Articles | Volume 15, issue 5
https://doi.org/10.5194/tc-15-2315-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2315-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hourly surface meltwater routing for a Greenlandic supraglacial catchment across hillslopes and through a dense topological channel network
Colin J. Gleason
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of
Massachusetts Amherst, Amherst, 01002, USA
Kang Yang
School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing,
210023, China
Dongmei Feng
Department of Civil and Environmental Engineering, University of
Massachusetts Amherst, Amherst, 01002, USA
Laurence C. Smith
Institute at Brown for Environment and Society, Brown University,
Providence, Rhode Island, 02912, USA
Department of Earth, Environmental, and Planetary Sciences, Brown
University, Providence, Rhode Island, 02912, USA
Kai Liu
Nanjing Institute of Geography & Limnology, Chinese Academy of
Sciences, Nanjing, 210008, China
Lincoln H. Pitcher
Cooperative Institute for Research in Environmental
Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
Vena W. Chu
Department of Geography, University of California Santa Barbara,
Santa Barbara, 93106, USA
Matthew G. Cooper
Department of Geography, University of California, Los Angeles, Los
Angeles, CA, 90095, USA
Brandon T. Overstreet
Department of Geology and Geophysics, University of Wyoming, Laramie,
WY, 82070, USA
Asa K. Rennermalm
Department of Geography, Rutgers, The State University of New
Jersey, New Brunswick, NJ 08901, USA
Jonathan C. Ryan
Institute at Brown for Environment and Society, Brown University,
Providence, Rhode Island, 02912, USA
Related authors
No articles found.
Chang Liao, Darren Engwirda, Matthew G. Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data, 17, 2035–2062, https://doi.org/10.5194/essd-17-2035-2025, https://doi.org/10.5194/essd-17-2035-2025, 2025
Short summary
Short summary
Discrete global grid systems, or DGGS, are digital frameworks that help us organize information about our planet. Although scientists have used DGGS in areas like weather and nature, using them in the water cycle has been challenging because some core datasets are missing. We created a way to generate these datasets. We then developed the datasets in the Amazon and Yukon basins, which play important roles in our planet's climate. These datasets may help us improve our water cycle models.
Sonam F. Sherpa, Laurence C. Smith, Bo Wang, and Cassie Stuurman
EGUsphere, https://doi.org/10.5194/egusphere-2025-133, https://doi.org/10.5194/egusphere-2025-133, 2025
Preprint archived
Short summary
Short summary
As the climate warms, glaciers in the Himalayas are melting and retreating, creating new lakes that are often held back by ice or loose rock. These lakes can suddenly burst, causing devastating floods. On August 16, 2024, such a flood occurred unexpectedly in Nepal's Bhotekoshi River Valley, near Mount Everest. We highlight how modern technologies can play a crucial role in detecting potential dangers and helping communities prepare for risks in a changing climate.
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024, https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Short summary
How fast is the Greenland ice sheet warming? In this study, we compiled 4500+ temperature measurements at 10 m below the ice sheet surface (T10m) from 1912 to 2022. We trained a machine learning model on these data and reconstructed T10m for the ice sheet during 1950–2022. After a slight cooling during 1950–1985, the ice sheet warmed at a rate of 0.7 °C per decade until 2022. Climate models showed mixed results compared to our observations and underestimated the warming in key regions.
Lauren D. Rawlins, David M. Rippin, Andrew J. Sole, Stephen J. Livingstone, and Kang Yang
The Cryosphere, 17, 4729–4750, https://doi.org/10.5194/tc-17-4729-2023, https://doi.org/10.5194/tc-17-4729-2023, 2023
Short summary
Short summary
We map and quantify surface rivers and lakes at Humboldt Glacier to examine seasonal evolution and provide new insights of network configuration and behaviour. A widespread supraglacial drainage network exists, expanding up the glacier as seasonal runoff increases. Large interannual variability affects the areal extent of this network, controlled by high- vs. low-melt years, with late summer network persistence likely preconditioning the surface for earlier drainage activity the following year.
Sarah E. Esenther, Laurence C. Smith, Adam LeWinter, Lincoln H. Pitcher, Brandon T. Overstreet, Aaron Kehl, Cuyler Onclin, Seth Goldstein, and Jonathan C. Ryan
Geosci. Instrum. Method. Data Syst., 12, 215–230, https://doi.org/10.5194/gi-12-215-2023, https://doi.org/10.5194/gi-12-215-2023, 2023
Short summary
Short summary
Meltwater runoff estimates from the Greenland ice sheet contain uncertainty. To better understand ice sheet hydrology, we installed a weather station and river stage sensors along three proglacial rivers in a cold-bedded area of NW Greenland without firn, crevasse, or moulin influence. The first 3 years (2019–2021) of observations have given us a first look at the seasonal and annual weather and hydrological patterns of this understudied region.
Isatis M. Cintron-Rodriguez, Åsa K. Rennermalm, Susan Kaspari, and Sasha Leidman
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-195, https://doi.org/10.5194/tc-2022-195, 2022
Revised manuscript not accepted
Short summary
Short summary
Snow and ice melt driven by solar absorption is enhanced by the presence of light-absorbing particles (LAPs), such as black carbon (BC) and dust. Previous studies have ruled out LAP as an important Greenland's albedo reduction and accelerated mass loss rate factor. However, most simulations only take into consideration LAP direct effects. This study shows that taking into account LAP impact on snow metamorphism leads to albedo reductions 4 to 10 times larger than previously thought.
Chunqiao Song, Chenyu Fan, Jingying Zhu, Jida Wang, Yongwei Sheng, Kai Liu, Tan Chen, Pengfei Zhan, Shuangxiao Luo, Chunyu Yuan, and Linghong Ke
Earth Syst. Sci. Data, 14, 4017–4034, https://doi.org/10.5194/essd-14-4017-2022, https://doi.org/10.5194/essd-14-4017-2022, 2022
Short summary
Short summary
Over the last century, many dams/reservoirs have been built globally to meet various needs. The official statistics reported more than 98 000 dams/reservoirs in China. Despite the availability of several global-scale dam/reservoir databases, these databases have insufficient coverage in China. Therefore, we present the China Reservoir Dataset (CRD), which contains 97 435 reservoir polygons. The CRD reservoirs have a total area of 50 085.21 km2 and total storage of about 979.62 Gt.
Rohi Muthyala, Åsa K. Rennermalm, Sasha Z. Leidman, Matthew G. Cooper, Sarah W. Cooley, Laurence C. Smith, and Dirk van As
The Cryosphere, 16, 2245–2263, https://doi.org/10.5194/tc-16-2245-2022, https://doi.org/10.5194/tc-16-2245-2022, 2022
Short summary
Short summary
In situ measurements of meltwater discharge through supraglacial stream networks are rare. The unprecedentedly long record of discharge captures diurnal and seasonal variability. Two major findings are (1) a change in the timing of peak discharge through the melt season that could impact meltwater delivery in the subglacial system and (2) though the primary driver of stream discharge is shortwave radiation, longwave radiation and turbulent heat fluxes play a major role during high-melt episodes.
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Marco Tedesco, Rohi Muthyala, Sasha Z. Leidman, Samiah E. Moustafa, and Jessica V. Fayne
The Cryosphere, 15, 1931–1953, https://doi.org/10.5194/tc-15-1931-2021, https://doi.org/10.5194/tc-15-1931-2021, 2021
Short summary
Short summary
We measured sunlight transmitted into glacier ice to improve models of glacier ice melt and satellite measurements of glacier ice surfaces. We found that very small concentrations of impurities inside the ice increase absorption of sunlight, but the amount was small enough to enable an estimate of ice absorptivity. We confirmed earlier results that the absorption minimum is near 390 nm. We also found that a layer of highly reflective granular "white ice" near the surface reduces transmittance.
Andrea J. Pain, Jonathan B. Martin, Ellen E. Martin, Åsa K. Rennermalm, and Shaily Rahman
The Cryosphere, 15, 1627–1644, https://doi.org/10.5194/tc-15-1627-2021, https://doi.org/10.5194/tc-15-1627-2021, 2021
Short summary
Short summary
The greenhouse gases (GHGs) methane and carbon dioxide can be produced or consumed by geochemical processes under the Greenland Ice Sheet (GrIS). Chemical signatures and concentrations of GHGs in GrIS discharge show that organic matter remineralization produces GHGs in some locations, but mineral weathering dominates and consumes CO2 in other locations. Local processes will therefore determine whether melting of the GrIS is a positive or negative feedback on climate change driven by GHG forcing.
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021, https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance, and ecological habitat.
Cited articles
Allen, G. H., Pavelsky, T. M., Barefoot, E. A., Lamb, M. P., Butman, D.,
Tashie, A., and Gleason, C. J.: Similarity of stream width distributions
across headwater systems, Nat. Commun., 9, 610, https://doi.org/10.1038/s41467-018-02991-w, 2018.
Arnold, N. S., Banwell, A. F., and Willis, I. C.: High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet, The Cryosphere, 8, 1149–1160, https://doi.org/10.5194/tc-8-1149-2014, 2014.
Banwell, A., Hewitt, I., Willis, I., and Arnold, N.: Moulin density controls
drainage development beneath the Greenland ice sheet, J. Geophys. Res.-Earth, 121, 2248–2269, https://doi.org/10.1002/2015JF003801, 2016.
Banwell, A. F., Arnold, N. S., Willis, I. C., Tedesco, M., and Ahlstrøm,
A. P.: Modeling supraglacial water routing and lake filling on the Greenland
Ice Sheet, J. Geophys. Res.-Earth, 117, https://doi.org/10.1029/2012JF002393, 2012.
Banwell, A. F., Willis, I. C., and Arnold, N. S.: Modeling subglacial water
routing at Paakitsoq, W Greenland, J. Geophys. Res.-Earth, 118, 1282–1295, https://doi.org/10.1002/jgrf.20093, 2013.
Bates, P. D., Horritt, M. S., Smith, C. N., and Mason, D.: Integrating remote
sensing observations of flood hydrology and hydraulic modelling,
Hydrol. Process., 11, 1777–1795, https://doi.org/10.1002/(sici)1099-1085(199711)11:14<1777::aid-hyp543>3.0.co;2-e, 1997.
Beighley, R. E., Eggert, K. G., Dunne, T., He, Y., Gummadi, V., and Verdin,
K. L.: Simulating hydrologic and hydraulic processes throughout the Amazon
River Basin, Hydrol. Process., 23, 1221–1235, https://doi.org/10.1002/hyp.7252, 2009.
Brinkerhoff, C. B., Gleason, C. J., and Ostendorf, D. W.: Reconciling
at-a-Station and at-Many-Stations Hydraulic Geometry Through River-Wide
Geomorphology, Geophys. Res. Lett., 46, 9637–9647, https://doi.org/10.1029/2019GL084529, 2019.
Chandler, D. M., Wadham, J. L., Lis, G. P., Cowton, T., Sole, A., Bartholomew, I., Telling, J., Nienow, P., Bagshaw, E. B., Mair, D., Vinen, S., and Hubbard, A.: Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers, Nat. Geosci., 6, 195–198, https://doi.org/10.1038/ngeo1737, 2013.
Chu, V. W.: Greenland ice sheet hydrology: A review, Progress in Physical
Geography: Earth and Environment, 38, 19–54, https://doi.org/10.1177/0309133313507075, 2014.
Clason, C. C., Mair, D. W. F., Nienow, P. W., Bartholomew, I. D., Sole, A., Palmer, S., and Schwanghart, W.: Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland, The Cryosphere, 9, 123–138, https://doi.org/10.5194/tc-9-123-2015, 2015.
Cooper, M. G., Smith, L. C., Rennermalm, A. K., Miège, C., Pitcher, L.
H., Ryan, J. C., Yang, K., and Cooley, S.: Near surface meltwater storage in
low-density bare ice of theGreenland ice sheet ablation zone, preprint,
Glacier Hydrology, 2017.
Cooper, M. G., Smith, L. C., Rennermalm, A. K., Miège, C., Pitcher, L. H., Ryan, J. C., Yang, K., and Cooley, S. W.: Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone, The Cryosphere, 12, 955–970, https://doi.org/10.5194/tc-12-955-2018, 2018.
Cunge, J. A.: On The Subject Of A Flood Propagation Computation Method
(Musklngum Method), J. Hydraul. Res., 7, 205–230, https://doi.org/10.1080/00221686909500264, 1969.
Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R., and Nienow,
P. W.: The Influence of Hydrology on the Dynamics of Land-Terminating
Sectors of the Greenland Ice Sheet, Front. Earth Sci., 7, https://doi.org/10.3389/feart.2019.00010, 2019.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE T. Evolut. Comput., 6, 182–197, https://doi.org/10.1109/4235.996017, 2002.
Dohm, J. M., Ferris, J. C., Baker, V. R., Anderson, R. C., Hare, T. M.,
Strom, R. G., Barlow, N. G., Tanaka, K. L., Klemaszewski, J. E., and Scott,
D. H.: Ancient drainage basin of the Tharsis region, Mars: Potential source
for outflow channel systems and putative oceans or paleolakes, J. Geophys. Res.-Planet., 106, 32943–32958, https://doi.org/10.1029/2000JE001468, 2001.
Fassett, C. I. and Head, J. W.: The timing of martian valley network
activity: Constraints from buffered crater counting, Icarus, 195, 61–89, https://doi.org/10.1016/j.icarus.2007.12.009, 2008.
Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C. J., Born, A., Box, J. E., Delhasse, A., Fujita, K., Gierz, P., Goelzer, H., Hanna, E., Hashimoto, A., Huybrechts, P., Kapsch, M.-L., King, M. D., Kittel, C., Lang, C., Langen, P. L., Lenaerts, J. T. M., Liston, G. E., Lohmann, G., Mernild, S. H., Mikolajewicz, U., Modali, K., Mottram, R. H., Niwano, M., Noël, B., Ryan, J. C., Smith, A., Streffing, J., Tedesco, M., van de Berg, W. J., van den Broeke, M., van de Wal, R. S. W., van Kampenhout, L., Wilton, D., Wouters, B., Ziemen, F., and Zolles, T.: GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet, The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, 2020.
Fleurian, B. de, Morlighem, M., Seroussi, H., Rignot, E., Broeke, M. R. van
den, Munneke, P. K., Mouginot, J., Smeets, P. C. J. P., and Tedstone, A. J.:
A modeling study of the effect of runoff variability on the effective
pressure beneath Russell Glacier, West Greenland, J. Geophys. Res.-Earth, 121, 1834–1848, https://doi.org/10.1002/2016JF003842, 2016.
Flowers, G. E.: Hydrology and the future of the Greenland Ice Sheet, Nat. Commun., 9, 2729, https://doi.org/10.1038/s41467-018-05002-0, 2018.
Gleason, C. J. and Durand, M. T.: Remote Sensing of River Discharge: A
Review and a Framing for the Discipline, Remote Sens., 12, 1107, https://doi.org/10.3390/rs12071107, 2020.
Gleason, C. J., Smith, L. C., and Lee, J.: Retrieval of river discharge
solely from satellite imagery and at-many-stations hydraulic geometry:
Sensitivity to river form and optimization parameters, Water Resour. Res., 50, 9604–9619, https://doi.org/10.1002/2014WR016109, 2014.
Gleason, C. J., Smith, L. C., Chu, V. W., Legleiter, C. J., Pitcher, L. H.,
Overstreet, B. T., Rennermalm, A. K., Forster, R. R., and Yang, K.:
Characterizing supraglacial meltwater channel hydraulics on the Greenland
Ice Sheet from in situ observations, Earth Surf. Proc. Land., 41, 2111–2122, https://doi.org/10.1002/esp.3977, 2016.
Gleason, C. J.: Fluvial-UMass/Gleason-et-al-TC-2021: Pre-publication archive creation (Version v1.0.0) [Data set], Zenodo, https://doi.org/10.5281/zenodo.4646423, 2021.
Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Toward improved calibration of
hydrologic models: Multiple and noncommensurable measures of information,
Water Resour. Res., 34, 751–763, https://doi.org/10.1029/97WR03495, 1998.
Hergarten, S. and Neugebauer, H. J.: homogenization of Manning's Formula for
modeling surface runoff, Geophys. Res. Lett., 24, 877–880,
https://doi.org/10.1029/97GL00756, 1997.
Horton, R. E.: Erosional Development of Streams and Their Drainage Basins;
Hydrophysical Approach to Quantitative Morphology, Gsa Bulletin, 56,
275–370, https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2, 1945.
Irvine-Fynn, T. D. L., Hodson, A. J., Moorman, B. J., Vatne, G., and Hubbard,
A. L.: Polythermal Glacier Hydrology: A Review, Rev. Geophys.,
49, https://doi.org/10.1029/2010RG000350, 2011.
Kalyanapu, A. J., Burian, S., and McPherson, T.: Effect of land use-based
surface roughness on hydrologic model output, Journal of Spatial Hydrology,
9, 51–71, 2010.
Karlstrom, L. and Yang, K.: Fluvial supraglacial landscape evolution on the
Greenland Ice Sheet, Geophys. Res. Lett., 43, 2683–2692, https://doi.org/10.1002/2016GL067697, 2016.
King, L., Hassan, M. A., Yang, K., and Flowers, G.: Flow Routing for
Delineating Supraglacial Meltwater Channel Networks, Remote Sens., 8,
988, https://doi.org/10.3390/rs8120988, 2016.
Kirchner, J. W.: Getting the right answers for the right reasons: Linking
measurements, analyses, and models to advance the science of hydrology,
Water Resour. Res., 42, https://doi.org/10.1029/2005WR004362, 2006.
Koziol, C., Arnold, N., Pope, A., and Colgan, W.: Quantifying supraglacial
meltwater pathways in the Paakitsoq region, West Greenland, J. Glaciol., 63, 464–476, https://doi.org/10.1017/jog.2017.5, 2017.
Lampkin, D. J. and VanderBerg, J.: Supraglacial melt channel networks in the
Jakobshavn Isbræ region during the 2007 melt season, Hydrol. Process., 28, 6038–6053, https://doi.org/10.1002/hyp.10085, 2014.
Leeson, A. A., Shepherd, A., Palmer, S., Sundal, A., and Fettweis, X.: Simulating the growth of supraglacial lakes at the western margin of the Greenland ice sheet, The Cryosphere, 6, 1077–1086, https://doi.org/10.5194/tc-6-1077-2012, 2012.
Legleiter, C. J., Tedesco, M., Smith, L. C., Behar, A. E., and Overstreet, B. T.: Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images, The Cryosphere, 8, 215–228, https://doi.org/10.5194/tc-8-215-2014, 2014.
Li, R.-M., Simons, D. B., and Stevens, M. A.: Nonlinear kinematic wave
approximation for water routing, Water Resour. Res., 11, 245–252, https://doi.org/10.1029/WR011i002p00245, 1975.
Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David, C. H., Durand, M., Pavelsky, T. M., Allen, G. H., Gleason, C. J., and Wood, E. F.: Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res., 55, 6499–6516, https://doi.org/10.1029/2019WR025287, 2019.
Lindsay, J. B.: Efficient hybrid breaching-filling sink removal methods for
flow path enforcement in digital elevation models, Hydrol. Process.,
30, 846–857, https://doi.org/10.1002/hyp.10648, 2016.
Liston, G. E. and Mernild, S. H.: Greenland Freshwater Runoff. Part I: A
Runoff Routing Model for Glaciated and Nonglaciated Landscapes (HydroFlow),
J. Climate, 25, 5997–6014, https://doi.org/10.1175/JCLI-D-11-00591.1, 2012.
Mankoff, K. D., Noël, B., Fettweis, X., Ahlstrøm, A. P., Colgan, W., Kondo, K., Langley, K., Sugiyama, S., van As, D., and Fausto, R. S.: Greenland liquid water discharge from 1958 through 2019, Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, 2020.
Manning, R.: On the flow of water in open channels and pipes, Transactions
of the Institution of Civil Engineers of Ireland, XX, 161–207, 1891.
McCuen, R. H.: Hydrologic Analysis and Design, 3rd Edition., Pearson, Upper
Saddle River, New Jersey, 2004.
McGrath, D., Colgan, W., Steffen, K., Lauffenburger, P., and Balog, J.:
Assessing the summer water budget of a moulin basin in the Sermeq Avannarleq
ablation region, Greenland ice sheet, J. Glaciol., 57,
954–964, https://doi.org/10.3189/002214311798043735, 2011.
Moussavi, M. S., Abdalati, W., Pope, A., Scambos, T., Tedesco, M.,
MacFerrin, M., and Grigsby, S.: Derivation and validation of supraglacial
lake volumes on the Greenland Ice Sheet from high-resolution satellite
imagery, Remote Sens. Environ., 183, 294–303, https://doi.org/10.1016/j.rse.2016.05.024, 2016.
Munro, D. S.: Delays of supraglacial runoff from differently defined
microbasin areas on the Peyto Glacier, Hydrol. Process., 25,
2983–2994, https://doi.org/10.1002/hyp.8124, 2011.
Pitcher, L. H. and Smith, L. C.: Supraglacial Streams and Rivers, Annu. Rev.
Earth Planet. Sci., 47, 421–452, https://doi.org/10.1146/annurev-earth-053018-060212, 2019.
Pope, A., Scambos, T. A., Moussavi, M., Tedesco, M., Willis, M., Shean, D., and Grigsby, S.: Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods, The Cryosphere, 10, 15–27, https://doi.org/10.5194/tc-10-15-2016, 2016.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K.,
Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington,
M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P.,
Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, https://doi.org/10.7910/DVN/OHHUKH, 2018.
Rennermalm, A. K., Moustafa, S. E., Mioduszewski, J., Chu, V. W., Forster,
R. R., Hagedorn, B., Harper, J. T., Mote, T. L., Robinson, D. A., Shuman, C.
A., Smith, L. C., and Tedesco, M.: Understanding Greenland ice sheet
hydrology using an integrated multi-scale approach, Environ. Res. Lett.,
8, 015017, https://doi.org/10.1088/1748-9326/8/1/015017,
2013.
Rinaldo, A., Vogel, G. K., Rigon, R., and Rodriguez-Iturbe, I.: Can One Gauge
the Shape of a Basin?, Water Resour. Res., 31, 1119–1127, https://doi.org/10.1029/94WR03290, 1995.
Rippin, D. M., Pomfret, A., and King, N.: High resolution mapping of
supra-glacial drainage pathways reveals link between micro-channel drainage
density, surface roughness and surface reflectance, Earth Surf. Proc. Land., 40, 1279–1290, https://doi.org/10.1002/esp.3719, 2015.
Rodriguez, J. A. P., Sasaki, S., Kuzmin, R. O., Dohm, J. M., Tanaka, K. L.,
Miyamoto, H., Kurita, K., Komatsu, G., Fairén, A. G., and Ferris, J. C.:
Outflow channel sources, reactivation, and chaos formation, Xanthe Terra,
Mars, Icarus, 175, 36–57, https://doi.org/10.1016/j.icarus.2004.10.025, 2005.
Ryan, J. C., Hubbard, A., Box, J. E., Brough, S., Cameron, K., Cook, J. M.,
Cooper, M., Doyle, S. H., Edwards, A., Holt, T., Irvine-Fynn, T., Jones, C.,
Pitcher, L. H., Rennermalm, A. K., Smith, L. C., Stibal, M., and Snooke, N.:
Derivation of High Spatial Resolution Albedo from UAV Digital Imagery:
Application over the Greenland Ice Sheet, Front. Earth Sci., 5, https://doi.org/10.3389/feart.2017.00040, 2017.
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H.,
Rennermalm, A. K., Legleiter, C. J., Behar, A. E., Overstreet, B. T.,
Moustafa, S. E., Tedesco, M., Forster, R. R., LeWinter, A. L., Finnegan, D.
C., Sheng, Y., and Balog, J.: Efficient meltwater drainage through
supraglacial streams and rivers on the southwest Greenland ice sheet, PNAS,
112, 1001–1006, https://doi.org/10.1073/pnas.1413024112,
2015.
Smith, L. C., Yang, K., Pitcher, L. H., Overstreet, B. T., Chu, V. W.,
Rennermalm, Å. K., Ryan, J. C., Cooper, M. G., Gleason, C. J., Tedesco,
M., Jeyaratnam, J., As, D. van, Broeke, M. R. van den, Berg, W. J. van de,
Noël, B., Langen, P. L., Cullather, R. I., Zhao, B., Willis, M. J.,
Hubbard, A., Box, J. E., Jenner, B. A., and Behar, A. E.: Direct measurements
of meltwater runoff on the Greenland ice sheet surface, PNAS, 114,
E10622–E10631, https://doi.org/10.1073/pnas.1707743114, 2017.
Snyder, F. F.: Synthetic unit-graphs, Eos, Transactions American Geophysical
Union, 19, 447–454, https://doi.org/10.1029/TR019i001p00447, 1938.
Turnipseed, D. P. and Sauer, V. B.: Discharge measurements at gaging
stations, USGS Numbered Series, U.S. Geological Survey, Reston, VA, 2010.
Vernon, C. L., Bamber, J. L., Box, J. E., van den Broeke, M. R., Fettweis, X., Hanna, E., and Huybrechts, P.: Surface mass balance model intercomparison for the Greenland ice sheet, The Cryosphere, 7, 599–614, https://doi.org/10.5194/tc-7-599-2013, 2013.
Wood, E. F., Roundy, J. K., Troy, T. J., Beek, L. P. H. van, Bierkens, M. F.
P., Blyth, E., Roo, A. de, Döll, P., Ek, M., Famiglietti, J., Gochis,
D., Giesen, N. van de, Houser, P., Jaffé, P. R., Kollet, S., Lehner, B.,
Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade,
A., and Whitehead, P.: Hyperresolution global land surface modeling: Meeting
a grand challenge for monitoring Earth's terrestrial water, Water Resour. Res., 47, https://doi.org/10.1029/2010WR010090, 2011.
Yang, K. and Smith, L. C.: Internally drained catchments dominate
supraglacial hydrology of the southwest Greenland Ice Sheet, J. Geophys. Res.-Earth, 121, 1891–1910, https://doi.org/10.1002/2016JF003927, 2016.
Yang, K., Smith, L. C., Chu, V. W., Pitcher, L. H., Gleason, C. J.,
Rennermalm, A. K., and Li, M.: Fluvial morphometry of supraglacial river
networks on the southwest Greenland Ice Sheet, GIScience and Remote
Sensing, 53, 459–482, https://doi.org/10.1080/15481603.2016.1162345, 2016.
Yang, K., Smith, L. C., Karlstrom, L., Cooper, M. G., Tedesco, M., van As, D., Cheng, X., Chen, Z., and Li, M.: A new surface meltwater routing model for use on the Greenland Ice Sheet surface, The Cryosphere, 12, 3791–3811, https://doi.org/10.5194/tc-12-3791-2018, 2018.
Yang, K., Sommers, A., Andrews, L. C., Smith, L. C., Lu, X., Fettweis, X., and Li, M.: Intercomparison of surface meltwater routing models for the Greenland ice sheet and influence on subglacial effective pressures, The Cryosphere, 14, 3349–3365, https://doi.org/10.5194/tc-14-3349-2020, 2020.
Short summary
We apply first-principle hydrology models designed for global river routing to route flows hourly through 10 000 individual supraglacial channels in Greenland. Our results uniquely show the role of process controls (network density, hillslope flow, channel friction) on routed meltwater. We also confirm earlier suggestions that large channels do not dewater overnight despite the shutdown of runoff and surface mass balance runoff being mistimed and overproducing runoff, as validated in situ.
We apply first-principle hydrology models designed for global river routing to route flows...