tests were performed. For each forecast of the training pe-
riod (January 2018–May 2020), a random selection without
replacement of the grid points has been performed, and the
selected grid points were added to the training data set (sim-
ilar approaches were used by Gagne II et al., 2014 and Lo-
ken et al., 2019 for calibrating precipitation forecasts). Ran-
dom selections between 0.1 % and 100 % of the available
grid points were tested, and the differences in mean absolute
errors between the algorithms trained using all the available
data and the algorithms trained using only a fraction of the
available data were evaluated (Fig. S1 in the Supplement).
Due to the good performances of the models trained using
2 % of the available grid points, we decided to keep 2 % of
the available grid points for training the models with SAR
observations. This results in using data from about 5.5×104

data points on average (between 5.2×104 and 5.7×104 data
points, depending on lead time). Moreover, decreasing the
size of the training data sets reduces the computational cost
of the algorithms. Furthermore, it is worth noting that the
Arctic is not uniformly covered by SAR and buoy observa-
tions (Fig. 1) and that different regions therefore have differ-
ent weights in the development of the algorithms.

3.3 Pre-processing of the data

In order to avoid overfitting, it is better to use predictor vari-
ables that are not highly correlated. This is why the speed
and direction of sea ice drift, as well as the wind speed and
direction, have been used as predictor variables instead of
the eastward and northward components. The speed of sea
ice drift was determined from the great-circle distance calcu-
lated using the Haversine formula (Eq. 1) between the start
and end locations during 24 h. The initial great-circle course
angle was used for the direction of sea ice drift and was cal-
culated using Eq. (2) as follows:

D = 2R arcsin(√
sin2

(
ϕend−ϕstart

2

)
+ cos(ϕstart)cos(ϕend)sin2

(
λend− λstart

2

))
(1)

θ = arctan2
(

sin(λend− λstart) · cos(ϕend) , cos(ϕstart)

· sin(ϕend)− sin(ϕstart) · cos(ϕend)

· cos(λend− λstart)

)(
180
π

)
, (2)

where “arctan2” represents the four-quadrant inverse tangent
function, R is the Earth’s radius, ϕ and λ represent the lati-
tude and the longitude, and the subscripts “start” and “end”
indicate the start and end locations. Furthermore, the wind
speed and direction from ECMWF forecasts were calculated
using Eqs. (3) and (4), respectively, from the mean daily u
and v components (u and v in Eqs. 3 and 4). The computed
wind direction is not the classic meteorological wind direc-
tion (direction from which the wind is blowing) but the oppo-
site (direction the wind is blowing to) in order to be consis-
tent with the direction of sea ice drift calculated using Eq. (2).

WS=
√
u2
+ v2 (3)

WD= arctan2(u,v)
(

180
π

)
. (4)

We also tested random forest models predicting the sea ice
drift along the x and y axes of the TOPAZ4 grid using a dif-
ferent set of predictor variables (Fig. S12 in the Supplement).
For these models, the northward and eastward components
of the ECMWF wind forecasts were used as predictors in-
stead of the wind speed and direction, as well as the sea ice
drift along the x and y axes from TOPAZ4 forecasts (which
are provided by TOPAZ4 outputs) instead of the sea ice drift
speed and direction. The direction and speed of sea ice drift
were then calculated using the start and end locations of the
sea ice for comparing those models with the ones directly
predicting the direction and speed of sea ice drift. Relatively
similar performances were achieved by these models for pre-
dicting the direction of sea ice drift, but these models had
significantly worse performances for predicting the speed of
sea ice drift (larger mean absolute errors of about 12.2 % and
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13.7 % on average for the models trained with buoy and SAR
observations, respectively).

3.4 Evaluation of the sea ice drift forecasts

While comparing the speed of sea ice drift in two data sets is
straightforward, caution is needed when comparing the direc-
tion of sea ice drift in different data sets due to the circular
nature of directional data. The direction errors were calcu-
lated using Eq. (5), where Dx and Dy are the two directions
compared in degrees (between 0 and 360◦). Furthermore, the
correlation between different data sets has been assessed us-
ing the Pearson correlation coefficient for the speed and us-
ing the circular correlation coefficient (Eq. 6) introduced by
Fisher and Lee (1983) for the direction. In Eq. (6), x and y
are the means of the variables x and y, respectively. Similar
to the Pearson correlation coefficient, the value of the circu-
lar correlation coefficient varies between −1 and 1 (a null
value indicating no correlation, 1 meaning a perfect correla-
tion, and −1 showing a perfect anti-correlation).

1D =Dx −Dy ⇒ Error

=

 1D− 360, if 1D > 180
1D+ 360, if 1D <−180
1D, otherwise

(5)

Rc =

n∑
i=1

sin(xi − x)sin(yi − y)√
n∑
i=1

sin2 (xi − x)
n∑
i=1

sin2 (yi − y)

. (6)

In this study, we used the Wilcoxon signed-rank test to as-
sess the statistical significance of the differences between the
absolute errors due to its suitability for non-parametric data
(the absolute errors are not normally distributed) and paired
observations (the same data set was used for evaluating the
different models). We performed this analysis using the two-
tailed hypothesis test and the significance level of 0.05.

3.5 Evaluation of the importance of predictor variables

In this study, the importance of the predictor variables was
estimated using two different methods. First, the impurity-
based feature importance was assessed. This method is based
on the measure of impurity decreases (the mean squared er-
ror here) at all nodes in the random forest algorithm (the vari-
ables that often split nodes with large impurity decreases are
considered important). It provides an assessment of the rel-
ative importance of the predictor variables but is known for
underestimating the importance of non-continuous predictors
(Strobl et al., 2007).

In addition, the random forest models using all predictor
variables have been compared to models in which one of the
predictors was removed. This experiment was performed us-
ing the same method as the one used for determining the pa-
rameters of the random forest algorithms, which consists of

training the models with data from about 80 % of the fore-
cast start dates from the training periods and using the re-
maining data for evaluating the forecasts (see Sect. 3.1). By
comparing the mean absolute errors of the different models,
this method allows us to determine if the predictor variables
tend to improve or deteriorate the forecasts. Furthermore, it
is worth noting that this method tends to underestimate the
importance of highly correlated predictors since similar in-
formation is provided to the algorithm when one of the cor-
related predictors is removed.

4 Results

4.1 Evaluation of daily SAR observations

The CMEMS SAR MOSAIC product has been compared to
buoy observations during the period from January 2018 to
December 2020 in Fig. 2. The Pearson correlation coefficient
is 0.80 for the speed, and the circular correlation coefficient
is 0.84 for the direction. The SAR observations have rela-
tively low biases (the mean error is 2.8◦ for the direction and
−0.14 km d−1 for the speed). Furthermore, the mean abso-
lute error is 22.0◦ for the direction and 2.1 km d−1 for the
speed (the mean speeds are 7.46 and 7.60 km d−1 for the
SAR and buoy observations, respectively). The root mean
square error is 36.8◦ for the drift direction and 3.6 km d−1 for
the drift speed. While these errors are considerable, the large
number of SAR observations compared to buoy observations
makes this product potentially suitable for machine learning
applications. However, we consider these errors too large for
evaluating the performances of the sea ice drift forecasts us-
ing only these observations. Therefore, the performances of
sea ice drift forecasts have been evaluated using buoy obser-
vations, and the SAR observations have been used to study
the spatial variability in the forecast performances.

4.2 Evaluation of the calibrated forecasts

The performances of the calibrated forecasts have been eval-
uated and compared to those from the TOPAZ4 prediction
system during the period from June 2020 to May 2021 us-
ing buoy observations (Fig. 3). For predicting the direction
of sea ice drift, the models trained with buoy observations
significantly outperform the TOPAZ4 prediction system and
the models trained with SAR observations for all lead times,
except 10 d. On average, the calibrated forecasts produced by
these models have a mean absolute error about 8.0 % lower
than TOPAZ4 forecasts. The models trained with SAR ob-
servations significantly outperform the TOPAZ4 prediction
system for lead times up to 5 d and reduce the mean absolute
errors by 3.3 % compared to TOPAZ4 forecasts. However,
the TOPAZ4 prediction system slightly outperform the mod-
els trained with SAR observations for lead times from 8 to
10 d, though the differences are not statistically significant.
Moreover, the fraction of forecasts improved by the calibra-
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Figure 3. Evaluation of the performances of the calibrated forecasts produced using random forest (RF) algorithms and the TOPAZ4 fore-
casts during the period from June 2020 to May 2021. IABP buoy observations have been used as reference. Mean absolute errors (MAE)
of the forecasts for the direction (a) and the speed (b). Relative improvement

(
100 × TOPAZ4 MAE − calibrated forecast MAE

TOPAZ4 MAE

)
for the direc-

tion (c) and the speed (d). Fraction of calibrated forecasts with lower absolute errors than the TOPAZ4 forecasts for the direction (e) and
the speed (f). Circular and Pearson correlation coefficients between the forecasts and the buoy observations for the direction (g) and the
speed (h), respectively.

tion is, on average, larger for the models trained with buoy
observations (55.7 %) than for the models trained with SAR
observations (52.9 %). Furthermore, the correlation between
the forecasts and the buoy observations is improved by both
calibration methods for lead times up to 7 d and is deterio-
rated for longer lead times.

For the speed of sea ice drift, the models trained with buoy
observations have the best performances for all lead times.
They significantly outperform the TOPAZ4 system and the
models trained with SAR observations for all lead times, ex-
cept 4 d, for which the difference with the TOPAZ4 system
is not statistically significant. The forecasts from the mod-
els trained with SAR observations have slightly larger mean
absolute errors than TOPAZ4 forecasts for lead times up to
5 d but significantly outperform TOPAZ4 forecasts for longer
lead times. On average, the mean absolute error is reduced
by 7.1 % and 2.5 % by the calibration for the models trained

with buoy and SAR observations, respectively. The fraction
of forecasts improved is, on average, slightly larger for the
models trained with buoy observations (53.4 %) than for the
models trained with SAR observations (53.1 %). Moreover,
the correlation between the buoy observations and the fore-
casts is improved by both calibration methods.

The spatial variability in the fraction of forecasts improved
by the calibration has been analyzed using SAR observations
as reference in order to use as many observations as possible
(Figs. 4, 5, 6, and 7), though the grid points with fewer than
20 SAR observations during the period from June 2020 to
May 2021 have been excluded from this analysis. The num-
ber of SAR observations per grid cell used for this compar-
ison has been mapped in Fig. 1d). Overall, both calibration
methods perform relatively well for predicting the direction
of sea ice drift in the Central Arctic for lead times up to 5 d
(Figs. 4 and 5). However, the fraction of forecasts improved
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Figure 4. Fraction of calibrated forecasts produced by the models trained with buoy observations which outperform the TOPAZ4 forecasts
for the direction of sea ice drift during the period from June 2020 to May 2021. Daily SAR observations have been used as reference.
The graph in the lower right corner shows the fraction of the surface where the fraction of calibrated forecasts outperforming the TOPAZ4
forecasts is higher than or equal to 50 %.

decreases with increasing lead times, and both calibration
methods have relatively poor performances in the Beaufort,
Chukchi, and East Siberian seas. Furthermore, the models
trained with buoy observations perform better than the mod-
els trained with SAR observations in most of the area taken
into account in this analysis.

For the speed of sea ice drift, the models trained with
SAR observations perform better than the models trained
with buoy observations in most of the area analyzed. The
models trained with buoy observations have particularly poor
performances compared to TOPAZ4 near the Greenland and
Russian coastlines (Fig. 6), while the models trained with
SAR observations perform better in these areas (Fig. 7). It is
worth noting that most of the buoys taken into account for
evaluating the forecasts in Fig. 3 are not located in the areas
where the models trained with buoy observations have poor
performances, which likely explains the better performances
of the models trained with buoy observations compared to
the models trained with SAR observations in Fig. 3.

4.3 Importance of predictor variables

For both calibration methods, the most important variable
for predicting the drift direction is the sea ice drift direc-
tion from TOPAZ4 forecasts, followed by the wind direction
from ECMWF forecasts (Fig. 8). On average, the relative im-
portance of sea ice drift direction forecasts is about 1.4 and
1.5 times larger than the one from wind direction forecasts
for the models trained with buoy and SAR observations, re-
spectively. The sum of the relative importance of these two
variables represents, on average, about 46 % and 41 % of the
sum of all relative importance for the models trained with
buoy and SAR observations, respectively. However, the rel-
ative importance of these two variables decreases with in-
creasing lead times.

Similarly, the sea ice drift speed from TOPAZ4 is the most
important variable for predicting the speed of sea ice drift,
followed by the wind speed from ECMWF forecasts. On av-
erage, the relative importance of sea ice drift speed forecasts
is about 1.7 and 2.2 larger than the one from wind speed
forecasts for the models trained with buoy and SAR obser-
vations, respectively (Fig. 8). For the models predicting the
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Figure 5. Fraction of calibrated forecasts produced by the models trained with SAR observations which outperform the TOPAZ4 forecasts for
the direction of sea ice drift during the period from June 2020 to May 2021. Daily SAR observations have been used as reference. The graph
in the lower right corner shows the fraction of the surface where the fraction of calibrated forecasts outperforming the TOPAZ4 forecasts is
higher than or equal to 50 %.

speed of sea ice drift, the sum of the relative importance of
these two variables represents, on average, about 40 % of the
sum of all relative importance for both calibration methods.
Furthermore, the relative importance of these two variables
also decreases with increasing lead times.

On average, the mean absolute errors are reduced by all
predictors for the direction and speed of sea ice drift in both
calibration methods (Fig. 9), though some predictor variables
do not improve the forecast accuracy for all lead times. While
the sea ice concentration from TOPAZ4 forecasts and from
the observations during the initialization of the forecasts are
correlated, removing one of these variables decreases the ac-
curacy of most random forest models. Therefore, we decided
to keep both variables, even if the importance of these vari-
ables is probably underestimated due to this correlation. Fur-
thermore, we also tested using the day of year as an addi-
tional predictor variable (Fig. S7 in the Supplement), but
adding this variable tends to deteriorate the forecast accuracy
for most models, so we decided to discard this variable.

For the models predicting the direction of sea ice drift, re-
moving the drift direction from TOPAZ4 forecasts increases
the mean absolute error between 1.1 and 6.7◦, depending on

the lead time and the observations used for the target vari-
able. This is much larger than the differences in mean abso-
lute error when the wind direction from ECMWF forecasts
is removed (between 0.1 and 2.2◦). For the models predict-
ing the speed of sea ice drift, removing the drift speed from
TOPAZ4 forecasts increases the mean absolute error between
0.041 and 0.444 km d−1, depending on the lead time and the
observations used for the target variable. This is also much
larger than the differences in mean absolute error when the
wind speed from ECMWF forecasts is removed. Surpris-
ingly, removing the wind speed forecasts slightly reduces
the mean absolute error (difference of 0.005 km d−1) for the
model predicting the speed of sea ice drift for a lead time of
4 d trained with SAR observations. For the other models pre-
dicting the speed of sea ice drift, removing the wind speed
forecasts increases the mean absolute error between 0.001
and 0.127 km d−1. Furthermore, the mean absolute errors for
the speed of sea ice drift are also considerably reduced by
adding the sea ice thickness forecasts from TOPAZ4 (be-
tween 0.011 and 0.098 km d−1), probably due to the anti-
correlation between sea ice thickness and sea ice drift speed
(Yu et al., 2020).
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Figure 6. Fraction of calibrated forecasts produced by the models trained with buoy observations which outperform the TOPAZ4 forecasts
for the speed of sea ice drift during the period from June 2020 to May 2021. Daily SAR observations have been used as reference. The graph
in the lower right corner shows the fraction of the surface where the fraction of calibrated forecasts outperforming the TOPAZ4 forecasts is
higher than or equal to 50 %.

5 Discussion and conclusion

The characteristics and performances of the calibrated fore-
casts developed in this study depend on the observations used
for training the algorithms, as well as the data sets used for
the predictor variables. The 24 h mean composites of drift
vectors provided by the CMEMS SAR MOSAIC product
have been used for training some algorithms due to the fixed
time spans of this data set, the large number of available
observations, and the relatively high spatiotemporal resolu-
tion compared to sea ice drift products developed from pas-
sive microwave observations (Lavergne et al., 2010; Girard-
Ardhuin and Ezraty, 2012; Tschudi et al., 2020). However,
the spatial resolution (10 km) and the time spans (24 h) of
this product prevent the development of high-resolution cali-
brated forecasts. Furthermore, the averaging process of drift
vectors introduces significant uncertainties in the product
(Fig. 2), which represent a limitation for developing accurate
calibrated forecasts. Buoy observations are more accurate,
but the relatively low number of available observations is a
limitation for the development of random forest models. Both
methods also have common limitations, such as the heteroge-

neous spatiotemporal sampling of the buoy and SAR obser-
vations. The random forest algorithms are more influenced
by areas often covered by sea ice drift observations than by
areas with a poor coverage in these observations. This could
potentially explain some of the spatial variability in the per-
formances of the calibrated forecasts. Overall, the calibrated
forecasts have their best performances in the Central Arctic
where most of the training data are located.

The forecasts used for the predictor variables are pro-
duced by operational models (ECMWF Integrated Forecast-
ing System and the TOPAZ4 prediction system) which are
constantly being developed. The development of these sys-
tems could affect the performances of the random forest al-
gorithms due to changes between the different versions of the
models. This issue is more important for the models trained
with buoy observations due to the longer period used for
training these models. Moreover, TOPAZ4 does not repro-
duce the recent acceleration of sea ice drift, as already re-
ported by Xie et al. (2017), and the bias of TOPAZ4 sea ice
drift speed has changed during the studied period (Fig. S6 in
the Supplement). This probably affects the performances of
the random forest models trained with buoy observations due
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Figure 7. Fraction of calibrated forecasts produced by the models trained with SAR observations which outperform the TOPAZ4 forecasts
for the speed of sea ice drift during the period from June 2020 to May 2021. Daily SAR observations have been used as reference. The graph
in the lower right corner shows the fraction of the surface where the fraction of calibrated forecasts outperforming the TOPAZ4 forecasts is
higher than or equal to 50 %.

Figure 8. Relative importance of the predictor variables for the direction (a, b) and the speed (c, d) of sea ice drift assessed using the
impurity-based feature importance method.
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Figure 9. Differences in mean absolute error when one of the predictor variables is not used in the random forest models for the direction (a,
b) and speed (c, d) of sea ice drift. The results are shown for the models trained with buoy observations (a, c) and for the models trained with
SAR observations (b, d). The lead times are indicated in the legend of (a). The differences represent the subtraction between the performances
of the models using all the predictor variables and the models in which one predictor variable was not used. Therefore a negative value means
that adding the variable in the algorithm improves the forecasts.

to their relatively long training period, and using a shorter
training period would have improved the performances for
predicting the speed of sea ice drift (Fig. S2 in the Supple-
ment). Furthermore, while only the TOPAZ4 forecasts start-
ing on Thursdays were used for training the random forest
algorithms (only these forecasts are stored in the long-term
archive), the operational forecasts have been produced daily.
Because data assimilation is only performed on Thursdays,
this could be an issue when producing forecasts not starting
on Thursdays (the weights of the different predictor variables
might not be optimal).

Despite these limitations, it has been shown that the ran-
dom forest models trained with buoy observations outper-
form TOPAZ4 forecasts for both the speed and direction of
sea ice drift, except for 10 d lead time for the direction of
sea ice drift. The models trained with SAR observations sig-

nificantly outperform TOPAZ4 forecasts for lead times up to
5 d for the direction of sea ice drift but have similar perfor-
mances to TOPAZ4 forecasts for longer lead times. For the
speed of sea ice drift, the models trained with SAR observa-
tions have slightly larger mean absolute errors than TOPAZ4
for lead times up to 5 d but significantly outperform TOPAZ4
forecasts for longer lead times. On average, the mean ab-
solute errors for the direction of sea ice drift are 8.0 % and
3.3 % lower than in TOPAZ4 forecasts for the models trained
with buoy and SAR observations, respectively. For the mod-
els predicting the speed of sea ice drift, the mean absolute
errors are reduced by 7.1 % and 2.5 % for the models trained
with buoy and SAR observations, respectively. The lower er-
rors of the models trained with buoy observations, despite
their smaller training data sets, show that the accuracy of the

https://doi.org/10.5194/tc-15-3989-2021 The Cryosphere, 15, 3989–4004, 2021



4002 C. Palerme and M. Müller: Calibration of sea ice drift forecasts

observations used for the target variables plays a crucial role
in the performances of the calibrated forecasts.

The spatial analysis of the forecast performances using
SAR observations as reference has shown that the mod-
els trained with buoy observations outperform the models
trained with SAR observations for predicting the direction
of sea ice drift in most of the area analyzed in this study
(Figs. 4 and 5). However, for the algorithms predicting the
speed of sea ice drift, the models trained with SAR observa-
tions have better performances in most of the area analyzed
in this study (Figs. 6 and 7). The models trained with buoy
observations have particularly poor performances for predict-
ing the speed of sea ice drift near the Greenland and Russian
coastlines. This is likely due to the low number of buoy ob-
servations available for training the algorithms in these areas
and the particular characteristics of these areas (high drift
speed along the Greenland east coast and presence of land-
fast ice along the Russian coast).

In order to reduce forecast errors from numerical pre-
diction systems, calibration procedures can be applied, al-
though their performances depend on the number and accu-
racy of the observations used as target variables. The increas-
ing amount of satellite data available and the improvements
in sea ice remote sensing, as well as the development of new
statistical approaches, enhance the potential of calibration
techniques for sea ice forecasting. This should contribute to
improving the accuracy of sea ice forecasts delivered to mar-
itime end-users.

Code and data availability. Buoy observations are available
on the International Arctic Buoy Programme (IABP) web-
site (https://iabp.apl.uw.edu/Data_Products/Daily_Full_Res_
Data/Arctic/, IABP, 2021). Synthetic-aperture radar obser-
vations and TOPAZ4 forecasts are available on the Coper-
nicus Marine Environment Monitoring Service FTP server
(nrt.cmems-du.eu/Core/SEAICE_GLO_SEAICE_L4_NRT_
OBSERVATIONS_011_006/cmems_sat-si_glo_drift_nrt_north_d/,
https://resources.marine.copernicus.eu, last ac-
cess: 18 August 2021 and nrt.cmems-
du.eu/Core/ARCTIC_ANALYSIS_FORECAST_PHYS_002_
001_a/dataset-topaz4-arc-myoceanv2-be/, https://resources.
marine.copernicus.eu, last access: 18 August 2021 for SAR
and TOPAZ4 data, respectively). The OSI SAF sea ice con-
centration observations can be downloaded from the MET
Norway FTP server (ftp://osisaf.met.no/reprocessed/ice/conc/v2p0,
OSISAF, 2021) until 2015, but the data after 2015 are not
publicly available. A license is needed to download the wind
forecasts from the European Centre for Medium-Range Weather
Forecasts (ECMWF). Furthermore, the codes used for this anal-
ysis are available from the following GitHub directory: https:
//github.com/cyrilpalerme/Calibration_of_sea_ice_drift_forecasts/
(Palerme, 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-15-3989-2021-supplement.
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