Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3083-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-3083-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of ICESat-2 ice surface elevations over the Chinese Antarctic Research Expedition (CHINARE) route, East Antarctica, based on coordinated multi-sensor observations
Rongxing Li
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai 200092, China
College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
Hongwei Li
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai 200092, China
College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai 200092, China
College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
Gang Qiao
CORRESPONDING AUTHOR
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai 200092, China
College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
Haotian Cui
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai 200092, China
College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
Youquan He
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai 200092, China
College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
Gang Hai
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai 200092, China
College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai 200092, China
College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
Yuan Cheng
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai 200092, China
College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
Bofeng Li
Center for Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai 200092, China
College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
Related authors
Menglian Xia, Rongxing Li, Marco Scaioni, Lu An, Zhenshi Li, and Gang Qiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-175, https://doi.org/10.5194/egusphere-2025-175, 2025
Short summary
Short summary
We propose an innovative multi-satellite DEM adjustment model (MDAM) that removes biases in elevation between sub-DEMs across ice shelves. Our results reveal quantitative 3D structural and mélange features of a ~50 km long rift. For first time, we found that while the mélange elevation decreased from 2014–2021, the mélange inside the rift experienced a rapid expansion, attributing to newly calved shelf ice from rift walls, associated rift widening, and other rift-mélange interaction factors.
Litao Dai, Xingchen Liu, Lu An, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 101–106, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-101-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-101-2024, 2024
Xiaofeng Wang, Lu An, Peter L. Langen, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 691–696, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-691-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-691-2024, 2024
S. Ge, Y. Cheng, R. Li, H. Cui, Z. Yu, T. Chang, S. Luo, Z. Li, G. Li, A. Zhao, X. Yuan, Y. Li, M. Xia, X. Wang, and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 757–763, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, 2022
Z. Yu, Z. Cao, C. Yu, G. Qiao, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 799–804, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-799-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-799-2022, 2022
A. Zhao, Y. Cheng, D. Lv, M. Xia, R. Li, L. An, S. Liu, and Y. Tian
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 805–811, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, 2022
Rongxing Li, Yuan Cheng, Haotian Cui, Menglian Xia, Xiaohan Yuan, Zhen Li, Shulei Luo, and Gang Qiao
The Cryosphere, 16, 737–760, https://doi.org/10.5194/tc-16-737-2022, https://doi.org/10.5194/tc-16-737-2022, 2022
Short summary
Short summary
Historical velocity maps of the Antarctic ice sheet are valuable for long-term ice flow dynamics analysis. We developed an innovative method for correcting overestimations existing in historical velocity maps. The method is validated rigorously using high-quality Landsat 8 images and then successfully applied to historical velocity maps. The historical change signatures are preserved and can be used for assessing the impact of long-term global climate changes on the ice sheet.
Lin Li, Aiguo Zhao, Tiantian Feng, Xiangbin Cui, Lu An, Ben Xu, Shinan Lang, Liwen Jing, Tong Hao, Jingxue Guo, Bo Sun, and Rongxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-332, https://doi.org/10.5194/tc-2021-332, 2021
Preprint withdrawn
Short summary
Short summary
No subglacial lakes have been reported in Princess Elizabeth Land (PEL), East Antarctica. In this study, thanks to a new suite of airborne geophysical observations in PEL, including RES and gravity data collected during the Chinese National Antarctic Research Expedition, we detected a large subglacial lake of ~45 km in length, ~11 km in width, and ~250 m in depth. These findings will help us understand ice sheet stability in the PEL region.
T. Chang, J. Han, Z. Li, Y. Wen, T. Hao, P. Lu, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 437–442, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-437-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-437-2021, 2021
H. Cui, R. Li, H. Li, T. Hao, G. Qiao, Y. He, G. Hai, H. Xie, Y. Cheng, and B. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 443–448, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-443-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-443-2021, 2021
S. Luo, Y. Cheng, Z. Li, Y. Wang, K. Wang, X. Wang, G. Qiao, W. Ye, Y. Li, M. Xia, X. Yuan, Y. Tian, X. Tong, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 491–496, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-491-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-491-2021, 2021
D. Wang, T. Feng, T. Hao, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 521–526, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-521-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-521-2021, 2021
Huan Xie, Yifan Wang, Xiongfeng Yan, Ming Yang, Yaqiong Wang, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1589–1594, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1589-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1589-2025, 2025
Yuan Sun, Huan Xie, Xiaohua Tong, Qi Xu, Binbin Li, Changda Liu, Min Ji, and Hao Tang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1421–1426, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1421-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1421-2025, 2025
Chen Liu, Rong Huang, Huan Xie, Tao Tao, Yongjiu Feng, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 959–966, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-959-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-959-2025, 2025
Tiantian Feng, Hui Dong, Yangyang Chen, and Tong Hao
EGUsphere, https://doi.org/10.5194/egusphere-2025-1632, https://doi.org/10.5194/egusphere-2025-1632, 2025
Short summary
Short summary
This study focuses on the long-term subglacial hydrological activity of the Recovery Ice Stream in East Antarctica. We update the outlines of reported lakes based on their recent activity and identify 14 new lakes. A 21-year record of elevation changes of these lakes is constructed using multi-mission altimetry data. We also reveal spatial variability in elevation change patterns within several typical individual lakes. Our hydrological network confirms hydraulic connectivity among these lakes.
Zhilu Wu, Bofeng Li, Qingyuan Liu, Yanxiong Liu, Huayi Zhang, Dongxu Zhou, and Yang Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-24, https://doi.org/10.5194/essd-2025-24, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We created a reliable dataset of atmospheric water vapor from China's coastal stations (2009–2019), validated against global models and radiosonde data. The study highlights strong links between water vapor and sea surface temperature, aiding understanding of weather, extreme events, and climate change. This dataset supports improved forecasting and climate research.
Menglian Xia, Rongxing Li, Marco Scaioni, Lu An, Zhenshi Li, and Gang Qiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-175, https://doi.org/10.5194/egusphere-2025-175, 2025
Short summary
Short summary
We propose an innovative multi-satellite DEM adjustment model (MDAM) that removes biases in elevation between sub-DEMs across ice shelves. Our results reveal quantitative 3D structural and mélange features of a ~50 km long rift. For first time, we found that while the mélange elevation decreased from 2014–2021, the mélange inside the rift experienced a rapid expansion, attributing to newly calved shelf ice from rift walls, associated rift widening, and other rift-mélange interaction factors.
Binbin Li, Huan Xie, Shijie Liu, Zhen Ye, Zhonghua Hong, Qihao Weng, Yuan Sun, Qi Xu, and Xiaohua Tong
Earth Syst. Sci. Data, 17, 205–220, https://doi.org/10.5194/essd-17-205-2025, https://doi.org/10.5194/essd-17-205-2025, 2025
Short summary
Short summary
We refined the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) with Ice, Cloud, and Land Elevation Satellite 2 data to release a new dataset (IC2-GDEM). It has superior global elevation quality to ASTER GDEM. Its seamless integration with historical ASTER GDEM datasets is essential for longitudinal environmental studies. As a complementary data source to other GDEMs, it enables more reliable and comprehensive scientific discoveries.
Litao Dai, Xingchen Liu, Lu An, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 101–106, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-101-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-101-2024, 2024
Penglan Luo, Gang Qiao, Zhi Qu, and Sergey Popov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 311–318, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-311-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-311-2024, 2024
Chengjin Yan, Yuan Cheng, Yue Zhang, Haomin Yu, Jizhong Huang, and Hongbin Yan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 541–547, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-541-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-541-2024, 2024
Yanjun Li, Violaine Coulon, Javier Blasco, Gang Qiao, Qinghua Yang, and Frank Pattyn
EGUsphere, https://doi.org/10.5194/egusphere-2024-2916, https://doi.org/10.5194/egusphere-2024-2916, 2024
Short summary
Short summary
We incorporate ice damage processes into an ice-sheet model and apply the new model to Thwaites Glacier. The upgraded model more accurately captures the observed ice geometry and mass balance of Thwaites Glacier over 1990–2020. Our simulations show that ice damage has a notable impact on the ice sheet evolution, ice mass loss and the resulted sea-level rise. This study highlights the necessity for incorporating ice damage into ice-sheet models.
Xiaofeng Wang, Lu An, Peter L. Langen, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 691–696, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-691-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-691-2024, 2024
Xin Wang, Yuan Cheng, Ruoyu Zhang, Yue Zhang, Jizhong Huang, and Hongbin Yan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 713–719, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-713-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-713-2024, 2024
Zheyi Cao, Leyue Tang, Xiaohan Yuan, and Gang Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 59–64, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-59-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-59-2024, 2024
Hongwei Li, Youquan He, Yuanyuan Gu, and Gang Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 323–328, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-323-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-323-2024, 2024
Y. Cheng, J. Xue, H. Yu, and G. Hai
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W9-2024, 99–105, https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-99-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-99-2024, 2024
S. Xu, R. Huang, Y. Xu, Z. Ye, H. Xie, and X. Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 771–776, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-771-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-771-2023, 2023
Q. Xu, H. Xie, Y. Sun, X. Liu, Y. Guo, P. Huang, B. Li, and X. Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 309–314, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-309-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-309-2022, 2022
S. Ge, Y. Cheng, R. Li, H. Cui, Z. Yu, T. Chang, S. Luo, Z. Li, G. Li, A. Zhao, X. Yuan, Y. Li, M. Xia, X. Wang, and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 757–763, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, 2022
K. Lin, G. Qiao, L. Zhang, and S. Popov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 765–770, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-765-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-765-2022, 2022
L. Wang, G. Qiao, I. V. Florinsky, and S. Popov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 785–791, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-785-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-785-2022, 2022
Z. Yu, Z. Cao, C. Yu, G. Qiao, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 799–804, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-799-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-799-2022, 2022
A. Zhao, Y. Cheng, D. Lv, M. Xia, R. Li, L. An, S. Liu, and Y. Tian
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 805–811, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, 2022
Rongxing Li, Yuan Cheng, Haotian Cui, Menglian Xia, Xiaohan Yuan, Zhen Li, Shulei Luo, and Gang Qiao
The Cryosphere, 16, 737–760, https://doi.org/10.5194/tc-16-737-2022, https://doi.org/10.5194/tc-16-737-2022, 2022
Short summary
Short summary
Historical velocity maps of the Antarctic ice sheet are valuable for long-term ice flow dynamics analysis. We developed an innovative method for correcting overestimations existing in historical velocity maps. The method is validated rigorously using high-quality Landsat 8 images and then successfully applied to historical velocity maps. The historical change signatures are preserved and can be used for assessing the impact of long-term global climate changes on the ice sheet.
Lin Li, Aiguo Zhao, Tiantian Feng, Xiangbin Cui, Lu An, Ben Xu, Shinan Lang, Liwen Jing, Tong Hao, Jingxue Guo, Bo Sun, and Rongxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-332, https://doi.org/10.5194/tc-2021-332, 2021
Preprint withdrawn
Short summary
Short summary
No subglacial lakes have been reported in Princess Elizabeth Land (PEL), East Antarctica. In this study, thanks to a new suite of airborne geophysical observations in PEL, including RES and gravity data collected during the Chinese National Antarctic Research Expedition, we detected a large subglacial lake of ~45 km in length, ~11 km in width, and ~250 m in depth. These findings will help us understand ice sheet stability in the PEL region.
T. Chang, J. Han, Z. Li, Y. Wen, T. Hao, P. Lu, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 437–442, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-437-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-437-2021, 2021
H. Cui, R. Li, H. Li, T. Hao, G. Qiao, Y. He, G. Hai, H. Xie, Y. Cheng, and B. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 443–448, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-443-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-443-2021, 2021
Y. He, G. Qiao, H. Li, X. Yuan, and Y. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 463–468, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-463-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-463-2021, 2021
Y. Li, G. Qiao, and X. Yuan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 485–490, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-485-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-485-2021, 2021
S. Luo, Y. Cheng, Z. Li, Y. Wang, K. Wang, X. Wang, G. Qiao, W. Ye, Y. Li, M. Xia, X. Yuan, Y. Tian, X. Tong, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 491–496, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-491-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-491-2021, 2021
Z. Sun and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 503–508, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-503-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-503-2021, 2021
D. Wang, T. Feng, T. Hao, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 521–526, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-521-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-521-2021, 2021
H. Zhao, R. Xu, and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 527–532, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-527-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-527-2021, 2021
Cited articles
Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie,
D., Paulsen, S. J., Granneman, B., and Gorodetzky, D.: The Landsat image
mosaic of Antarctica, Remote Sens. Environ., 112, 4214–4226,
https://doi.org/10.1016/j.rse.2008.07.006, 2008.
Born, M., Clemmow, P., Gabor, D., Stokes, A., Taylor, A., Wayman, A.,
Wilcock, W., and Wolf, E. (Eds.): Principles of Optics, 7th (expanded)
edition, Pergamon Press, Oxford, UK, 1999.
Borsa, A. A., Fricker, H. A., and Brunt, K. M.: A Terrestrial Validation of
ICESat Elevation Measurements and Implications for Global Reanalyses, IEEE
T. Geosci. Remote, 57, 6946–6959,
https://doi.org/10.1109/TGRS.2019.2909739, 2019.
Brunt, K. M., Hawley, R. L., Lutz, E. R., Studinger, M., Sonntag, J. G., Hofton, M. A., Andrews, L. C., and Neumann, T. A.: Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland, The Cryosphere, 11, 681–692, https://doi.org/10.5194/tc-11-681-2017, 2017.
Brunt, K. M., Neumann, T. A., and Larsen, C. F.: Assessment of altimetry using ground-based GPS data from the 88S Traverse, Antarctica, in support of ICESat-2, The Cryosphere, 13, 579–590, https://doi.org/10.5194/tc-13-579-2019, 2019a.
Brunt, K. M., Neumann, T. A., and Smith, B. E.: Assessment of ICESat-2 ice
sheet surface heights, based on comparisons over the interior of the
Antarctic ice sheet, Geophys. Res. Lett., 46, 13072–13078,
https://https://doi.org/10.1029/2019GL084886, 2019b.
Brunt, K. M., Smith, B. E., Sutterley, T. C., Kurtz, N. T., and Neumann, T.
A.: Comparisons of Satellite and Airborne Altimetry With Ground-Based Data
From the Interior of the Antarctic Ice Sheet, Geophys. Res. Lett., 48, e2020GL090572, https://doi.org/10.1029/2020GL090572, 2021.
Chang, R. F., Currie, D., Alley, C., and Pittman, M.: The far field
diffraction pattern for corner reflectors with complex reflection
coefficients, J. Opt. Soc. Am., 61, 431–438,
https://doi.org/10.1364/JOSA.61.000431, 1971.
Hartzell, P., Dang, Z., Pan, Z., and Glennie, C.: Radiometric evaluation of
an airborne single photon Lidar sensor, IEEE Geosci. Remote S., 15,
1466–1470, https://doi.org/10.1109/LGRS.2018.2841811, 2018.
ICESat-2 Technical Specs: https://icesat-2.gsfc.nasa.gov/science/specs, last access: 27 September 2020.
James, M. R. and Robson, S.: Straightforward reconstruction of 3D surfaces
and topography with a camera: accuracy and geoscience application, J.
Geophys. Res., 117, F03017, https://doi.org/10.1029/2011JF002289, 2012.
Kohler, J., Neumann, T. A., Robbins, J. W., Tronstad, S., and Melland, G.:
ICESat elevations in Antarctica along the 2007-09 Norway-USA Traverse:
validation with ground-based GPS, IEEE T. Geosci. Remote, 51, 1578–1587,
https://doi.org/10.1109/TGRS.2012.2207963, 2013.
Li, B., Zang, N., Ge, H., and Shen, Y.: Single-frequency PPP models:
analytical and numerical comparison, J. Geod., 93, 2499–2514,
https://doi.org/10.1007/s00190-019-01311-4, 2019.
Li, R., Li, H., Hao, T., Qiao, G., Cui, H., He, Y., Hai, G., Xie, H., Cheng, Y., and Li, B.: The calibration and validation data used in ICESat-2 Antarctic surface elevation assessment, available at: https://datadryad.org/stash/share/5 mU52z7OSWAG07tTsGCWXt0Rm0MmT12qwdPORBIUpsnw, last access: 12 April 2021.
Luthcke, S. B., Thomas, T. C., Pennington, T. A., Rebold, T. W., Nicholas,
J. B., Rowlands, D. D., Gardner, A. S., and Bae, S.: ICESat-2 Pointing
Calibration and Geolocation Performance, Earth Space Sci.,
https://doi.org/10.1029/2020EA001494, 2021.
Magruder, L. A. and Brunt, K. M.: Performance analysis of airborne
photon-counting lidar data in preparation for the ICESat-2 mission, IEEE T.
Geosci. Remote, 56, 2911–2918, https://doi.org/10.1109/TGRS.2017.2786659,
2018.
Magruder, L. A., Brunt, K. M., and Alonzo, M.: Early ICESat-2 on-orbit
geolocation validation using ground-based corner cube retro-reflectors,
Remote Sensing, 12, 3653, https://doi.org/10.3390/rs12213653, 2020.
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B.,
Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R.,
Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R.,
Neuenschwander, A., Palm, S., Popescu, S., Shum, B. E., Schutz, R., Smith,
B., Yang, Y., and Zwally, J.: The Ice, Cloud, and Land Elevation Satellite-2
(ICESat-2): Science requirements, concept, and implementation, Remote Sens.
Environ., 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029, 2017.
McGlone, J. C.: Manual of Photogrammetry, Sixth Edition, ASPRS Publications,
Maryland, MD, USA, 2013
National Research Council: Earth science and applications from space:
national imperatives for the next decade and beyond, the national academies
press, Washington, DC, https://doi.org/10.17226/11820, 2007.
Neumann, T., Brenner, A., Hancock, D., Harbeck, K., Luthcke, S., Robbins,
J., Saba, J., and Gibbons, A.: Ice, Cloud, and Land Elevation Satellite-2
project algorithm theoretical basis document for global geolocated photons
(ATL03), https://icesat-2.gsfc.nasa.gov/science/data-products (last access: 27 September 2020), 2018.
Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner,
A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S. T., Hancock, D. W.,
Harbeck, K., Lee, J., Kurtz, N. T., Luers, P. J., Luthcke, S. B., Magruder,
L., Pennington, T. A., Ramos-Izquierdo, L., Rebold, T., Skoog, J., and
Thomas, T. C.: The Ice, Cloud, and Land Elevation Satellite-2 Mission: A
global geolocated photon product derived from the Advanced Topographic Laser
Altimeter System, Remote Sens. Environ., 233, 111325,
https://doi.org/10.1016/j.rse.2019.111325, 2019.
Neumann, T., Brenner, A., Hancock, D., Robbins, J., Saba, J., Harbeck, K.,
Gibbons, A., Lee, J., Luthcke, S., and Rebold, T.: ATLAS/ICESat-2 L2A global
geolocated photon data, Version 3, NASA National Snow and Ice Data Center,
Distributed Active Archive Center, Boulder, Colorado USA,
https://doi.org/10.5067/ATLAS/ATL03.003, 2020.
NSIDC: https://nsidc.org/data/icesat-2, last access: 8 January 2021.
Petit, G. and Luzum, B.: IERS conventions (2010), IERS Technical Note 36,
Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am
Main, 2010.
Richter, A., Horwath M., and Dietrich R.: Comment on Zwally and others
(2015) – Mass gains of the Antarctic ice sheet exceed losses, J. Glaciol.,
62, 604–606, https://doi.org/10.1017/jog.2016.60, 2016.
Scambos, T. and Shuman C.: Comment on “Mass gains of the Antarctic ice
sheet exceed losses” by H. J. Zwally and others, J. Glaciol., 62, 599–603,
https://doi.org/10.1017/jog.2016.59, 2016.
Schröder, L., Richter, A., Fedorov, D. V., Eberlein, L., Brovkov, E. V., Popov, S. V., Knöfel, C., Horwath, M., Dietrich, R., Matveev, A. Y., Scheinert, M., and Lukin, V. V.: Validation of satellite altimetry by kinematic GNSS in central East Antarctica, The Cryosphere, 11, 1111–1130, https://doi.org/10.5194/tc-11-1111-2017, 2017.
Schutz, B. E., Bae, S., Smith, N., and Sirota, M.: Precision orbit and
attitude determination for ICESat, Adv. Astronaut. Sci, 115, 416–427, 2008.
Smith, B., Fricker, H. A., Holschuh, N., Gardner, A. S., Adusumilli, S.,
Brunt, K. M., Csatho, B., Huth, A., Neumann, T., Nilsson, J., and Siegfried,
M. R.: Land ice height-retrieval algorithms for NASA's ICESat-2
photon-counting laser altimeter, Remote Sens. Environ., 233, 111352,
https://doi.org/10.1016/j.rse.2019.111352, 2019.
Smith, B., Fricker, H. A., Gardner, A., Siegfried, M. R., Adusumilli, S., Csathó, B. M., Holschuh, N., Nilsson, J., Paolo, F. S., and the ICESat-2 Science Team: ATLAS/ICESat-2 L3A Land Ice Height, Version 3, https://doi.org/10.5067/ATLAS/ATL06.003, 2020.
Sun, X., Smith, D. E., Hoffman, E. D., Wake, S. W., Cremons, D. R.,
Mazarico, E., Lauenstein, J., Zuber, M. T., and Aaron, E. C.: Small and
lightweight laser retro-reflector arrays for lunar landers, Appl. Opt.,
58, 9259–9266, https://doi.org/10.1364/AO.58.009259, 2019.
Takasu, T. and Yasuda, A.: Development of the low-cost RTK-GPS receiver with
an open source program package RTKLIB, International Symposium on GPS/GNSS,
International Convention Center Jeju, Korea, 4–6 November 2009.
Takasu, T.: RTKLIB ver. 2.4.2 Manual, available at:
http://www.rtklib.com/prog/manual_2.4.2.pdf (last access: 21
October 2020), 2013.
Turner, D., Lucieer, A., and Wallace, L.: Direct georeferencing of
ultrahigh-resolution UAV imagery, IEEE T. Geosci. Remote, 52, 27380-2745,
https://doi.org/10.1109/TGRS.2013.2265295, 2014.
Zwally, H. J., Schutz, B., Abdalati, W., Abshire, J., Bentley, C., Brenner,
A., Bufton, J., Dezio, J., Hancock, D., Harding, D., Herring, T., Minster,
B., Quinn, K., Palm, S., Spinhirne, J., and Thomas, R.: ICESat's laser
measurements of polar ice, atmosphere, ocean, and land, J. Geodyn., 34,
405-0445, https://doi.org/10.1016/S0264-3707(02)00042-X, 2002.
Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D., and Brenner, A.
C.: Mass gains of the Antarctic ice sheet exceed losses, J. Glaciol.,
61, 1019–1036, https://doi.org/10.3189/2015JoG15J071, 2015.
Short summary
We present the results of an assessment of ICESat-2 surface elevations along the 520 km CHINARE route in East Antarctica. The assessment was performed based on coordinated multi-sensor observations from a global navigation satellite system, corner cube retroreflectors, retroreflective target sheets, and UAVs. The validation results demonstrate that ICESat-2 elevations are accurate to 1.5–2.5 cm and can potentially overcome the uncertainties in the estimation of mass balance in East Antarctica.
We present the results of an assessment of ICESat-2 surface elevations along the 520 km CHINARE...