Articles | Volume 15, issue 5
The Cryosphere, 15, 2315–2331, 2021
https://doi.org/10.5194/tc-15-2315-2021
The Cryosphere, 15, 2315–2331, 2021
https://doi.org/10.5194/tc-15-2315-2021
Research article
18 May 2021
Research article | 18 May 2021

Hourly surface meltwater routing for a Greenlandic supraglacial catchment across hillslopes and through a dense topological channel network

Colin J. Gleason et al.

Related authors

Technical Note: Semi-automated effective width extraction from time-lapse RGB imagery of a remote, braided Greenlandic river
C. J. Gleason, L. C. Smith, D. C. Finnegan, A. L. LeWinter, L. H Pitcher, and V. W. Chu
Hydrol. Earth Syst. Sci., 19, 2963–2969, https://doi.org/10.5194/hess-19-2963-2015,https://doi.org/10.5194/hess-19-2963-2015, 2015
Short summary

Related subject area

Discipline: Ice sheets | Subject: Glacier Hydrology
Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Lauren C. Andrews, Kristin Poinar, and Celia Trunz
The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022,https://doi.org/10.5194/tc-16-2421-2022, 2022
Short summary
Supraglacial streamflow and meteorological drivers from southwest Greenland
Rohi Muthyala, Åsa K. Rennermalm, Sasha Z. Leidman, Matthew G. Cooper, Sarah W. Cooley, Laurence C. Smith, and Dirk van As
The Cryosphere, 16, 2245–2263, https://doi.org/10.5194/tc-16-2245-2022,https://doi.org/10.5194/tc-16-2245-2022, 2022
Short summary
Challenges in predicting Greenland supraglacial lake drainages at the regional scale
Kristin Poinar and Lauren C. Andrews
The Cryosphere, 15, 1455–1483, https://doi.org/10.5194/tc-15-1455-2021,https://doi.org/10.5194/tc-15-1455-2021, 2021
Short summary
Role of discrete water recharge from supraglacial drainage systems in modeling patterns of subglacial conduits in Svalbard glaciers
Léo Decaux, Mariusz Grabiec, Dariusz Ignatiuk, and Jacek Jania
The Cryosphere, 13, 735–752, https://doi.org/10.5194/tc-13-735-2019,https://doi.org/10.5194/tc-13-735-2019, 2019
Short summary
A confined–unconfined aquifer model for subglacial hydrology and its application to the Northeast Greenland Ice Stream
Sebastian Beyer, Thomas Kleiner, Vadym Aizinger, Martin Rückamp, and Angelika Humbert
The Cryosphere, 12, 3931–3947, https://doi.org/10.5194/tc-12-3931-2018,https://doi.org/10.5194/tc-12-3931-2018, 2018
Short summary

Cited articles

Allen, G. H., Pavelsky, T. M., Barefoot, E. A., Lamb, M. P., Butman, D., Tashie, A., and Gleason, C. J.: Similarity of stream width distributions across headwater systems, Nat. Commun., 9, 610, https://doi.org/10.1038/s41467-018-02991-w, 2018. 
Arnold, N. S., Banwell, A. F., and Willis, I. C.: High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet, The Cryosphere, 8, 1149–1160, https://doi.org/10.5194/tc-8-1149-2014, 2014. 
Banwell, A., Hewitt, I., Willis, I., and Arnold, N.: Moulin density controls drainage development beneath the Greenland ice sheet, J. Geophys. Res.-Earth, 121, 2248–2269, https://doi.org/10.1002/2015JF003801, 2016. 
Banwell, A. F., Arnold, N. S., Willis, I. C., Tedesco, M., and Ahlstrøm, A. P.: Modeling supraglacial water routing and lake filling on the Greenland Ice Sheet, J. Geophys. Res.-Earth, 117, https://doi.org/10.1029/2012JF002393, 2012. 
Banwell, A. F., Willis, I. C., and Arnold, N. S.: Modeling subglacial water routing at Paakitsoq, W Greenland, J. Geophys. Res.-Earth, 118, 1282–1295, https://doi.org/10.1002/jgrf.20093, 2013. 
Download
Short summary
We apply first-principle hydrology models designed for global river routing to route flows hourly through 10 000 individual supraglacial channels in Greenland. Our results uniquely show the role of process controls (network density, hillslope flow, channel friction) on routed meltwater. We also confirm earlier suggestions that large channels do not dewater overnight despite the shutdown of runoff and surface mass balance runoff being mistimed and overproducing runoff, as validated in situ.