Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3083-2021
https://doi.org/10.5194/tc-15-3083-2021
Research article
 | 
06 Jul 2021
Research article |  | 06 Jul 2021

Assessment of ICESat-2 ice surface elevations over the Chinese Antarctic Research Expedition (CHINARE) route, East Antarctica, based on coordinated multi-sensor observations

Rongxing Li, Hongwei Li, Tong Hao, Gang Qiao, Haotian Cui, Youquan He, Gang Hai, Huan Xie, Yuan Cheng, and Bofeng Li

Related authors

Ice flow velocity of the Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm, Northeast Greenland, in the 1960s from Historical Satellite Imagery
Litao Dai, Xingchen Liu, Lu An, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 101–106, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-101-2024,https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-101-2024, 2024
Comparing firn temperature profile retrieval based on the firn densification model and microwave data over the Antarctica
Xiaofeng Wang, Lu An, Peter L. Langen, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 691–696, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-691-2024,https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-691-2024, 2024
ANALYSIS OF OVERESTIMATION IN HISTORICAL ICE FLOW VELOCITY MAPS IN WESTERN PACIFIC OCEAN SECTOR, ANTARCTICA
S. Ge, Y. Cheng, R. Li, H. Cui, Z. Yu, T. Chang, S. Luo, Z. Li, G. Li, A. Zhao, X. Yuan, Y. Li, M. Xia, X. Wang, and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 757–763, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, 2022
ICE FLOW VELOCITY MAPPING IN GREENLAND USING HISTORICAL IMAGES FROM 1960s TO 1980s: SCHEME DESIGN
Z. Yu, Z. Cao, C. Yu, G. Qiao, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 799–804, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-799-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-799-2022, 2022
BREAK OUT OF A-76 ICEBERG AND RECENT DYNAMIC CHANGES OF ITS ENCOLSURE RIFTS IN RONNE ICE SHELF, ANTARCTICA
A. Zhao, Y. Cheng, D. Lv, M. Xia, R. Li, L. An, S. Liu, and Y. Tian
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 805–811, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, 2022

Related subject area

Discipline: Ice sheets | Subject: Antarctic
A fast and simplified subglacial hydrological model for the Antarctic Ice Sheet and outlet glaciers
Elise Kazmierczak, Thomas Gregov, Violaine Coulon, and Frank Pattyn
The Cryosphere, 18, 5887–5911, https://doi.org/10.5194/tc-18-5887-2024,https://doi.org/10.5194/tc-18-5887-2024, 2024
Short summary
Thwaites Glacier thins and retreats fastest where ice-shelf channels intersect its grounding zone
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
The Cryosphere, 18, 4971–4992, https://doi.org/10.5194/tc-18-4971-2024,https://doi.org/10.5194/tc-18-4971-2024, 2024
Short summary
Melt sensitivity of irreversible retreat of Pine Island Glacier
Brad Reed, J. A. Mattias Green, Adrian Jenkins, and G. Hilmar Gudmundsson
The Cryosphere, 18, 4567–4587, https://doi.org/10.5194/tc-18-4567-2024,https://doi.org/10.5194/tc-18-4567-2024, 2024
Short summary
A model framework for atmosphere–snow water vapor exchange and the associated isotope effects at Dome Argus, Antarctica – Part 1: The diurnal changes
Tianming Ma, Zhuang Jiang, Minghu Ding, Pengzhen He, Yuansheng Li, Wenqian Zhang, and Lei Geng
The Cryosphere, 18, 4547–4565, https://doi.org/10.5194/tc-18-4547-2024,https://doi.org/10.5194/tc-18-4547-2024, 2024
Short summary
The long-term sea-level commitment from Antarctica
Ann Kristin Klose, Violaine Coulon, Frank Pattyn, and Ricarda Winkelmann
The Cryosphere, 18, 4463–4492, https://doi.org/10.5194/tc-18-4463-2024,https://doi.org/10.5194/tc-18-4463-2024, 2024
Short summary

Cited articles

Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie, D., Paulsen, S. J., Granneman, B., and Gorodetzky, D.: The Landsat image mosaic of Antarctica, Remote Sens. Environ., 112, 4214–4226, https://doi.org/10.1016/j.rse.2008.07.006, 2008. 
Born, M., Clemmow, P., Gabor, D., Stokes, A., Taylor, A., Wayman, A., Wilcock, W., and Wolf, E. (Eds.): Principles of Optics, 7th (expanded) edition, Pergamon Press, Oxford, UK, 1999. 
Borsa, A. A., Fricker, H. A., and Brunt, K. M.: A Terrestrial Validation of ICESat Elevation Measurements and Implications for Global Reanalyses, IEEE T. Geosci. Remote, 57, 6946–6959, https://doi.org/10.1109/TGRS.2019.2909739, 2019. 
Brunt, K. M., Hawley, R. L., Lutz, E. R., Studinger, M., Sonntag, J. G., Hofton, M. A., Andrews, L. C., and Neumann, T. A.: Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland, The Cryosphere, 11, 681–692, https://doi.org/10.5194/tc-11-681-2017, 2017. 
Brunt, K. M., Neumann, T. A., and Larsen, C. F.: Assessment of altimetry using ground-based GPS data from the 88S Traverse, Antarctica, in support of ICESat-2, The Cryosphere, 13, 579–590, https://doi.org/10.5194/tc-13-579-2019, 2019a. 
Download
Short summary
We present the results of an assessment of ICESat-2 surface elevations along the 520 km CHINARE route in East Antarctica. The assessment was performed based on coordinated multi-sensor observations from a global navigation satellite system, corner cube retroreflectors, retroreflective target sheets, and UAVs. The validation results demonstrate that ICESat-2 elevations are accurate to 1.5–2.5 cm and can potentially overcome the uncertainties in the estimation of mass balance in East Antarctica.