Articles | Volume 15, issue 1
https://doi.org/10.5194/tc-15-149-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-149-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insights into a remote cryosphere: a multi-method approach to assess permafrost occurrence at the Qugaqie basin, western Nyainqêntanglha Range, Tibetan Plateau
Johannes Buckel
CORRESPONDING AUTHOR
Institute for Geophysics and Extraterrestrial Physics, Technische
Universiät Braunschweig, 38106 Braunschweig, Germany
Eike Reinosch
Institute for Geodesy and Photogrammetry, Technische Universiät
Braunschweig, 38106 Braunschweig, Germany
Andreas Hördt
Institute for Geophysics and Extraterrestrial Physics, Technische
Universiät Braunschweig, 38106 Braunschweig, Germany
Fan Zhang
Key Laboratory of Tibetan Environment Changes and Land Surface
Processes, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing, 100101, China
Björn Riedel
Institute for Geodesy and Photogrammetry, Technische Universiät
Braunschweig, 38106 Braunschweig, Germany
Markus Gerke
Institute for Geodesy and Photogrammetry, Technische Universiät
Braunschweig, 38106 Braunschweig, Germany
Antje Schwalb
Institute of Geosystems and Bioindication, Technische Universiät
Braunschweig, 38106 Braunschweig, Germany
Roland Mäusbacher
Geographical Institute, Friedrich Schiller University of Jena, 07743 Jena, Germany
Related authors
Matthias Bücker, Adrián Flores Orozco, Jakob Gallistl, Matthias Steiner, Lukas Aigner, Johannes Hoppenbrock, Ruth Glebe, Wendy Morales Barrera, Carlos Pita de la Paz, César Emilio García García, José Alberto Razo Pérez, Johannes Buckel, Andreas Hördt, Antje Schwalb, and Liseth Pérez
Solid Earth, 12, 439–461, https://doi.org/10.5194/se-12-439-2021, https://doi.org/10.5194/se-12-439-2021, 2021
Short summary
Short summary
We use seismic, electromagnetic, and geoelectrical methods to assess sediment thickness and lake-bottom geology of two karst lakes. An unexpected drainage event provided us with the unusual opportunity to compare water-borne measurements with measurements carried out on the dry lake floor. The resulting data set does not only provide insight into the specific lake-bottom geology of the studied lakes but also evidences the potential and limitations of the employed field methods.
Sten Anslan, Mina Azizi Rad, Johannes Buckel, Paula Echeverria Galindo, Jinlei Kai, Wengang Kang, Laura Keys, Philipp Maurischat, Felix Nieberding, Eike Reinosch, Handuo Tang, Tuong Vi Tran, Yuyang Wang, and Antje Schwalb
Biogeosciences, 17, 1261–1279, https://doi.org/10.5194/bg-17-1261-2020, https://doi.org/10.5194/bg-17-1261-2020, 2020
Short summary
Short summary
Due to the high elevation, the Tibetan Plateau (TP) is affected more strongly than the global average by climate warming. As a result of increasing air temperature, several environmental processes have accelerated, such as melting glaciers, thawing permafrost and grassland degradation. We review several modern and paleoenvironmental changes forced by climate warming in the lake system of Nam Co to shape our understanding of global warming effects on current and future geobiodiversity.
Radhakrishna Bangalore Lakshmiprasad, Fan Zhang, Ethan T. Coon, and Thomas Graf
EGUsphere, https://doi.org/10.5194/egusphere-2023-3122, https://doi.org/10.5194/egusphere-2023-3122, 2024
Preprint archived
Short summary
Short summary
An effective method of understanding permafrost dynamics due to climate change is numerical modeling. The research work established a novel numerical approach to assess the required level of surface process complexity and set up a numerical model at the Yakou catchment in the Qinghai-Tibet Plateau. The main research findings were that permafrost thawing was not well represented by considering only subsurface processes, and liquid precipitation increased the rate of permafrost degradation.
K. Mawas, M. Maboudi, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 307–313, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-307-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-307-2023, 2023
P. Achanccaray, M. Gerke, L. Wesche, S. Hoyer, K. Thiele, U. Knufinke, and C. Krafczyk
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1303–1309, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1303-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1303-2023, 2023
Sudip Acharya, Maximilian Prochnow, Thomas Kasper, Linda Langhans, Peter Frenzel, Paul Strobel, Marcel Bliedtner, Gerhard Daut, Christopher Berndt, Sönke Szidat, Gary Salazar, Antje Schwalb, and Roland Zech
E&G Quaternary Sci. J., 72, 219–234, https://doi.org/10.5194/egqsj-72-219-2023, https://doi.org/10.5194/egqsj-72-219-2023, 2023
Short summary
Short summary
This study presents a palaeoenvironmental record from Lake Höglwörth, Bavaria, Germany. Before 870 CE peat deposits existed. Erosion increased from 1240 to 1380 CE, followed by aquatic productivity and anoxia from 1310 to 1470 CE. Increased allochthonous input and a substantial shift in the aquatic community in 1701 were caused by construction of a mill. Recent anoxia has been observed since the 1960s.
Steffen Kutterolf, Mark Brenner, Robert A. Dull, Armin Freundt, Jens Kallmeyer, Sebastian Krastel, Sergei Katsev, Elodie Lebas, Axel Meyer, Liseth Pérez, Juanita Rausch, Armando Saballos, Antje Schwalb, and Wilfried Strauch
Sci. Dril., 32, 73–84, https://doi.org/10.5194/sd-32-73-2023, https://doi.org/10.5194/sd-32-73-2023, 2023
Short summary
Short summary
The NICA-BRIDGE workshop proposes a milestone-driven three-phase project to ICDP and later ICDP/IODP involving short- and long-core drilling in the Nicaraguan lakes and in the Pacific Sandino Basin to (1) reconstruct tropical climate and environmental changes and their external controlling mechanisms over several million years, (2) assess magnitudes and recurrence times of multiple natural hazards, and (3) provide
baselineenvironmental data for monitoring lake conditions.
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023, https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Short summary
We present the structure and performance of the early warning system (EWS) for glacier collapse and river blockages in the southeastern Tibetan Plateau. The EWS warned of three collapse–river blockage chain events and seven small-scale events. The volume and location of the collapses and the percentage of ice content influenced the velocities of debris flows. Such a study is helpful for understanding the mechanism of glacier hazards and for establishing similar EWSs in other high-risk regions.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Jan Mudler, Andreas Hördt, Dennis Kreith, Madhuri Sugand, Kirill Bazhin, Lyudmila Lebedeva, and Tino Radić
The Cryosphere, 16, 4727–4744, https://doi.org/10.5194/tc-16-4727-2022, https://doi.org/10.5194/tc-16-4727-2022, 2022
Short summary
Short summary
The spectral electrical signal of ice exhibits a strong characteristic behaviour in the frequency range from 100 Hz to 100 kHz, due to polarization effects. With our geophysical method, we can analyse this characteristic to detect subsurface ice. Moreover, we use a model to quantify 2-D ground ice content based on our data. The potential of our new measurement device is showed up. Data were taken on a permafrost site in Yakutia, and the results are in agreement with other existing field data.
C. Berger and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 223–230, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022, 2022
M. S. Bajauri, A. Alamouri, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 335–342, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-335-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-335-2022, 2022
K. Mawas, M. Maboudi, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 459–466, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-459-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-459-2022, 2022
P. Kirui, B. Riedel, and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 115–122, https://doi.org/10.5194/isprs-annals-V-3-2022-115-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-115-2022, 2022
T. Partovi, M. Dähne, M. Maboudi, D. Krueger, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 85–92, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-85-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-85-2021, 2021
M. Maboudi, A. Elbillehy, Y. Ghassoun, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 183–188, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-183-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-183-2021, 2021
M. Maboudi, A. Alamouri, V. De Arriba López, M. S. Bajauri, C. Berger, and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2021, 121–128, https://doi.org/10.5194/isprs-annals-V-1-2021-121-2021, https://doi.org/10.5194/isprs-annals-V-1-2021-121-2021, 2021
Matthias Bücker, Adrián Flores Orozco, Jakob Gallistl, Matthias Steiner, Lukas Aigner, Johannes Hoppenbrock, Ruth Glebe, Wendy Morales Barrera, Carlos Pita de la Paz, César Emilio García García, José Alberto Razo Pérez, Johannes Buckel, Andreas Hördt, Antje Schwalb, and Liseth Pérez
Solid Earth, 12, 439–461, https://doi.org/10.5194/se-12-439-2021, https://doi.org/10.5194/se-12-439-2021, 2021
Short summary
Short summary
We use seismic, electromagnetic, and geoelectrical methods to assess sediment thickness and lake-bottom geology of two karst lakes. An unexpected drainage event provided us with the unusual opportunity to compare water-borne measurements with measurements carried out on the dry lake floor. The resulting data set does not only provide insight into the specific lake-bottom geology of the studied lakes but also evidences the potential and limitations of the employed field methods.
Ulrich Harms, Ulli Raschke, Flavio S. Anselmetti, Michael Strasser, Volker Wittig, Martin Wessels, Sebastian Schaller, Stefano C. Fabbri, Richard Niederreiter, and Antje Schwalb
Sci. Dril., 28, 29–41, https://doi.org/10.5194/sd-28-29-2020, https://doi.org/10.5194/sd-28-29-2020, 2020
Short summary
Short summary
Hipercorig is a new modular lake sediment coring instrument based on a barge and a hydraulic corer system driven by a down-the-hole hammer. Hipercorig's performance was tested on the two periglacial lakes, namely Mondsee and Constance, located on the northern edge of the Alpine chain. Up to 63 m of Holocene lake sediments and older meltwater deposits from the last deglaciation were recovered for the first time.
M. Maboudi, M. Gerke, N. Hack, L. Brohmann, P. Schwerdtner, and G. Placzek
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2020, 763–768, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-763-2020, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-763-2020, 2020
M.-O. Löwner, N. C. Bandelow, M. Gerke, F. Hillen, L. Klein, A. Schmidt, and T. Siefer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2020, 55–61, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-55-2020, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-55-2020, 2020
M. Gerke, Y. Ghassoun, A. Alamouri, M. Bobbe, Y. Khedar, and F. Plöger
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 293–299, https://doi.org/10.5194/isprs-annals-V-1-2020-293-2020, https://doi.org/10.5194/isprs-annals-V-1-2020-293-2020, 2020
N. Fiorentini, M. Maboudi, M. Losa, and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2020, 19–26, https://doi.org/10.5194/isprs-annals-V-4-2020-19-2020, https://doi.org/10.5194/isprs-annals-V-4-2020-19-2020, 2020
Eike Reinosch, Johannes Buckel, Jie Dong, Markus Gerke, Jussi Baade, and Björn Riedel
The Cryosphere, 14, 1633–1650, https://doi.org/10.5194/tc-14-1633-2020, https://doi.org/10.5194/tc-14-1633-2020, 2020
Short summary
Short summary
In this research we present the results of our satellite analysis of a permafrost landscape and periglacial landforms in mountainous regions on the Tibetan Plateau. We study seasonal and multiannual surface displacement processes, such as the freezing and thawing of the ground, seasonally accelerated sliding on steep slopes, and continuous permafrost creep. This study is the first step of our goal to create an inventory of actively moving landforms within the Nyainqêntanglha range.
Sten Anslan, Mina Azizi Rad, Johannes Buckel, Paula Echeverria Galindo, Jinlei Kai, Wengang Kang, Laura Keys, Philipp Maurischat, Felix Nieberding, Eike Reinosch, Handuo Tang, Tuong Vi Tran, Yuyang Wang, and Antje Schwalb
Biogeosciences, 17, 1261–1279, https://doi.org/10.5194/bg-17-1261-2020, https://doi.org/10.5194/bg-17-1261-2020, 2020
Short summary
Short summary
Due to the high elevation, the Tibetan Plateau (TP) is affected more strongly than the global average by climate warming. As a result of increasing air temperature, several environmental processes have accelerated, such as melting glaciers, thawing permafrost and grassland degradation. We review several modern and paleoenvironmental changes forced by climate warming in the lake system of Nam Co to shape our understanding of global warming effects on current and future geobiodiversity.
Sergio Cohuo, Laura Macario-González, Sebastian Wagner, Katrin Naumann, Paula Echeverría-Galindo, Liseth Pérez, Jason Curtis, Mark Brenner, and Antje Schwalb
Biogeosciences, 17, 145–161, https://doi.org/10.5194/bg-17-145-2020, https://doi.org/10.5194/bg-17-145-2020, 2020
Short summary
Short summary
We evaluated how freshwater ostracode species responded to long-term and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We used fossil records and species distribution modelling. Fossil evidence suggests negligible effects of long-term climate variations on aquatic niche stability. Models suggest that abrupt climate fluctuation forced species to migrate south to Central America. Micro-refugia and meta-populations can explain survival of endemic species.
Erik T. Brown, Margarita Caballero, Enrique Cabral Cano, Peter J. Fawcett, Socorro Lozano-García, Beatriz Ortega, Liseth Pérez, Antje Schwalb, Victoria Smith, Byron A. Steinman, Mona Stockhecke, Blas Valero-Garcés, Sebastian Watt, Nigel J. Wattrus, Josef P. Werne, Thomas Wonik, Amy E. Myrbo, Anders J. Noren, Ryan O'Grady, Douglas Schnurrenberger, and the MexiDrill Team
Sci. Dril., 26, 1–15, https://doi.org/10.5194/sd-26-1-2019, https://doi.org/10.5194/sd-26-1-2019, 2019
Short summary
Short summary
MexiDrill, the Basin of Mexico Drilling Program, recovered a continuous, high-resolution 400 000 year record of tropical North American environmental change. The field location, in the densely populated, water-stressed, Mexico City region, gives this record particular societal relevance. The record also contains a rich record of volcanic activity; knowledge of the history of the area's explosive volcanic eruptions will improve capacity for risk assessment of future activity.
S. Khalighi-Sigaroodi, E. Ghaljaee, A. Moghaddam Nia, A. Malekian, and F. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W18, 1163–1167, https://doi.org/10.5194/isprs-archives-XLII-4-W18-1163-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W18-1163-2019, 2019
M. Maboudi, J. Amini, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W18, 683–686, https://doi.org/10.5194/isprs-archives-XLII-4-W18-683-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W18-683-2019, 2019
Jan Mudler, Andreas Hördt, Anita Przyklenk, Gianluca Fiandaca, Pradip Kumar Maurya, and Christian Hauck
The Cryosphere, 13, 2439–2456, https://doi.org/10.5194/tc-13-2439-2019, https://doi.org/10.5194/tc-13-2439-2019, 2019
Short summary
Short summary
The capacitively coupled resistivity (CCR) method enables the determination of frequency-dependent electrical parameters of the subsurface. CCR is well suited for application in cryospheric areas because it provides logistical advantages regarding coupling on hard surfaces and highly resistive grounds. With our new spectral two-dimensional inversion, we can identify subsurface structures based on full spectral information. We show the first results of the inversion method on the field scale.
P. Fanta-Jende, F. Nex, M. Gerke, J. Lijnen, and G. Vosselman
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1649–1654, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1649-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1649-2019, 2019
A. Riedel, B. Riedel, D. Tengen, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1945–1949, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1945-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1945-2019, 2019
A. Alamouri, M. Gerke, S. Batzdorfer, M. Becker, U. Bestmann, M. Bobbe, Y. Khedar, T. Blume, J. Schattenberg, and J. Schmiemann
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 165–172, https://doi.org/10.5194/isprs-archives-XLII-2-W13-165-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-165-2019, 2019
H.-J. Przybilla, M. Gerke, I. Dikhoff, and Y. Ghassoun
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 531–538, https://doi.org/10.5194/isprs-archives-XLII-2-W13-531-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-531-2019, 2019
C. Stöcker, F. Nex, M. Koeva, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 613–617, https://doi.org/10.5194/isprs-archives-XLII-2-W13-613-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-613-2019, 2019
A. Alamouri and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 87–93, https://doi.org/10.5194/isprs-annals-IV-2-W5-87-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-87-2019, 2019
Z. Zhang, G. Vosselman, M. Gerke, C. Persello, D. Tuia, and M. Y. Yang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 453–460, https://doi.org/10.5194/isprs-annals-IV-2-W5-453-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-453-2019, 2019
N. H. Isya, W. Niemeier, and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 623–630, https://doi.org/10.5194/isprs-annals-IV-2-W5-623-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-623-2019, 2019
Florence Sylvestre, Mathieu Schuster, Hendrik Vogel, Moussa Abdheramane, Daniel Ariztegui, Ulrich Salzmann, Antje Schwalb, Nicolas Waldmann, and the ICDP CHADRILL Consortium
Sci. Dril., 24, 71–78, https://doi.org/10.5194/sd-24-71-2018, https://doi.org/10.5194/sd-24-71-2018, 2018
Short summary
Short summary
CHADRILL aims to recover a sedimentary core spanning the Miocene–Pleistocene sediment succession of Lake Chad through deep drilling. This record will provide significant insights into the modulation of orbitally forced changes in northern African hydroclimate under different climate boundary conditions and the most continuous climatic and environmental record to be compared with hominid migrations across northern Africa and the implications for understanding human evolution.
P. Jende, F. Nex, M. Gerke, and G. Vosselman
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 471–477, https://doi.org/10.5194/isprs-archives-XLII-2-471-2018, https://doi.org/10.5194/isprs-archives-XLII-2-471-2018, 2018
M. Maboudi, D. Bánhidi, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 637–642, https://doi.org/10.5194/isprs-archives-XLII-2-637-2018, https://doi.org/10.5194/isprs-archives-XLII-2-637-2018, 2018
Z. Zhang, M. Gerke, G. Vosselman, and M. Y. Yang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2, 319–326, https://doi.org/10.5194/isprs-annals-IV-2-319-2018, https://doi.org/10.5194/isprs-annals-IV-2-319-2018, 2018
M. Koeva, R. Bennett, M. Gerke, S. Crommelinck, C. Stöcker, J. Crompvoets, S. Ho, A. Schwering, M. Chipofya, C. Schultz, T. Zein, M. Biraro, B. Alemie, R. Wayumba, and K. Kundert
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 37–43, https://doi.org/10.5194/isprs-archives-XLII-2-W7-37-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W7-37-2017, 2017
C. Stöcker, F. Nex, M. Koeva, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W6, 355–361, https://doi.org/10.5194/isprs-archives-XLII-2-W6-355-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W6-355-2017, 2017
S. Crommelinck, R. Bennett, M. Gerke, M. N. Koeva, M. Y. Yang, and G. Vosselman
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W3, 9–16, https://doi.org/10.5194/isprs-annals-IV-2-W3-9-2017, https://doi.org/10.5194/isprs-annals-IV-2-W3-9-2017, 2017
P. Jende, F. Nex, M. Gerke, and G. Vosselman
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1-W1, 317–323, https://doi.org/10.5194/isprs-archives-XLII-1-W1-317-2017, https://doi.org/10.5194/isprs-archives-XLII-1-W1-317-2017, 2017
Hongbo Zhang, Fan Zhang, Guoqing Zhang, Xiaobo He, and Lide Tian
Atmos. Chem. Phys., 16, 13681–13696, https://doi.org/10.5194/acp-16-13681-2016, https://doi.org/10.5194/acp-16-13681-2016, 2016
Short summary
Short summary
Based on MODIS LST, clouds are believed to affect Tair estimation; however, understanding of the cloud effect on the Tair–LST relationship remains limited. Our paper reveals the subtle influence of clouds that affects Tmin and Tmax estimation in clearly different ways. The results contribute to better understanding of cloud effects and more accurate estimation of Tair using satellite LST.
M. Gerke, F. Nex, F. Remondino, K. Jacobsen, J. Kremer, W. Karel, H. Hu, and W. Ostrowski
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 185–191, https://doi.org/10.5194/isprs-archives-XLI-B1-185-2016, https://doi.org/10.5194/isprs-archives-XLI-B1-185-2016, 2016
M. Gerke, F. Nex, and P. Jende
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3-W4, 11–18, https://doi.org/10.5194/isprs-archives-XL-3-W4-11-2016, https://doi.org/10.5194/isprs-archives-XL-3-W4-11-2016, 2016
P. Jende, Z. Hussnain, M. Peter, S. Oude Elberink, M. Gerke, and G. Vosselman
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3-W4, 19–26, https://doi.org/10.5194/isprs-archives-XL-3-W4-19-2016, https://doi.org/10.5194/isprs-archives-XL-3-W4-19-2016, 2016
K. Jacobsen and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3-W4, 35–40, https://doi.org/10.5194/isprs-archives-XL-3-W4-35-2016, https://doi.org/10.5194/isprs-archives-XL-3-W4-35-2016, 2016
T. Kraft, M. Geßner, H. Meißner, H. J. Przybilla, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3-W4, 71–75, https://doi.org/10.5194/isprs-archives-XL-3-W4-71-2016, https://doi.org/10.5194/isprs-archives-XL-3-W4-71-2016, 2016
W. Kim, N. Kerle, and M. Gerke
Nat. Hazards Earth Syst. Sci., 16, 287–298, https://doi.org/10.5194/nhess-16-287-2016, https://doi.org/10.5194/nhess-16-287-2016, 2016
Short summary
Short summary
This study assesses the value of a novel technology, mobile augmented reality, for rapid damage and safety assessment of the state of buildings in the aftermath of a disaster event. In this study, we propose and demonstrate conceptual frameworks and approaches for in situ ground-based assessment based on augmented reality using mobile devices such as smartphones and tablet PCs.
J. Fernandez Galarreta, N. Kerle, and M. Gerke
Nat. Hazards Earth Syst. Sci., 15, 1087–1101, https://doi.org/10.5194/nhess-15-1087-2015, https://doi.org/10.5194/nhess-15-1087-2015, 2015
D. Liu, R. Chen, B. Riedel, and W. Niemeier
Solid Earth Discuss., https://doi.org/10.5194/sed-6-2759-2014, https://doi.org/10.5194/sed-6-2759-2014, 2014
Revised manuscript has not been submitted
Related subject area
Discipline: Frozen ground | Subject: Geomorphology
A climate-driven, altitudinal transition in rock glacier dynamics detected through integration of geomorphological mapping and synthetic aperture radar interferometry (InSAR)-based kinematics
Discriminating viscous-creep features (rock glaciers) in mountain permafrost from debris-covered glaciers – a commented test at the Gruben and Yerba Loca sites, Swiss Alps and Chilean Andes
The cryostratigraphy of thermo-erosion gullies in the Canadian High Arctic demonstrates the resilience of permafrost
Review article: Retrogressive thaw slump theory and terminology
Assessment of rock glaciers and their water storage in Guokalariju, Tibetan Plateau
Identifying mountain permafrost degradation by repeating historical electrical resistivity tomography (ERT) measurements
Permafrost degradation at two monitored palsa mires in north-west Finland
Contrasted geomorphological and limnological properties of thermokarst lakes formed in buried glacier ice and ice-wedge polygon terrain
Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar
Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks
Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina
Permafrost distribution and conditions at the headwalls of two receding glaciers (Schladming and Hallstatt glaciers) in the Dachstein Massif, Northern Calcareous Alps, Austria
Rock glacier characteristics serve as an indirect record of multiple alpine glacier advances in Taylor Valley, Antarctica
Evaluating the destabilization susceptibility of active rock glaciers in the French Alps
Aldo Bertone, Nina Jones, Volkmar Mair, Riccardo Scotti, Tazio Strozzi, and Francesco Brardinoni
The Cryosphere, 18, 2335–2356, https://doi.org/10.5194/tc-18-2335-2024, https://doi.org/10.5194/tc-18-2335-2024, 2024
Short summary
Short summary
Traditional inventories display high uncertainty in discriminating between intact (permafrost-bearing) and relict (devoid) rock glaciers (RGs). Integration of InSAR-based kinematics in South Tyrol affords uncertainty reduction and depicts a broad elevation belt of relict–intact coexistence. RG velocity and moving area (MA) cover increase linearly with elevation up to an inflection at 2600–2800 m a.s.l., which we regard as a signature of sporadic-to-discontinuous permafrost transition.
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Samuel Gagnon, Daniel Fortier, Etienne Godin, and Audrey Veillette
EGUsphere, https://doi.org/10.5194/egusphere-2024-208, https://doi.org/10.5194/egusphere-2024-208, 2024
Short summary
Short summary
Thermo-erosion gullies (TEGs) are one of the most common forms of abrupt permafrost degradation. While their inception has been examined in several studies, the processes of their stabilization remain poorly documented. For this study, we investigated the impacts of two TEGs in the Canadian High Arctic. We found that while the formation of a TEG leaves permanent scars in landscapes, on the long term, permafrost can recover to conditions similar to those pre-dating the initial disturbance.
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2023-2914, https://doi.org/10.5194/egusphere-2023-2914, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Mengzhen Li, Yanmin Yang, Zhaoyu Peng, and Gengnian Liu
The Cryosphere, 18, 1–16, https://doi.org/10.5194/tc-18-1-2024, https://doi.org/10.5194/tc-18-1-2024, 2024
Short summary
Short summary
We map a detailed rock glaciers inventory to further explore the regional distribution controlling factors, water storage, and permafrost probability distribution in Guokalariju. Results show that (i) the distribution of rock glaciers is controlled by the complex composition of topo-climate factors, increases in precipitation are conducive to rock glaciers forming at lower altitudes, and (ii) 1.32–3.60 km3 of water is stored in the rock glaciers, or ~ 59 % of the water glaciers presently store.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Mariana Verdonen, Alexander Störmer, Eliisa Lotsari, Pasi Korpelainen, Benjamin Burkhard, Alfred Colpaert, and Timo Kumpula
The Cryosphere, 17, 1803–1819, https://doi.org/10.5194/tc-17-1803-2023, https://doi.org/10.5194/tc-17-1803-2023, 2023
Short summary
Short summary
The study revealed a stable and even decreasing thickness of thaw depth in peat mounds with perennially frozen cores, despite overall rapid permafrost degradation within 14 years. This means that measuring the thickness of the thawed layer – a commonly used method – is alone insufficient to assess the permafrost conditions in subarctic peatlands. The study showed that climate change is the main driver of these permafrost features’ decay, but its effect depends on the peatland’s local conditions.
Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Simon Charbonneau, Denis Lacelle, Isabelle Laurion, and Reinhard Pienitz
The Cryosphere, 16, 2837–2857, https://doi.org/10.5194/tc-16-2837-2022, https://doi.org/10.5194/tc-16-2837-2022, 2022
Short summary
Short summary
Buried glacier ice is widespread in Arctic regions that were once covered by glaciers and ice sheets. In this study, we investigated the influence of buried glacier ice on the formation of Arctic tundra lakes on Bylot Island, Nunavut. Our results suggest that initiation of deeper lakes was triggered by the melting of buried glacier ice. Given future climate projections, the melting of glacier ice permafrost could create new aquatic ecosystems and strongly modify existing ones.
Thomas A. Douglas, Christopher A. Hiemstra, John E. Anderson, Robyn A. Barbato, Kevin L. Bjella, Elias J. Deeb, Arthur B. Gelvin, Patricia E. Nelsen, Stephen D. Newman, Stephanie P. Saari, and Anna M. Wagner
The Cryosphere, 15, 3555–3575, https://doi.org/10.5194/tc-15-3555-2021, https://doi.org/10.5194/tc-15-3555-2021, 2021
Short summary
Short summary
Permafrost is actively degrading across high latitudes due to climate warming. We combined thousands of end-of-summer active layer measurements, permafrost temperatures, geophysical surveys, deep borehole drilling, and repeat airborne lidar to quantify permafrost warming and thawing at sites across central Alaska. We calculate the mass of permafrost soil carbon potentially exposed to thaw over the past 7 years (0.44 Pg) is similar to the yearly carbon dioxide emissions of Australia.
Steven V. Kokelj, Justin Kokoszka, Jurjen van der Sluijs, Ashley C. A. Rudy, Jon Tunnicliffe, Sarah Shakil, Suzanne E. Tank, and Scott Zolkos
The Cryosphere, 15, 3059–3081, https://doi.org/10.5194/tc-15-3059-2021, https://doi.org/10.5194/tc-15-3059-2021, 2021
Short summary
Short summary
Climate-driven landslides are transforming glacially conditioned permafrost terrain, coupling slopes with aquatic systems, and triggering a cascade of downstream effects. Nonlinear intensification of thawing slopes is primarily affecting headwater systems where slope sediment yields overwhelm stream transport capacity. The propagation of effects across watershed scales indicates that western Arctic Canada will be an interconnected hotspot of thaw-driven change through the coming millennia.
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Matthias Rode, Oliver Sass, Andreas Kellerer-Pirklbauer, Harald Schnepfleitner, and Christoph Gitschthaler
The Cryosphere, 14, 1173–1186, https://doi.org/10.5194/tc-14-1173-2020, https://doi.org/10.5194/tc-14-1173-2020, 2020
Kelsey Winsor, Kate M. Swanger, Esther Babcock, Rachel D. Valletta, and James L. Dickson
The Cryosphere, 14, 1–16, https://doi.org/10.5194/tc-14-1-2020, https://doi.org/10.5194/tc-14-1-2020, 2020
Short summary
Short summary
We studied an ice-cored rock glacier in Taylor Valley, Antarctica, coupling ground-penetrating radar analyses with stable isotope and major ion geochemistry of (a) surface ponds and (b) buried clean ice. These analyses indicate that the rock glacier ice is fed by a nearby alpine glacier, recording multiple Holocene to late Pleistocene glacial advances. We demonstrate the potential to use rock glaciers and buried ice, common throughout Antarctica, to map previous glacial extents.
Marco Marcer, Charlie Serrano, Alexander Brenning, Xavier Bodin, Jason Goetz, and Philippe Schoeneich
The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019, https://doi.org/10.5194/tc-13-141-2019, 2019
Short summary
Short summary
This study aims to assess the occurrence of rock glacier destabilization in the French Alps, a process that causes a landslide-like behaviour of permafrost debris slopes. A significant number of the landforms in the region were found to be experiencing destabilization. Multivariate analysis suggested a link between destabilization occurrence and permafrost thaw induced by climate warming. These results call for a regional characterization of permafrost hazards in the context of climate change.
Cited articles
Azócar, G. F. and Brenning, A.: Hydrological and geomorphological
significance of rock glaciers in the dry Andes, Chile (27∘
–33∘), Permafr. Periglac. Process., 21, 42–53,
https://doi.org/10.1002/ppp.669, 2010.
Ballantyne, C. K.: Periglacial geomorphology, J. Wiley and
and Sons, Wiley-Blackwell, Oxford, 2018.
Barsch, D.: Rockglaciers: Indicators for the Present and Former Geoecology
in High Mountain Environments, Springer, Berlin and Heidelberg, Germany,
1996.
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm for
surface deformation monitoring based on small baseline differential SAR
interferograms, IEEE T. Geosci. Remote, 40, 2375–2383,
https://doi.org/10.1109/TGRS.2002.803792, 2002.
Bibi, S., Wang, L., Li, X., Zhou, J., Chen, D., and Yao, T.: Climatic and
associated cryospheric, biospheric, and hydrological changes on the Tibetan
Plateau: a review, Int. J. Climatol., 38, 1–17, https://doi.org/10.1002/joc.5411,
2018.
Bolch, T. and Gorbunov, A. P.: Characteristics and Origin of Rock Glaciers
in Northern Tien Shan (Kazakhstan/Kyrgyzstan), Permafr. Periglac. Process.,
25, 320–332, https://doi.org/10.1002/ppp.1825, 2014.
Bolch, T. and Marchenko, S.: Significance of glaciers, rockglaciers, and
ice-rich permafrost in the Northern Tien Shan as water towers under climate
change conditions, in: Selected papers from the Workshop “Assessment of Snow, Glacier and
Water Resources in Asia”, Almaty, Kazakhstan, 28–30 November 2006,
132–144, 2006.
Bolch, T., Yao, T., Kang, S., Buchroithner, M. F., Scherer, D., Maussion, F., Huintjes, E., and Schneider, C.: A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009, The Cryosphere, 4, 419–433, https://doi.org/10.5194/tc-4-419-2010, 2010.
Bolch, T., Rohrbach, N., Kutuzov, S., Robson, B. A., and Osmonov, A.:
Occurrence, evolution and ice content of ice-debris complexes in the
Ak-Shiirak, Central Tien Shan revealed by geophysical and remotely-sensed
investigations, Earth Surf. Proc. Land., 44, 129–143,
https://doi.org/10.1002/esp.4487, 2019.
Brardinoni, F., Scotti, R., Sailer, R., and Mair, V.: Evaluating sources of
uncertainty and variability in rock glacier inventories, Earth Surf.
Proc. Land., 44, 2450–2466, https://doi.org/10.1002/esp.4674, 2019.
Cao, B., Zhang, T., Wu, Q., Sheng, Y., Zhao, L., and Zou, D.: Brief communication: Evaluation and inter-comparisons of Qinghai–Tibet Plateau permafrost maps based on a new inventory of field evidence, The Cryosphere, 13, 511–519, https://doi.org/10.5194/tc-13-511-2019, 2019.
Chen, J., Zhao, L., Sheng, Y., Li, J., Wu, X., Du, E., Liu, G., and Pang, Q.:
Some Characteristics of Permafrost and Its Distribution in the Gaize Area on
the Qinghai-Tibet Plateau, China, Arct. Antarct. Alp. Res., 48,
395–409, https://doi.org/10.1657/AAAR0014-023, 2016.
Cheng, G. and Wu, T.: Responses of permafrost to climate change and their
environmental significance, Qinghai-Tibet Plateau, J. Geophys. Res.-Earth, 112, 1–10, https://doi.org/10.1029/2006JF000631, 2007.
Cicoira, A., Beutel, J., Faillettaz, J., and Vieli, A.: Water controls the
seasonal rhythm of rock glacier flow, Earth Planet. Sci. Lett., 528, 115844,
https://doi.org/10.1016/j.epsl.2019.115844, 2019.
Cogley, G., Moelg, N., Frey, H., Guo, W., Raup, B. H., Sakai,
A., Liu, S., Nuimura, T., Paul, F., and Bolch, T.: GLIMS Glacier Database, Boulder, CO.
National Snow and Ice Data Center,
https://doi.org/10.7265/N5V98602, 2015.
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., and
Crippa, B.: Persistent Scatterer Interferometry: A review, ISPRS J.
Photogramm., 115, 78–89, https://doi.org/10.1016/j.isprsjprs.2015.10.011,
2016.
Delaloye, R. and Echelard, T.: Towards standard guidelines for inventorying
rockglaciers – Baseline concepts (Version 4.1), available at:
https://www3.unifr.ch/geo/geomorphology/en/research/ipa-action-group-rock-glacier/ (last access: 18 November 2020), 2020.
Delaloye, R., Perruchoud, E., Bodin, X., Kääb, A.,
Kellerer-pirklbauer, A., Krainer, K., Lambiel, C., Roer, I., and Thibert, E.:
Recent interannual variations of rock glacier creep in the European Alps,
Proceedings of the 9th International Conference of Permafrost, Fairbanks, Alaska, USA, 29 June–3 July 2008, 343–348, 2008.
Delaloye, R., Lambiel, C., and Gärtner-Roer, I.: Overview of rock glacier kinematics research in the Swiss Alps, Geogr. Helv., 65, 135–145, https://doi.org/10.5194/gh-65-135-2010, 2010.
Delaloye, R., Barboux, C., Bodin, X., Brenning, A., Hartl, L., Hu, Y.,
Ikeda, A., Kellerer-Pirklbauer, A., Lambiel, C., Liu, L., Marcer, M., and
Rick, B.: Rock glacier inventories and kinematics: a new IPA Action Group,
in: Eucop5 – 5th European Conference of Permafrost, Chamonix, France, 23 June–1 July 2018,
392–393, 2018.
Deline, P., Gruber, S., Delaloye, R., Fischer, L., Geertsema, M., Giardino,
M., Hasler, A., Kirkbride, M., Krautblatter, M., Magnin, F., McColl, S.,
Ravanel, L., and Schoeneich, P.: Ice Loss and Slope Stability in
High-Mountain Regions, in: Snow and Ice-Related Hazards, Risks and Disasters,
edited by: Shroder, J. F., Haeberli, W., and Whiteman, C.,
Academic Press, Boston, USA, 521–561,
2015.
Dong, G., Yi, C., and Caffee, M.: Be dating of boulders on moraines from the
last glacial period in the Nyainqentanglha mountains, Tibet, Sci. China
Earth Sci., 57, 221–231, https://doi.org/10.1007/s11430-013-4794-z, 2014.
Dusik, J. M., Leopold, M., Heckmann, T., Haas, F., Hilger, L., Morche, D.,
Neugirg, F., and Becht, M.: Influence of glacier advance on the development
of the multipart Riffeltal rock glacier, Central Austrian Alps, Earth Surf.
Proc. Land., 40, 965–980, https://doi.org/10.1002/esp.3695, 2015.
Eckerstorfer, M., Eriksen, H. Ø., Rouyet, L., Christiansen, H. H.,
Lauknes, T. R., and Blikra, L. H.: Comparison of geomorphological field
mapping and 2D-InSAR mapping of periglacial landscape activity at
Nordnesfjellet, northern Norway, Earth Surf. Proc. Land., 43,
2147–2156, https://doi.org/10.1002/esp.4380, 2018.
Emmert, A. and Kneisel, C.: Internal structure of two alpine rock glaciers investigated by quasi-3-D electrical resistivity imaging, The Cryosphere, 11, 841–855, https://doi.org/10.5194/tc-11-841-2017, 2017.
Esper Angillieri, M. Y.: Permafrost distribution map of San Juan Dry Andes
(Argentina) based on rock glacier sites, J. South Am. Earth Sci., 73,
42–49, https://doi.org/10.1016/j.jsames.2016.12.002, 2017.
Fort, M. and van Vliet-Lanoe, B.: Permafrost and periglacial environment of
Western Tibet, Landf. Anal., 5, 25–29, 2007.
Frauenfelder, R., Allgöwer, B., Haeberli, W., and Hoelzle, M.: Permafrost
Investigations With GIS – A Case Study in the Fletschhorn Area, Wallis,
Swiss Alps, in: Seventh International Conference on Permafrost, Yellowknife, N.W.T. Canada, 23–27 June 1998,
291–295, 1998.
French, H. M.: Periglacial Landform, available at:
https://www.thecanadianencyclopedia.ca/en/article/periglacial-landform
(last access: 18 November 2020), 2012.
French, H. M.: The Periglacial Environment, John Wiley and Sons,
Oxford, UK, 2017.
Gorbunov, A. P., Marchenko, S. S., and Seversky, E. V.: The thermal
environment of blocky materials in the mountains of Central Asia, Permafr.
Periglac. Process., 15, 95–98, https://doi.org/10.1002/ppp.478, 2004.
Gruber, S., Fleiner, R., Guegan, E., Panday, P., Schmid, M.-O., Stumm, D., Wester, P., Zhang, Y., and Zhao, L.: Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region, The Cryosphere, 11, 81–99, https://doi.org/10.5194/tc-11-81-2017, 2017.
Guglielmin, M., Ponti, S., and Forte, E.: The origins of Antarctic rock
glaciers: periglacial or glacial features?, Earth Surf. Proc. Land.,
43, 1390–1402, https://doi.org/10.1002/esp.4320, 2018.
Guo, W., Liu, S., Xu, J., Wu, L., Shangguan, D., Yao, X., Wei, J., Bao, W.,
Yu, P., Liu, Q., and Jiang, Z.: The second Chinese glacier inventory: Data,
methods and results, J. Glaciol., 61, 357–372,
https://doi.org/10.3189/2015JoG14J209, 2015.
Häberli, W. and Vonder Mühll, D.: On the characteristics and
possible origins of ice in rock glacier permafrost, Z. Geomorphol. Supp., 104, 43–57, 1996.
Häberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O.,
Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and
Mühll, D. V.: Permafrost creep and rock glacier dynamics, Permafr.
Periglac. Process., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006.
Hartmeyer, I., Keuschnig, M., and Schrott, L.: A scale-oriented approach for
the long-term monitoring of ground thermal conditions in permafrost-affected
rock faces, Kitzsteinhorn, Hohe Tauern Range, Austria, Austrian J. Earth
Sci., 105, 128–139, 2012.
Hauck, C. and Kneisel, C.: Applied Geophysics in Periglacial Environments,
Cambridge University Press, Cambridge, UK, 2008.
Hauck, C. and Vonder Mühll, D.: Evaluation of geophysical techniques for
application in mountain permafrost studies, Z. Geomorphol., 132, 161–190, 2003.
Hauck, C., Bach, M., and Hilbich, C.: A four-phase model to quantify
subsurface ice and water content in permafrost regions based on geophysical
data sets, Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, 29 June–3 July, 675–680, 2008.
Hedding, D. W.: Pronival ramparts: A review, Prog. Phys. Geogr., 40,
835–855, https://doi.org/10.1177/0309133316678148, 2016.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi,
Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau,
U., Morin, S., Orlove, B., and Steltzer, H.: High Mountain Areas, in: IPCC
Special Report on the Ocean and Cryosphere in a Changing Climate, edited by:
Pörtner, H.-O., Roberts, D. C., Masson-Delmote, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegriá, A., Nicolai, M., Okem, A., Petzold, J.,
Rama, B., and Weyer, N. M., available at: https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/06_SROCC_Ch02_FINAL.pdf (last access: 7 January 2021), in press, 2019.
Höllermann, P.: Blockgletscher als Mesoformen der Periglazialstufe,
Bonner Geogr. Abhandlungen, 67, Ferd. Dümmlers Verlag, Bonn, Germany, 1983.
Hu, G., Zhao, L., Li, R., Wu, X., Wu, T., Xie, C., Zhu, X., and Hao, J.:
Estimation of ground temperatures in permafrost regions of the
Qinghai-Tibetan Plateau from climatic variables, Theor. Appl. Climatol.,
140, 1081–1091, https://doi.org/10.1007/s00704-020-03135-1, 2020.
Hu, J., Li, Z.-W., Li, J., Zhang, L., Ding, X.-L., Zhu, J.-J., and Sun, Q.:
3-D movement mapping of the alpine glacier in Qinghai-Tibetan Plateau by
integrating D-InSAR, MAI and Offset-Tracking: Case study of the Dongkemadi
Glacier, Global Planet. Change, 118, 62–68,
https://doi.org/10.1016/j.gloplacha.2014.04.002, 2014.
Humlum, O.: The climatic significance of rock glaciers, Permafr. Periglac.
Process., 9, 375–395, https://doi.org/10.1002/(SICI)1099-1530(199810/12)9:4<375::AID-PPP301> 3.0.CO;2-0, 1998.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch,
T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink,
P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter,
T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A.
B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.:
Importance and vulnerability of the world's water towers, Nature, 577,
364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020.
Jarvis, A., Guevara, E., Reuter, H. I., and Nelson, A. D.: Hole-filled SRTM
for the globe: version 4: data grid, International Centre for Tropical Agriculture (CIAT), available at: http://srtm.csi.cgiar.org (last access: 18 October 2018), 2008.
Jones, D. B., Harrison, S., Anderson, K., and Betts, R. A.: Mountain rock
glaciers contain globally significant water stores, Sci. Rep., 8, 1–10,
https://doi.org/10.1038/s41598-018-21244-w, 2018a.
Jones, D. B., Harrison, S., Anderson, K., Selley, H. L., Wood, J. L., and
Betts, R. A.: The distribution and hydrological significance of rock
glaciers in the Nepalese Himalaya, Global Planet. Change, 160,
123–142, https://doi.org/10.1016/j.gloplacha.2017.11.005, 2018b.
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers
and mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90,
https://doi.org/10.1016/j.earscirev.2019.04.001, 2019.
Kääb, A.: Permafrost and periglacial features: Rock Glaciers and
Protalus Forms, in: Encyclopedia of Quaternary Science (Second Edition),
edited by: Elias, S. A. and Mock, C. J., Elsevier, Amsterdam, The Netherlands,
535–541,
2013.
Kang, S., Chen, F., Gao, T., Zhang, Y., Yang, W., Yu, W., and Yao, T.: Early
onset of rainy season suppresses glacier melt: A case study on Zhadang
glacier, Tibetan Plateau, J. Glaciol., 55, 755–758,
https://doi.org/10.3189/002214309789470978, 2009.
Kapp, J. L. D. A., Harrison, T. M., Kapp, P., Grove, M., Lovera, O. M., and
Lin, D.: Nyainqentanglha Shan: A window into the tectonic, thermal, and
geochemical evolution of the Lhasa block, southern Tibet, J. Geophys. Res.-Sol. Ea., 110, 1–23, https://doi.org/10.1029/2004JB003330, 2005.
Keil, A., Berking, J., Mügler, I., Schütt, B., Schwalb, A., and
Steeb, P.: Hydrological and geomorphological basin and catchment
characteristics of Lake Nam Co, South-Central Tibet, Quat. Int., 218,
118–130, https://doi.org/10.1016/j.quaint.2009.02.022, 2010.
Kenner, R., Phillips, M., Beutel, J., Hiller, M., Limpach, P., Pointner, E.,
and Volken, M.: Factors Controlling Velocity Variations at Short-Term,
Seasonal and Multiyear Time Scales, Ritigraben Rock Glacier, Western Swiss
Alps, Permafr. Periglac. Process., 28, 675–684, https://doi.org/10.1002/ppp.1953,
2017.
Kidd, W. S. F., Yusheng, P., Chengfa, C., Coward, M. P., Dewey, J. F.,
Gansser, A., Molnar, P., Shackleton, R. M., and Yiyin, S.: Geological Mapping
of the 1985 Chinese-British Tibetan (Xizang-Qinghai) Plateau Geotraverse
Route, Philos. T. R. Soc. S.-A, 327, 287–305,
https://doi.org/10.1098/rsta.1988.0130, 1988.
Kneisel, C. and Kääb, A.: Mountain permafrost dynamics within a
recently exposed glacier forefield inferred by a combined geomorphological,
geophysical and photogrammetrical approach, Earth Surf. Proc. Land.,
32, 1797–1810, https://doi.org/10.1002/esp.1488, 2007.
Kneisel, C., Lehmkuhl, F., Winkler, S., Tressel, E., and Schröder, H.:
Legende für geomorphologische Kartierungen in Hochgebirgen (GMK
Hochgebirge), Trierer Geogr. Stud., 18, 1–24, 1998.
Kneisel, C., Hauck, C., Fortier, R., and Moorman, B.: Advances in Geophysical
Methods for Permafrost Investigations, Permafr. Periglac. Process.,
178, 157–178, https://doi.org/10.1002/ppp.616, 2008.
Knight, J., Mitchell, W. A., and Rose, J.: Geomorphological
Field Mapping, in: Geomorphological Mapping, edited by: Smith, M. J.,
Paron, P., and Griffiths, J. S., Elsevier, Oxford, 151–187, 2011.
Knight, J., Harrison, S., and Jones, D. B.: Rock glaciers and the
geomorphological evolution of deglacierizing mountains, Geomorphology, 324,
14–24, https://doi.org/10.1016/j.geomorph.2018.09.020, 2019.
Krautblatter, M., Verleysdonk, S., Flores-Orozco, A., and Kemna, A.:
Temperature-calibrated imaging of seasonal changes in permafrost rock walls
by quantitative electrical resistivity tomography (Zugspitze,
German/Austrian Alps), J. Geophys. Res.-Earth, 115, 1–15,
https://doi.org/10.1029/2008JF001209, 2010.
Lambiel, C. and Pieracci, K.: Permafrost Distribution in Talus Slopes
located within the Alpine Periglacial Belt, Swiss Alps, Permafr. Periglac.
Process., 19, 293–304, https://doi.org/10.1002/ppp.624, 2008.
Lewkowicz, A. G., Etzelmüller, B., and Smith, S. L.: Characteristics of discontinuous permafrost based on ground temperature measurements and electrical resistivity tomography, Southern Yukon, Canada, Permafr. Periglac. Process., 22, 320–342, https://doi.org/10.1002/ppp.703, 2011.
Li, J., Sheng, Y., Wu, J., Chen, J., and Zhang, X.: Probability distribution
of permafrost along a transportation corridor in the northeastern Qinghai
province of China, Cold Reg. Sci. Technol., 59, 12–18,
https://doi.org/10.1016/j.coldregions.2009.05.012, 2009a.
Li, M., Ma, Y., Hu, Z., Ishikawa, H., and Oku, Y.: Snow distribution over the Namco lake area of the Tibetan Plateau, Hydrol. Earth Syst. Sci., 13, 2023–2030, https://doi.org/10.5194/hess-13-2023-2009, 2009.
Liu, S. and Guo, W.: GLIMS Glacier Database, GLIMS Glacier Database, Boulder, CO,
National Snow and Ice Data Center, https://doi.org/10.7265/N5V98602, 2014.
Loke, M. H. and Barker, R. D.: Least-squares deconvolution of apparent
resistivity pseudosections, Geophysics, 60, 1682–1690,
https://doi.org/10.1190/1.1443900, 1995.
López-Martínez, J., Serrano, E., Schmid, T., Mink, S., and
Linés, C.: Periglacial processes and landforms in the South Shetland
Islands (northern Antarctic Peninsula region), Geomorphology, 155/156,
62–79, https://doi.org/10.1016/j.geomorph.2011.12.018, 2012.
Lu, Q., Zhao, D., and Wu, S.: Simulated responses of permafrost distribution
to climate change on the Qinghai-Tibet Plateau, Sci. Rep., 7, 1–13,
https://doi.org/10.1038/s41598-017-04140-7, 2017.
Ma, W., Shi, C., Wu, Q., Zhang, L., and Wu, Z.: Monitoring study on
technology of the cooling roadbed in permafrost region of Qinghai-Tibet
plateau, Cold Reg. Sci. Technol., 44, 1–11,
https://doi.org/10.1016/j.coldregions.2005.06.002, 2006.
Mewes, B., Hilbich, C., Delaloye, R., and Hauck, C.: Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes, The Cryosphere, 11, 2957–2974, https://doi.org/10.5194/tc-11-2957-2017, 2017.
Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R., and Hauck, C.: Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites, The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, 2019.
Monnier, S., Kinnard, C., Surazakov, A., and Bossy, W.: Geomorphology,
internal structure, and successive development of a glacier foreland in the
semiarid Chilean Andes (Cerro Tapado, upper Elqui Valley, 30∘ 08'
S., 69∘ 55' W.), Geomorphology, 207, 126–140,
https://doi.org/10.1016/j.geomorph.2013.10.031, 2014.
Mudler, J., Hördt, A., Przyklenk, A., Fiandaca, G., Maurya, P. K., and Hauck, C.: Two-dimensional inversion of wideband spectral data from the capacitively coupled resistivity method – first applications in periglacial environments, The Cryosphere, 13, 2439–2456, https://doi.org/10.5194/tc-13-2439-2019, 2019.
Mügler, I., Gleixner, G., Günther, F., Mäusbacher, R., Daut, G.,
Schütt, B., Berking, J., Schwalb, A., Schwark, L., Xu, B., Yao, T., Zhu,
L., and Yi, C.: A multi-proxy approach to reconstruct hydrological changes
and Holocene climate development of Nam Co, Central Tibet, J. Paleolimnol.,
43, 625–648, https://doi.org/10.1007/s10933-009-9357-0, 2010.
N El Sayed, A., SM Barseem, M., M Ezz El Deen, H., and A Ezz El Din, H.:
Using of Geo-electrical and Geochemical Techniques to Investigate the Change
in Ground Water Quality-South West El Khtatbah City – Cairo-Alexandria
Desert Road, Egypt, Adv. Appl. Sci. Res., 8, 77–95, 2018.
Notti, D., Herrera, G., Bianchini, S., Meisina, C., García-Davalillo,
J. C., and Zucca, F.: A methodology for improving landslide PSI data
analysis, Int. J. Remote Sens., 35, 2186–2214,
https://doi.org/10.1080/01431161.2014.889864, 2014.
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H.,
Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov,
A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda,
S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin,
J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling
for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193,
299–316, https://doi.org/10.1016/j.earscirev.2019.04.023, 2019.
Onaca, A., Ardelean, F., Ardelean, A., Magori, B., Sîrbu, F.,
Voiculescu, M., and Gachev, E.: Assessment of permafrost conditions in the
highest mountains of the Balkan Peninsula, Catena, 185, 104288,
https://doi.org/10.1016/j.catena.2019.104288, 2020.
Osmanoğlu, B., Sunar, F., Wdowinski, S., and Cabral-Cano, E.: Time series
analysis of InSAR data: Methods and trends, ISPRS J. Photogramm., 115, 90–102, https://doi.org/10.1016/j.isprsjprs.2015.10.003, 2016.
Otto, J. C. and Dikau, R.: Symbols for geomorphologic mapping in high
mountains for ArcGIS; Geomorphologic System Analysis of a High Mountain
Valley in the Swiss Alps, Z. Geomorphol., 48, 323–341, 2008.
Otto, J. C. and Smith, M. J.: Geomorphological mapping, in: Geomorphological
Techniques, edited by: Cook, S. J., Clarke, L. E.,
and Nield, J. M., British Society for Geomorphology, London, UK,
344–345,
2013.
Otto, J. C., Keuschnig, M., Götz, J., Marbach, M., and Schrott, L.:
Detection of mountain permafrost by combining high resolution surface and
subsurface information – an example from the glatzbach catchment, Austrian
Alps, Geogr. Ann. Ser. A Phys. Geogr., 94, 43–57,
https://doi.org/10.1111/j.1468-0459.2012.00455.x, 2012.
Ran, Y., Li, X., Cheng, G., Zhang, T., Wu, Q., Jin, H., and Jin, R.:
Distribution of Permafrost in China: An Overview of Existing Permafrost
Maps, Permafr. Periglac. Process., 23, 322–333, https://doi.org/10.1002/ppp.1756,
2012.
Ran, Z. and Liu, G.: Rock glaciers in Daxue Shan, south-eastern Tibetan Plateau: an inventory, their distribution, and their environmental controls, The Cryosphere, 12, 2327–2340, https://doi.org/10.5194/tc-12-2327-2018, 2018.
Rangecroft, S., Suggitt, A. J., Anderson, K., and Harrison, S.: Future
climate warming and changes to mountain permafrost in the Bolivian Andes,
Clim. Change, 137, 231–243, https://doi.org/10.1007/s10584-016-1655-8, 2016.
Reinosch, E., Buckel, J., Dong, J., Gerke, M., Baade, J., and Riedel, B.: InSAR time series analysis of seasonal surface displacement dynamics on the Tibetan Plateau, The Cryosphere, 14, 1633–1650, https://doi.org/10.5194/tc-14-1633-2020, 2020.
Reynolds, J. M.: An Introduction to Applied and Environmental Geophysics,
edited by: Reynolds, J., Wiley/Blackwell, Oxford, UK, 2011.
Rosset, E., Hilbich, C., Schneider, S., and Hauck, C.: Automatic filtering of
ERT monitoring data in mountain permafrost, Near Surf. Geophys., 11,
423–433, https://doi.org/10.3997/1873-0604.2013003, 2013.
Scapozza, C.: Investigation on protalus ramparts in the Swiss Alps, Geogr. Helv., 70, 135–139, https://doi.org/10.5194/gh-70-135-2015, 2015.
Schmid, M.-O., Baral, P., Gruber, S., Shahi, S., Shrestha, T., Stumm, D., and Wester, P.: Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth, The Cryosphere, 9, 2089–2099, https://doi.org/10.5194/tc-9-2089-2015, 2015.
Schrott, L.: Some geomorphological-hydrological aspects of rock glaciers in
the Andes (San Juan, Argentina), Z. Geomorphol., 104,
161–173, 1996.
Schrott, L. and Sass, O.: Application of field geophysics in geomorphology:
Advances and limitations exemplified by case studies, Geomorphology,
93, 55–73, https://doi.org/10.1016/j.geomorph.2006.12.024, 2008.
Schrott, L., Otto, J. C., and Keller, F.: Modelling alpine permafrost
distribution in the hohe tauern region, Austria, Austrian J. Earth Sci.,
105, 169–183, 2012.
Schütt, B., Berking, J., Frechen, M., Frenzel, P., Schwalb, A., and Wrozyna, C.: Late Quaternary transition from lacustrine to a fluvio-lacustrine environment in the north-western Nam Co, Tibetan Plateau, China, Quat. Int., 218, 104–117, https://doi.org/10.1016/j.quaint.2009.05.009, 2010.
Song, C., Wang, G., Mao, T., Dai, J., and Yang, D.: Linkage between
permafrost distribution and river runoff changes across the Arctic and the
Tibetan Plateau, Sci. China Earth Sci., 63, 292–302,
https://doi.org/10.1007/s11430-018-9383-6, 2020.
Sowter, A., Bateson, L., Strange, P., Ambrose, K., and Syafiudin, M. F.:
DInSAR estimation of land motion using intermittent coherence with
application to the South Derbyshire and Leicestershire coalfields, Remote
Sens. Lett., 4, 979–987, https://doi.org/10.1080/2150704X.2013.823673, 2013.
Strozzi, T., Caduff, R., Jones, N., Barboux, C., Delaloye, R., Bodin, X.,
Kääb, A., Mätzler, E., and Schrott, L.: Monitoring Rock Glacier
Kinematics with Satellite Synthetic Aperture Radar, Remote Sens., 12,
559, https://doi.org/10.3390/rs12030559, 2020.
Sun, Z., Zhao, L., Hu, G., Qiao, Y., Du, E., Zou, D., and Xie, C.: Modeling
permafrost changes on the Qinghai-Tibetan plateau from 1966 to 2100: A case
study from two boreholes along the Qinghai-Tibet engineering corridor,
Permafr. Periglac. Process., 31, 156–171, https://doi.org/10.1002/ppp.2022, 2020.
Thompson, S. S., Kulessa, B., Benn, D. I., and Mertes, J. R.: Anatomy of
terminal moraine segments and implied lake stability on Ngozumpa Glacier,
Nepal, from electrical resistivity tomography (ERT), Sci. Rep., 7,
1–12, https://doi.org/10.1038/srep46766, 2017.
Tian, K., Liu, J., Kang, S., and Li, C.: A Primary Study of the Environment
of Frozen Ground in the Nam Co Basin, Tibet, Adv. Earth Sci., 21,
1324–1332, 2006.
Vanhala, H., Lintinen, P., and Ojala, A.: Electrical resistivity study of
permafrost on Ridnitšohkka fell in northwest Lapland, Finland,
Geophysica, 45, 103–118, 2009.
Villarroel, C. D., Beliveau, G. T., Forte, A. P., Monserrat, O., and
Morvillo, M.: DInSAR for a regional inventory of active rock glaciers in the
Dry Andes Mountains of Argentina and Chile with sentinel-1 data, Remote
Sens., 10, 1–21, https://doi.org/10.3390/rs10101588, 2018.
Von der Mühll, D., Hauck, C., and Gubler, H.: Mapping of mountain
permafrost using geophysical methods, Prog. Phys. Geogr., 26, 643–660,
2002.
Wang, B. and French, H. M.: Permafrost on the Tibet Plateau, China, Quat.
Sci. Rev., 14, 255–274, https://doi.org/10.1016/0277-3791(95)00006-B, 1995.
Wang, J., Zhu, L., Daut, G., Ju, J., Lin, X., Wang, Y., and Zhen, X.:
Investigation of bathymetry and water quality of Lake Nam Co, the largest
lake on the central Tibetan Plateau, China, Limnology, 10, 149–158,
https://doi.org/10.1007/s10201-009-0266-8, 2009.
Wang, T., Yang, D., Fang, B., Yang, W., Qin, Y., and Wang, Y.: Data-driven
mapping of the spatial distribution and potential changes of frozen ground
over the Tibetan Plateau, Sci. Total Environ., 649, 515–525,
https://doi.org/10.1016/j.scitotenv.2018.08.369, 2019.
Wang, Y., Fu, Z., Lu, X., Qin, S., Wang, H., and Wang, X.: Imaging of the
internal structure of permafrost in the tibetan plateau using ground
penetrating radar, Electron., 9, 56, https://doi.org/10.3390/electronics9010056, 2020.
Washburn, A. L.: Geocryology: a survey of periglacial processes and
environments, The Blackburn press, New Jersey, USA, 1979.
Wei, D., Ri, X., Wang, Y., Wang, Y., Liu, Y., and Yao, T.: Responses of CO2, CH4 and N2O fluxes to livestock exclosure in an alpine steppe on the
Tibetan Plateau, China, Plant Soil, 359, 45–55,
https://doi.org/10.1007/s11104-011-1105-3, 2012.
Wirz, V., Gruber, S., Purves, R. S., Beutel, J., Gärtner-Roer, I., Gubler, S., and Vieli, A.: Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions, Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, 2016.
Wu, T., Li, S., Cheng, G., and Nan, Z.: Using ground-penetrating radar to
detect permafrost degradation in the northern limit of permafrost on the
Tibetan Plateau, Cold Reg. Sci. Technol., 41, 211–219,
https://doi.org/10.1016/j.coldregions.2004.10.006, 2005.
Yague-Martinez, N., Rodriguez Gonzalez, F., Brcic, R., Shau, R., Geudtner,
D., Eineder, M., and Bamler, R.: Interferometric processing of SLC Sentinel-1
TOPS data, IEEE T. Geosci. Remote, 54, 2220–2234,
https://doi.org/10.1109/TGRS.2015.2497902, 2016.
Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D., and Wan, G.: Permafrost
degradation and its environmental effects on the Tibetan Plateau: A review
of recent research, Earth-Sci. Rev., 103, 31–44,
https://doi.org/10.1016/j.earscirev.2010.07.002, 2010.
Yao, T., Guo, X., Thompson, L., Duan, K., Wang, N., Pu, J., Xu, B., Yang, X.,
and Sun, W.: δ18O record and temperature change over the past 100
years in ice cores on the Tibetan Plateau, Sci. China, Ser. D Earth Sci.,
49, 1–9, https://doi.org/10.1007/s11430-004-5096-2, 2006.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan,
K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak,
D.: Different glacier status with atmospheric circulations in Tibetan
Plateau and surroundings, Nat. Clim. Change, 2, 663–667,
https://doi.org/10.1038/nclimate1580, 2012.
Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C., Sturm,
C., Werner, M., Zhao, H., He, Y., Ren, W., Tian, L., Shi, C., and Hou, S.: A
review of climatic controls on δ18O in precipitation over the
Tibetan Plateau: Observations and simulations, Rev. Geophys., 51,
525–548, https://doi.org/10.1002/rog.20023, 2013.
You, Y., Yu, Q., Pan, X., Wang, X., and Guo, L.: Application of electrical
resistivity tomography in investigating depth of permafrost base and
permafrost structure in Tibetan Plateau, Cold Reg. Sci. Technol., 87,
19–26, https://doi.org/10.1016/j.coldregions.2012.11.004, 2013.
You, Y., Yu, Q., Pan, X., Wang, X., and Guo, L.: Geophysical Imaging of
Permafrost and Talik Configuration Beneath a Thermokarst Lake, Permafr.
Periglac. Process., 28, 470–476, https://doi.org/10.1002/ppp.1938, 2017.
Yu, W., Han, F., Liu, W., and Harris, S. A.: Geohazards and thermal regime
analysis of oil pipeline along the Qinghai-Tibet Plateau Engineering
Corridor, Nat. Hazards, 83, 193–209, https://doi.org/10.1007/s11069-016-2308-y,
2016.
Yu, Z., Wu, G., Keys, L., Li, F., Yan, N., Qu, D., and Liu, X.: Seasonal
variation of chemical weathering and its controlling factors in two alpine
catchments, Nam Co basin, central Tibetan Plateau, J. Hydrol., 576,
381–395, https://doi.org/10.1016/J.JHYDROL.2019.06.042, 2019.
Zhang, G., Kang, S., Fujita, K., Huintjes, E., Xu, J., Yamazaki, T.,
Haginoya, S., Wei, Y., Scherer, D., Schneider, C., and Yao, T.: Energy and
mass balance of Zhadang glacier surface, central Tibetan Plateau, J.
Glaciol., 59, 137–148, https://doi.org/10.3189/2013JoG12J152, 2013.
Zhang, Q. and Zhang, G.: Glacier elevation changes in the western
Nyainqentanglha range of the Tibetan Plateau as observed by
TerraSAR-X/TanDEM-X images, Remote Sens. Lett., 8, 1142–1151,
https://doi.org/10.1080/2150704X.2017.1362123, 2017.
Zhang, Z. and Wu, Q.: Thermal hazards zonation and permafrost change over
the Qinghai-Tibet Plateau, Nat. Hazards, 61, 403–423,
https://doi.org/10.1007/s11069-011-9923-4, 2012.
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W., Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost distribution on the Tibetan Plateau, The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, 2017.
Short summary
This study presents insights into the remote cryosphere of a mountain range at the Tibetan Plateau. Small-scaled studies and field data about permafrost occurrence are very scarce. A multi-method approach (geomorphological mapping, geophysics, InSAR time series analysis) assesses the lower occurrence of permafrost the range of 5350 and 5500 m above sea level (a.s.l.) in the Qugaqie basin. The highest, multiannual creeping rates up to 150 mm/yr are observed on rock glaciers.
This study presents insights into the remote cryosphere of a mountain range at the Tibetan...