Articles | Volume 15, issue 3
https://doi.org/10.5194/tc-15-1455-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-1455-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Challenges in predicting Greenland supraglacial lake drainages at the regional scale
Department of Geology and the Research and Education in eNergy, Environment and Water (RENEW) Institute, University at Buffalo, Buffalo, New York, USA
Lauren C. Andrews
NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Greenbelt, Maryland, USA
Related authors
Benjamin Reynolds, Sophie Nowicki, and Kristin Poinar
EGUsphere, https://doi.org/10.5194/egusphere-2024-2424, https://doi.org/10.5194/egusphere-2024-2424, 2024
Short summary
Short summary
Stress in glaciers, ice sheets, and ice shelves causes crevasses, which are important drivers of retreat and sea level rise. We find that different assumptions found in the literature lead to significantly (up to a factor of two) different crevasse depths and recommend a calculation based on observed ice flow patterns. We find that other stress calculations likely overpredict ice shelf vulnerability to hydrofracture.
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023, https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary
Short summary
Models simulating water pressure variations at the bottom of glaciers must use large storage parameters to produce realistic results. Whether that storage occurs englacially (in moulins) or subglacially is a matter of debate. Here, we directly simulate moulin volume to constrain the storage there. We find it is not enough. Instead, subglacial processes, including basal melt and input from upstream moulins, must be responsible for stabilizing these water pressure fluctuations.
Brandon L. Graham, Jason P. Briner, Nicolás E. Young, Allie Balter-Kennedy, Michele Koppes, Joerg M. Schaefer, Kristin Poinar, and Elizabeth K. Thomas
The Cryosphere, 17, 4535–4547, https://doi.org/10.5194/tc-17-4535-2023, https://doi.org/10.5194/tc-17-4535-2023, 2023
Short summary
Short summary
Glacial erosion is a fundamental process operating on Earth's surface. Two processes of glacial erosion, abrasion and plucking, are poorly understood. We reconstructed rates of abrasion and quarrying in Greenland. We derive a total glacial erosion rate of 0.26 ± 0.16 mm per year. We also learned that erosion via these two processes is about equal. Because the site is similar to many other areas covered by continental ice sheets, these results may be applied to many places on Earth.
Jason P. Briner, Caleb K. Walcott, Joerg M. Schaefer, Nicolás E. Young, Joseph A. MacGregor, Kristin Poinar, Benjamin A. Keisling, Sridhar Anandakrishnan, Mary R. Albert, Tanner Kuhl, and Grant Boeckmann
The Cryosphere, 16, 3933–3948, https://doi.org/10.5194/tc-16-3933-2022, https://doi.org/10.5194/tc-16-3933-2022, 2022
Short summary
Short summary
The 7.4 m of sea level equivalent stored as Greenland ice is getting smaller every year. The uncertain trajectory of ice loss could be better understood with knowledge of the ice sheet's response to past climate change. Within the bedrock below the present-day ice sheet is an archive of past ice-sheet history. We analyze all available data from Greenland to create maps showing where on the ice sheet scientists can drill, using currently available drills, to obtain sub-ice materials.
Lauren C. Andrews, Kristin Poinar, and Celia Trunz
The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022, https://doi.org/10.5194/tc-16-2421-2022, 2022
Short summary
Short summary
We introduce a model for moulin geometry motivated by the wide range of sizes and shapes of explored moulins. Moulins comprise 10–14 % of the Greenland englacial–subglacial hydrologic system and act as time-varying water storage reservoirs. Moulin geometry can vary approximately 10 % daily and over 100 % seasonally. Moulin shape modulates the efficiency of the subglacial system that controls ice flow and should thus be included in hydrologic models.
Benjamin Reynolds, Sophie Nowicki, and Kristin Poinar
EGUsphere, https://doi.org/10.5194/egusphere-2024-2424, https://doi.org/10.5194/egusphere-2024-2424, 2024
Short summary
Short summary
Stress in glaciers, ice sheets, and ice shelves causes crevasses, which are important drivers of retreat and sea level rise. We find that different assumptions found in the literature lead to significantly (up to a factor of two) different crevasse depths and recommend a calculation based on observed ice flow patterns. We find that other stress calculations likely overpredict ice shelf vulnerability to hydrofracture.
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023, https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary
Short summary
Models simulating water pressure variations at the bottom of glaciers must use large storage parameters to produce realistic results. Whether that storage occurs englacially (in moulins) or subglacially is a matter of debate. Here, we directly simulate moulin volume to constrain the storage there. We find it is not enough. Instead, subglacial processes, including basal melt and input from upstream moulins, must be responsible for stabilizing these water pressure fluctuations.
Brandon L. Graham, Jason P. Briner, Nicolás E. Young, Allie Balter-Kennedy, Michele Koppes, Joerg M. Schaefer, Kristin Poinar, and Elizabeth K. Thomas
The Cryosphere, 17, 4535–4547, https://doi.org/10.5194/tc-17-4535-2023, https://doi.org/10.5194/tc-17-4535-2023, 2023
Short summary
Short summary
Glacial erosion is a fundamental process operating on Earth's surface. Two processes of glacial erosion, abrasion and plucking, are poorly understood. We reconstructed rates of abrasion and quarrying in Greenland. We derive a total glacial erosion rate of 0.26 ± 0.16 mm per year. We also learned that erosion via these two processes is about equal. Because the site is similar to many other areas covered by continental ice sheets, these results may be applied to many places on Earth.
Elias C. Massoud, Lauren Andrews, Rolf Reichle, Andrea Molod, Jongmin Park, Sophie Ruehr, and Manuela Girotto
Earth Syst. Dynam., 14, 147–171, https://doi.org/10.5194/esd-14-147-2023, https://doi.org/10.5194/esd-14-147-2023, 2023
Short summary
Short summary
In this study, we benchmark the forecast skill of the NASA’s Goddard Earth Observing System subseasonal-to-seasonal (GEOS-S2S version 2) hydrometeorological forecasts in the High Mountain Asia (HMA) region. Hydrometeorological forecast skill is dependent on the forecast lead time, the memory of the variable within the physical system, and the validation dataset used. Overall, these results benchmark the GEOS-S2S system’s ability to forecast HMA hydrometeorology on the seasonal timescale.
Jason P. Briner, Caleb K. Walcott, Joerg M. Schaefer, Nicolás E. Young, Joseph A. MacGregor, Kristin Poinar, Benjamin A. Keisling, Sridhar Anandakrishnan, Mary R. Albert, Tanner Kuhl, and Grant Boeckmann
The Cryosphere, 16, 3933–3948, https://doi.org/10.5194/tc-16-3933-2022, https://doi.org/10.5194/tc-16-3933-2022, 2022
Short summary
Short summary
The 7.4 m of sea level equivalent stored as Greenland ice is getting smaller every year. The uncertain trajectory of ice loss could be better understood with knowledge of the ice sheet's response to past climate change. Within the bedrock below the present-day ice sheet is an archive of past ice-sheet history. We analyze all available data from Greenland to create maps showing where on the ice sheet scientists can drill, using currently available drills, to obtain sub-ice materials.
Lauren C. Andrews, Kristin Poinar, and Celia Trunz
The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022, https://doi.org/10.5194/tc-16-2421-2022, 2022
Short summary
Short summary
We introduce a model for moulin geometry motivated by the wide range of sizes and shapes of explored moulins. Moulins comprise 10–14 % of the Greenland englacial–subglacial hydrologic system and act as time-varying water storage reservoirs. Moulin geometry can vary approximately 10 % daily and over 100 % seasonally. Moulin shape modulates the efficiency of the subglacial system that controls ice flow and should thus be included in hydrologic models.
Chad A. Greene, Alex S. Gardner, and Lauren C. Andrews
The Cryosphere, 14, 4365–4378, https://doi.org/10.5194/tc-14-4365-2020, https://doi.org/10.5194/tc-14-4365-2020, 2020
Short summary
Short summary
Seasonal variability is a fundamental characteristic of any Earth surface system, but we do not fully understand which of the world's glaciers speed up and slow down on an annual cycle. Such short-timescale accelerations may offer clues about how individual glaciers will respond to longer-term changes in climate, but understanding any behavior requires an ability to observe it. We describe how to use satellite image feature tracking to determine the magnitude and timing of seasonal ice dynamics.
Kelly M. Brunt, Robert L. Hawley, Eric R. Lutz, Michael Studinger, John G. Sonntag, Michelle A. Hofton, Lauren C. Andrews, and Thomas A. Neumann
The Cryosphere, 11, 681–692, https://doi.org/10.5194/tc-11-681-2017, https://doi.org/10.5194/tc-11-681-2017, 2017
Short summary
Short summary
This manuscript presents an analysis of NASA airborne lidar data based on in situ GPS measurements from the interior of the Greenland Ice Sheet. Results show that for two airborne altimeters, surface elevation biases are less than 0.12 m and measurement precisions are 0.09 m or better. The study concludes that two NASA airborne lidars are sufficiently characterized to form part of a satellite data validation strategy, specifically for ICESat-2, scheduled to launch in 2018.
Related subject area
Discipline: Ice sheets | Subject: Glacier Hydrology
Deep clustering in subglacial radar reflectance reveals subglacial lakes
Partial melting in polycrystalline ice: pathways identified in 3D neutron tomographic images
Evaluation of satellite methods for estimating supraglacial lake depth in southwest Greenland
Observed and modeled moulin heads in the Pâkitsoq region of Greenland suggest subglacial channel network effects
Reorganisation of subglacial drainage processes during rapid melting of the Fennoscandian Ice Sheet
In situ measurements of meltwater flow through snow and firn in the accumulation zone of the SW Greenland Ice Sheet
Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Supraglacial streamflow and meteorological drivers from southwest Greenland
Hourly surface meltwater routing for a Greenlandic supraglacial catchment across hillslopes and through a dense topological channel network
Role of discrete water recharge from supraglacial drainage systems in modeling patterns of subglacial conduits in Svalbard glaciers
A confined–unconfined aquifer model for subglacial hydrology and its application to the Northeast Greenland Ice Stream
Modelling the fate of surface melt on the Larsen C Ice Shelf
Modelled subglacial floods and tunnel valleys control the life cycle of transitory ice streams
Sheng Dong, Lei Fu, Xueyuan Tang, Zefeng Li, and Xiaofei Chen
The Cryosphere, 18, 1241–1257, https://doi.org/10.5194/tc-18-1241-2024, https://doi.org/10.5194/tc-18-1241-2024, 2024
Short summary
Short summary
Subglacial lakes are a unique environment at the bottom of ice sheets, and they have distinct features in radar echo images that allow for visual detection. In this study, we use machine learning to analyze radar reflection waveforms and identify candidate subglacial lakes. Our approach detects more lakes than known inventories and can be used to expand the subglacial lake inventory. Additionally, this analysis may also provide insights into interpreting other subglacial conditions.
Christopher J. L. Wilson, Mark Peternell, Filomena Salvemini, Vladimir Luzin, Frieder Enzmann, Olga Moravcova, and Nicholas J. R. Hunter
The Cryosphere, 18, 819–836, https://doi.org/10.5194/tc-18-819-2024, https://doi.org/10.5194/tc-18-819-2024, 2024
Short summary
Short summary
As the temperature increases within a deforming ice aggregate, composed of deuterium (D2O) ice and water (H2O) ice, a set of meltwater segregations are produced. These are composed of H2O and HDO and are located in conjugate shear bands and in compaction bands which accommodate the deformation and weaken the ice aggregate. This has major implications for the passage of meltwater in ice sheets and the formation of the layering recognized in glaciers.
Laura Melling, Amber Leeson, Malcolm McMillan, Jennifer Maddalena, Jade Bowling, Emily Glen, Louise Sandberg Sørensen, Mai Winstrup, and Rasmus Lørup Arildsen
The Cryosphere, 18, 543–558, https://doi.org/10.5194/tc-18-543-2024, https://doi.org/10.5194/tc-18-543-2024, 2024
Short summary
Short summary
Lakes on glaciers hold large volumes of water which can drain through the ice, influencing estimates of sea level rise. To estimate water volume, we must calculate lake depth. We assessed the accuracy of three satellite-based depth detection methods on a study area in western Greenland and considered the implications for quantifying the volume of water within lakes. We found that the most popular method of detecting depth on the ice sheet scale has higher uncertainty than previously assumed.
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023, https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary
Short summary
Models simulating water pressure variations at the bottom of glaciers must use large storage parameters to produce realistic results. Whether that storage occurs englacially (in moulins) or subglacially is a matter of debate. Here, we directly simulate moulin volume to constrain the storage there. We find it is not enough. Instead, subglacial processes, including basal melt and input from upstream moulins, must be responsible for stabilizing these water pressure fluctuations.
Adam Jake Hepburn, Christine F. Dow, Antti Ojala, Joni Mäkinen, Elina Ahokangas, Jussi Hovikoski, Jukka-Pekka Palmu, and Kari Kajuutti
EGUsphere, https://doi.org/10.5194/egusphere-2023-2141, https://doi.org/10.5194/egusphere-2023-2141, 2023
Short summary
Short summary
Terrain formerly occupied by ice sheets in the last ice age allows us to parameterise models of basal water flow using terrain and data unavailable beneath current ice sheets. Using GlaDS, a 2D basal hydrology model, we explore the origin of murtoos, a specific landform found throughout Finland that is thought to mark the upper limit of channels beneath the ice. Our results validate many of the predictions for murtoo origin and demonstrate that such models can be used to explore past ice sheets.
Nicole Clerx, Horst Machguth, Andrew Tedstone, Nicolas Jullien, Nander Wever, Rolf Weingartner, and Ole Roessler
The Cryosphere, 16, 4379–4401, https://doi.org/10.5194/tc-16-4379-2022, https://doi.org/10.5194/tc-16-4379-2022, 2022
Short summary
Short summary
Meltwater runoff is one of the main contributors to mass loss on the Greenland Ice Sheet that influences global sea level rise. However, it remains unclear where meltwater runs off and what processes cause this. We measured the velocity of meltwater flow through snow on the ice sheet, which ranged from 0.17–12.8 m h−1 for vertical percolation and from 1.3–15.1 m h−1 for lateral flow. This is an important step towards understanding where, when and why meltwater runoff occurs on the ice sheet.
Lauren C. Andrews, Kristin Poinar, and Celia Trunz
The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022, https://doi.org/10.5194/tc-16-2421-2022, 2022
Short summary
Short summary
We introduce a model for moulin geometry motivated by the wide range of sizes and shapes of explored moulins. Moulins comprise 10–14 % of the Greenland englacial–subglacial hydrologic system and act as time-varying water storage reservoirs. Moulin geometry can vary approximately 10 % daily and over 100 % seasonally. Moulin shape modulates the efficiency of the subglacial system that controls ice flow and should thus be included in hydrologic models.
Rohi Muthyala, Åsa K. Rennermalm, Sasha Z. Leidman, Matthew G. Cooper, Sarah W. Cooley, Laurence C. Smith, and Dirk van As
The Cryosphere, 16, 2245–2263, https://doi.org/10.5194/tc-16-2245-2022, https://doi.org/10.5194/tc-16-2245-2022, 2022
Short summary
Short summary
In situ measurements of meltwater discharge through supraglacial stream networks are rare. The unprecedentedly long record of discharge captures diurnal and seasonal variability. Two major findings are (1) a change in the timing of peak discharge through the melt season that could impact meltwater delivery in the subglacial system and (2) though the primary driver of stream discharge is shortwave radiation, longwave radiation and turbulent heat fluxes play a major role during high-melt episodes.
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021, https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary
Short summary
We apply first-principle hydrology models designed for global river routing to route flows hourly through 10 000 individual supraglacial channels in Greenland. Our results uniquely show the role of process controls (network density, hillslope flow, channel friction) on routed meltwater. We also confirm earlier suggestions that large channels do not dewater overnight despite the shutdown of runoff and surface mass balance runoff being mistimed and overproducing runoff, as validated in situ.
Léo Decaux, Mariusz Grabiec, Dariusz Ignatiuk, and Jacek Jania
The Cryosphere, 13, 735–752, https://doi.org/10.5194/tc-13-735-2019, https://doi.org/10.5194/tc-13-735-2019, 2019
Short summary
Short summary
Due to the fast melting of glaciers around the world, it is important to characterize the evolution of the meltwater circulation beneath them as it highly impacts their velocity. By using very
high-resolution satellite images and field measurements, we modelized it for two Svalbard glaciers. We determined that for most of Svalbard glaciers it is crucial to include their surface morphology to obtain a reliable model, which is not currently done. Having good models is key to predicting our future.
Sebastian Beyer, Thomas Kleiner, Vadym Aizinger, Martin Rückamp, and Angelika Humbert
The Cryosphere, 12, 3931–3947, https://doi.org/10.5194/tc-12-3931-2018, https://doi.org/10.5194/tc-12-3931-2018, 2018
Short summary
Short summary
The evolution of subglacial channels below ice sheets is very important for the dynamics of glaciers as the water acts as a lubricant. We present a new numerical model (CUAS) that generalizes existing approaches by accounting for two different flow situations within a single porous medium layer: (1) a confined aquifer if sufficient water supply is available and (2) an unconfined aquifer, otherwise. The model is applied to artificial scenarios as well as to the Northeast Greenland Ice Stream.
Sammie Buzzard, Daniel Feltham, and Daniela Flocco
The Cryosphere, 12, 3565–3575, https://doi.org/10.5194/tc-12-3565-2018, https://doi.org/10.5194/tc-12-3565-2018, 2018
Short summary
Short summary
Surface lakes on ice shelves can not only change the amount of solar energy the ice shelf receives, but may also play a pivotal role in sudden ice shelf collapse such as that of the Larsen B Ice Shelf in 2002.
Here we simulate current and future melting on Larsen C, Antarctica’s most northern ice shelf and one on which lakes have been observed. We find that should future lakes occur closer to the ice shelf front, they may contain sufficient meltwater to contribute to ice shelf instability.
Thomas Lelandais, Édouard Ravier, Stéphane Pochat, Olivier Bourgeois, Christopher Clark, Régis Mourgues, and Pierre Strzerzynski
The Cryosphere, 12, 2759–2772, https://doi.org/10.5194/tc-12-2759-2018, https://doi.org/10.5194/tc-12-2759-2018, 2018
Short summary
Short summary
Scattered observations suggest that subglacial meltwater routes drive ice stream dynamics and ice sheet stability. We use a new experimental approach to reconcile such observations into a coherent story connecting ice stream life cycles with subglacial hydrology and bed erosion. Results demonstrate that subglacial flooding, drainage reorganization, and valley development can control an ice stream lifespan, thus opening new perspectives on subglacial processes controlling ice sheet instabilities.
Cited articles
Ahn, Y. and Box, J. E.: Glacier velocities from time-lapse photos: technique
development and first results from the Extreme Ice Survey (EIS) in
Greenland, J. Glaciol., 56, 723–734, https://doi.org/10.3189/002214310793146313, 2010. a
Andrews, L. C., Hoffman, M. J., Neumann, T. A., Catania, G. A., Lüthi,
M. P., Hawley, R. L., Schild, K. M., Ryser, C., and Morriss, B. F.: Seasonal evolution of the subglacial hydrologic system modified by supraglacial lake drainage in western Greenland, J. Geophys. Res.-Earth, 123, 1479–1496, https://doi.org/10.1029/2017JF004585,
2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Armstrong, W. H., Anderson, R. S., Allen, J., and Rajaram, H.: Modeling the
WorldView-derived seasonal velocity evolution of Kennicott Glacier, Alaska, J. Glaciol., 62, 763–777, 2016. a
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013. a, b
Banwell, A. F., Arnold, N. S., Willis, I. C., Tedesco, M., and Ahlstrøm,
A. P.: Modeling supraglacial water routing and lake filling on the Greenland Ice Sheet, J. Geophys. Res., 117, F04012, https://doi.org/10.1029/2012JF002393, 2012. a, b, c
Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., Palmer, S., and
Wadham, J.: Supraglacial forcing of subglacial drainage in the ablation zone
of the Greenland ice sheet, Geophys. Res. Lett., 38, 1–5, https://doi.org/10.1029/2011GL047063, 2011. a
Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., and King, M. A.:
Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater drainage: Implications for the relationship between subglacial drainage system behavior and ice velocity, J. Geophys. Res.,
117, 1–17, https://doi.org/10.1029/2011JF002220, 2012. a
Boncori, J. P. M., Andersen, M. L., Dall, J., Kusk, A., Kamstra, M., Andersen, S. B., Bechor, N., Bevan, S., Bignami, C., Gourmelen, N., Joughin, I., Jung, H.-S., Luckman, A., Mouginot, J., Neelmeijer, J., Rignot, E., Scharrer, K., Nagler, T., Scheuchl, B., and Strozzi, T.: Intercomparison and Validation of SAR-Based Ice Velocity Measurement Techniques within the Greenland Ice Sheet CCI Project, Remote Sens., 10, 929–38, 2018. a, b, c, d
Boon, S. and Sharp, M.: The role of hydrologically-driven ice fracture in
drainage system evolution on an Arctic glacier, Geophys. Res.
Lett., 30, 1–4, https://doi.org/10.1029/2003GL018034, 2003. a
Catania, G. A. and Neumann, T. A.: Persistent englacial drainage features in
the Greenland Ice Sheet, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2009GL041108, 2010. a
Chudley, T. R., Christoffersen, P., Doyle, S. H., Bougamont, M., Schoonman, C., Hubbard, B., and James, M. R.: Supraglacial lake drainage at a fast-flowing Greenlandic outlet glacier, P. Natl. Acad. Sci. USA, 116, 25468–25477, https://doi.org/10.1073/pnas.1913685116, 2019. a, b, c, d, e, f, g, h, i, j, k, l
Chudley, T. R., Christoffersen, P., Doyle, S. H., Dowling, T., Law, R.,
Schoonman, C., Bougamont, M., and Hubbard, B.: Structural controls on the
hydrology of crevasses on the Greenland ice sheet, https://doi.org/10.1002/essoar.10502979.1, in review, 2020. a, b
Clason, C., Mair, D. W. F., Burgess, D. O., and Nienow, P. W.: Modelling the
delivery of supraglacial meltwater to the ice/bed interface: application to
southwest Devon Ice Cap, Nunavut, Canada, J. Glaciol., 58,
361–374, 2012. a
Clason, C. C., Mair, D. W. F., Nienow, P. W., Bartholomew, I. D., Sole, A., Palmer, S., and Schwanghart, W.: Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland, The Cryosphere, 9, 123–138, https://doi.org/10.5194/tc-9-123-2015, 2015. a
Crocker, R. I., Maslanik, J. A., Adler, J. J., Palo, S. E., Herzfeld, U. C.,
and Emery, W. J.: A Sensor Package for Ice Surface Observations Using Small
Unmanned Aircraft Systems, IEEE T. Geosci. Remote, 50, 1033–1047, https://doi.org/10.1109/TGRS.2011.2167339, 2012. a, b
Darnell, K. N., Amundson, J. M., Cathles, L. M., and MacAyeal, D. R.: The
morphology of supraglacial lake ogives, J. Glaciol., 59, 533–544,
2013. a
de Fleurian, B., Morlighem, M., Seroussi, H., Rignot, E., van den Broeke,
M. R., Kuipers Munneke, P., Mouginot, J., Smeets, P. C. J. P., and Tedstone, A. J.: A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland, J. Geophys. Res.-Earth, 121, 1834–1848, 2016. a
DigitalGlobe: Accuracy of WorldView Products, 1–12, available at: https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/38/DG_ACCURACY_WP_V3.pdf (last access: 16 August 2020), 2016. a
Doyle, S. H., Hubbard, A. L., Dow, C. F., Jones, G. A., Fitzpatrick, A., Gusmeroli, A., Kulessa, B., Lindback, K., Pettersson, R., and Box, J. E.: Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet, The Cryosphere, 7, 129–140, https://doi.org/10.5194/tc-7-129-2013, 2013. a, b, c
Doyle, S. H., Hubbard, A., van de Wal, R. S. W., Box, J. E., Van As, D.,
Scharrer, K., Meierbachtol, T. W., Smeets, P. C. J. P., Harper, J. T.,
Johansson, E., Mottram, R. H., Mikkelsen, A. B., Wilhelms, F., Patton, H.,
Christoffersen, P., and Hubbard, B.: Amplified melt and flow of the
Greenland ice sheet driven by late-summer cyclonic rainfall, Nat.
Geosci., 8, 647–653, 2015. a
Eiken, T. and Sund, M.: Photogrammetric methods applied to Svalbard glaciers: accuracies and challenges, Polar Res., 31, 18671, https://doi.org/10.3402/polar.v31i0.18671, 2012. a, b, c
Emetc, V., Tregoning, P., Morlighem, M., Borstad, C., and Sambridge, M.: A statistical fracture model for Antarctic ice shelves and glaciers, The Cryosphere, 12, 3187–3213, https://doi.org/10.5194/tc-12-3187-2018, 2018. a
Fitzpatrick, A. A. W., Hubbard, A. L., Box, J. E., Quincey, D. J., van As, D., Mikkelsen, A. P. B., Doyle, S. H., Dow, C. F., Hasholt, B., and Jones, G. A.: A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland, The Cryosphere, 8, 107–121, https://doi.org/10.5194/tc-8-107-2014, 2014. a, b, c, d, e, f, g
Gagliardini, O. and Werder, M. A.: Influence of increasing surface melt over
decadal timescales on land-terminating Greenland-type outlet glaciers,
J. Glaciol., 64, 700–710, 2018. a
Georgiou, S., Shepherd, A., McMillan, M., and Nienow, P.: Seasonal evolution
of supraglacial lake volume from ASTER imagery, Ann. Glaciol., 50,
95–100, 2009. a
Goelzer, H., Noël, B. P. Y., Edwards, T. L., Fettweis, X., Gregory, J. M., Lipscomb, W. H., van de Wal, R. S. W., and van den Broeke, M. R.: Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections, The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020, 2020. a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, 2017. a
Gudmundsson, G. H.: Transmission of basal variability to a glacier surface,
J. Geophys. Res.-Sol. Ea., 108, 9-1–9-19, https://doi.org/10.1029/2002JB002107, 2003. a, b
Gudmundsson, G. H.: Analytical solutions for the surface response to small amplitude perturbations in boundary data in the shallow-ice-stream approximation, The Cryosphere, 2, 77–93, https://doi.org/10.5194/tc-2-77-2008, 2008. a
Harper, J. T., Humphrey, N., and Pfeffer, W. T.: Crevasse patterns and the
strain-rate tensor: a high-resolution comparison, J. Glaciol., 44, 68–76, https://doi.org/10.3189/S0022143000002367, 1998. a
Heid, T. and Kääb, A.: Evaluation of existing image matching methods
for deriving glacier surface displacements globally from optical satellite
imagery, Remote Sens. Environ., 118, 339–355, 2012. a
Hewitt, I. J.: Seasonal changes in ice sheet motion due to melt water
lubrication, Earth Planet. Sc. Lett., 371–372, 16–25, 2013. a
Hoffman, M. J., Catania, G. A., Neumann, T. A., Andrews, L. C., and Rumrill,
J. A.: Links between acceleration, melting, and supraglacial lake drainage
of the western Greenland Ice Sheet, J. Geophys. Res., 116, 1–16, https://doi.org/10.1029/2010JF001934, 2011. a
Hoffman, M. J., Perego, M., Andrews, L. C., Price, S. F., Neumann, T. A.,
Johnson, J. V., Catania, G., and Lüthi, M. P.: Widespread Moulin
Formation During Supraglacial Lake Drainages in Greenland, Geophys.
Res. Lett., 52, 347, https://doi.org/10.1002/2017GL075659, 2018. a, b, c, d, e, f, g, h, i, j, k
Hogg, A. E., Shepherd, A., and Gourmelen, N.: A first look at the
performance of Sentinel-1 over the West Antarctic Ice Sheet, CPOM, available at: http://www.cpom.ucl.ac.uk/csopr/iv/ (last access: 23 August 2020), 2015. a
Horgan, H. J., Anderson, B., Alley, R. B., Chamberlain, C. J., Dykes, R.,
Kehrl, L. M., and Townend, J.: Glacier velocity variability due to
rain-induced sliding and cavity formation, Earth Planet. Sc.
Lett., 432, 273–282, 2015. a
How, P., Schild, K. M., Benn, D. I., Noormets, R., Kirchner, N., Luckman, A.,
Vallot, D., Hulton, N. R. J., and Borstad, C.: Calving controlled by
melt-under-cutting: detailed calving styles revealed through time-lapse
observations, Ann. Glaciol., 36, 20–31, 2019. a
Howat, I. M., de la Peña, S., van Angelen, J. H., Lenaerts, J. T. M., and van den Broeke, M. R.: Brief Communication “Expansion of meltwater lakes on the Greenland Ice Sheet”, The Cryosphere, 7, 201–204, https://doi.org/10.5194/tc-7-201-2013, 2013. a
Ignéczi, Á., Sole, A. J., Livingstone, S. J., Leeson, A., Fettweis, X., Selmes, N., Gourmelen, N., and Briggs, K.: North-east sector of the
Greenland Ice Sheet to undergo the greatest inland expansion of supraglacial lakes during the 21 stcentury, Geophys. Res. Lett., 18, 9729–9738, 2016. a
Iken, A. and Bindschadler, R. A.: Combined measurements of Subglacial Water
Pressure and Surface Velocity of Findelengletscher, Switzerland: Conclusions about Drainage System and Sliding Mechanism, J. Glaciol., 32,
101–119, 1986. a
Joughin, I., Das, S. B., Flowers, G. E., Behn, M. D., Alley, R. B., King, M. A., Smith, B. E., Bamber, J. L., van den Broeke, M. R., and van Angelen, J. H.: Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability, The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, 2013. a, b, c
Joughin, I., Smith, B. E., and Howat, I.: Greenland Ice Mapping Project: ice flow velocity variation at sub-monthly to decadal timescales, The Cryosphere, 12, 2211–2227, https://doi.org/10.5194/tc-12-2211-2018, 2018a. a
Jouvet, G., Weidmann, Y., van Dongen, E., Lüthi, M. P., Vieli, A., and
Ryan, J. C.: High-Endurance UAV for Monitoring Calving Glaciers: Application to the Inglefield Bredning and Eqip Sermia, Greenland, Front. Earth Sci., 7, 1–15, https://doi.org/10.3389/feart.2019.00206, 2019. a, b, c
Khvorostovsky, K., Forsberg, R., Hauglund, K., and Engdahl, M.: Algorithm
Theoretical Baseline Document (ATBD) for the Greenland Ice Sheet CCI project of ESA's Climate Change Initiative, Tech. Rep. ST-DTU-ESA-GISCCI-ATBD-001, 2016. a
King, L., Hassan, M., Yang, K., and Flowers, G.: Flow Routing for Delineating Supraglacial Meltwater Channel Networks, Remote Sens., 8, 1–21, https://doi.org/10.3390/rs8120988, 2016. a
King, L. A.: Identifying and characterizing the spatial variability of
supraglacial hydrological features on the western Greenland Ice Sheet, PhD thesis, University of British Columbia, Canada, 2018. a
Krawczynski, M. J., Behn, M. D., Das, S. B., and Joughin, I.: Constraints on
the lake volume required for hydro-fracture through ice sheets, Geophys. Res. Lett., 36, L10501, https://doi.org/10.1029/2008GL036765, 2009. a
Lampkin, D. J. and VanderBerg, J.: A preliminary investigation of the
influence of basal and surface topography on supraglacial lake distribution
near Jakobshavn Isbrae, western Greenland, Hydrol. Process., 25,
3347–3355, 2011. a
Leeson, A. A., Shepherd, A., Briggs, K., Howat, I., Fettweis, X., Morlighem,
M., and Rignot, E.: Supraglacial lakes on the Greenland ice sheet advance
inland under warming climate, Nat. Clim. Change, 5, 51–55, 2014. a
Lemos, A., Shepherd, A., McMillan, M., and Hogg, A.: Seasonal Variations in
the Flow of Land-Terminating Glaciers in Central-West Greenland Using
Sentinel-1 Imagery, Remote Sens., 10, 1878, https://doi.org/10.3390/rs10121878, 2018a. a
Lemos, A., Shepherd, A., McMillan, M., Hogg, A. E., Hatton, E., and Joughin, I.: Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery, The Cryosphere, 12, 2087–2097, https://doi.org/10.5194/tc-12-2087-2018, 2018b. a
Miles, K. E., Willis, I. C., Benedek, C. L., Williamson, A. G., and Tedesco,
M.: Toward Monitoring Surface and Subsurface Lakes on the Greenland Ice
Sheet Using Sentinel-1 SAR and Landsat-8 OLI Imagery, Front. Earth
Sci., 5, 58, https://doi.org/10.3389/feart.2017.00058, 2017. a, b, c, d
Morriss, B. F., Hawley, R. L., Chipman, J. W., Andrews, L. C., Catania, G. A., Hoffman, M. J., Lüthi, M. P., and Neumann, T. A.: A ten-year record of supraglacial lake evolution and rapid drainage in West Greenland using an automated processing algorithm for multispectral imagery, The Cryosphere, 7, 1869–1877, https://doi.org/10.5194/tc-7-1869-2013, 2013. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af
Moussavi, M. S., Abdalati, W., Pope, A., Scambos, T., Tedesco, M., MacFerrin,
M., and Grigsby, S.: Derivation and validation of supraglacial lake volumes on the Greenland Ice Sheet from high-resolution satellite imagery, Remote Sens. Environ., 183, 294–303, 2016. a
Nagler, T., Forsberg, R., Hauglund, K., and Engdahl, M.: Product User Guide
(PUG) for the Greenland Ice Sheet CCI project of ESA's Climate Change
Initiative, Tech. Rep. ST-DTU-ESA-GISCCI-PUG-001, 2016. a
Nowicki, S., Goelzer, H., Seroussi, H., Payne, A. J., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Alexander, P., Asay-Davis, X. S., Barthel, A., Bracegirdle, T. J., Cullather, R., Felikson, D., Fettweis, X., Gregory, J. M., Hattermann, T., Jourdain, N. C., Kuipers Munneke, P., Larour, E., Little, C. M., Morlighem, M., Nias, I., Shepherd, A., Simon, E., Slater, D., Smith, R. S., Straneo, F., Trusel, L. D., van den Broeke, M. R., and van de Wal, R.: Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models, The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, 2020. a, b
Nowicki, S. M. J., Payne, A., Larour, E., Seroussi, H., Goelzer, H., Lipscomb, W., Gregory, J., Abe-Ouchi, A., and Shepherd, A.: Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6, Geosci. Model Dev., 9, 4521–4545, https://doi.org/10.5194/gmd-9-4521-2016, 2016. a
Nye, J. F.: A Method of Determining the Strain-Rate Tensor at the Surface of a Glacier, J. Glaciol., 3, 409–419, https://doi.org/10.3189/S0022143000017093, 1959. a
Phillips, T., Leyk, S., Rajaram, H., Colgan, W., Abdalati, W., McGrath, D., and Steffen, K.: Modeling moulin distribution on Sermeq Avannarleq glacier using ASTER and WorldView imagery and fuzzy set theory, Remote Sens.
Environ., 115, 2292–2301, 2011. a
Poinar, K.: Data supporting “Challenges in predicting Greenland supraglacial lake drainages at the regional scale”, UBIR repository, available at: http://hdl.handle.net/10477/82127, last access: 30 August 2020. a
Pope, A., Scambos, T. A., Moussavi, M., Tedesco, M., Willis, M., Shean, D., and Grigsby, S.: Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods, The Cryosphere, 10, 15–27, https://doi.org/10.5194/tc-10-15-2016, 2016. a, b
Price, S. F., Payne, A. J., Catania, G. A., and Neumann, T. A.: Seasonal
acceleration of inland ice via longitudinal coupling to marginal ice,
J. Glaciol., 54, 213–219, 2008. a
Rennermalm, A. K., Moustafa, S. E., Mioduszewski, J., Chu, V. W., Forster,
R. R., Hagedorn, B., Harper, J. T., Mote, T. L., Robinson, D. A., Shuman,
C. A., Smith, L. C., and Tedesco, M.: Understanding Greenland ice sheet
hydrology using an integrated multi-scale approach, Environ. Res.
Lett., 8, 015017, https://doi.org/10.1088/1748-9326/8/1/015017, 2013. a
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts,
J. T. M.: Acceleration of the contribution of the Greenland and Antarctic
ice sheets to sea level rise, Geophys. Res. Lett., 38, 1–5, https://doi.org/10.1029/2011GL046583,
2011. a
Riverman, K. L., Anandakrishnan, S., Alley, R. B., Holschuh, N., Dow, C. F.,
Muto, A., Parizek, B. R., Christianson, K., and Peters, L. E.: Wet
subglacial bedforms of the NE Greenland Ice Stream shear margins, Ann. Glaciol., 36, 1–9, https://doi.org/10.1017/aog.2019.43, 2019. a
Rückamp, M., Goelzer, H., and Humbert, A.: Sensitivity of Greenland ice sheet projections to spatial resolution in higher-order simulations: the Alfred Wegener Institute (AWI) contribution to ISMIP6 Greenland using the Ice-sheet and Sea-level System Model (ISSM), The Cryosphere, 14, 3309–3327, https://doi.org/10.5194/tc-14-3309-2020, 2020. a
Ryan, J. C., Hubbard, A. L., Box, J. E., Todd, J., Christoffersen, P., Carr, J. R., Holt, T. O., and Snooke, N.: UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet, The Cryosphere, 9, 1–11, https://doi.org/10.5194/tc-9-1-2015, 2015. a
Ryser, C., Lüthi, M., Andrews, L., Hoffman, M. J., Catania, G. A., Hawley, R. L., Neumann, T. A., and Kristensen, S. S.: Sustained high basal motion of the Greenland ice sheet revealed by borehole deformation, J. Glaciol., 60, 647–660, https://doi.org/10.3189/2014JoG13J196, 2014. a
Scambos, T. A., Moon, T. A., Gardner, A. S., and Klinger, M.: Global Land Ic Velocity Extraction from Landsat 8 (GoLIVE), Version 1, Boulder, Colorado USA, NSIDC: National Snow and Ice Data Center, https://doi.org/10.7265/N5ZP442B, 2016. a, b, c
Selmes, N., Murray, T., and James, T. D.: Characterizing supraglacial lake drainage and freezing on the Greenland Ice Sheet, The Cryosphere Discuss., 7, 475–505, https://doi.org/10.5194/tcd-7-475-2013, 2013. a, b, c, d
Sergienko, O. V., Creyts, T. T., and Hindmarsh, R. C. A.: Similarity of
organized patterns in driving and basal stresses of Antarctic and Greenland
ice sheets beneath extensive areas of basal sliding, Geophys. Res.
Lett., 41, 3925–3932, 2014. a
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H., Rennermalm,
A. K., Legleiter, C. J., Behar, A. E., Overstreet, B. T., Moustafa, S. E.,
Tedesco, M., Forster, R. R., LeWinter, A. L., Finnegan, D. C., Sheng, Y., and
Balog, J.: Efficient meltwater drainage through supraglacial streams and
rivers on the southwest Greenland ice sheet, P. Natl. Acad. Sci. USA, 112, 1001–1006, 2015. a, b, c, d, e, f, g, h, i
Smith, L. C., Yang, K., Pitcher, L. H., Overstreet, B. T., Chu, V. W.,
Rennermalm, A. K., Ryan, J. C., Cooper, M. G., Gleason, C. J., Tedesco, M.,
Jeyaratnam, J., Van As, D., van den Broeke, M. R., van de Berg, W. J., Noel,
B., Langen, P. L., Cullather, R. I., Zhao, B., Willis, M. J., Hubbard, A.,
Box, J. E., Jenner, B. A., and Behar, A. E.: Direct measurements of
meltwater runoff on the Greenland ice sheet surface, P. Natl. Acad. Sci. USA, 114, E10622–E10631, 2017. a
Sneed, W. A. and Hamilton, G. S.: Evolution of melt pond volume on the surface of the Greenland Ice Sheet, Geophys. Res. Lett., 34, L03501, https://doi.org/10.1029/2006GL028697,
2007. a
Solgaard, A. M., Fausto, R., and Kusk, A.: Satellite-derived ice velocity maps for the Greenland ice sheet, PROMICE Newsletter, 14, 1–2, 2018. a
Sommers, A., Rajaram, H., and Morlighem, M.: SHAKTI: Subglacial Hydrology and Kinetic, Transient Interactions v1.0, Geosci. Model Dev., 11, 2955–2974, https://doi.org/10.5194/gmd-11-2955-2018, 2018. a, b
St Germain, S. L. and Moorman, B. J.: Long-term observations of supraglacial
streams on an Arctic glacier, J. Glaciol., 95, 1–12, 2019. a
Sugiyama, S., Bauder, A., Huss, M., Riesen, P., and Funk, M.: Triggering and
drainage mechanisms of the 2004 glacier-dammed lake outburst in
Gornergletscher, Switzerland, J. Geophys. Res., 113, 1–11,https://doi.org/10.1029/2007JF000920, 2008. a
Sutherland, D. A., Roth, G. E., Hamilton, G. S., Mernild, S. H., Stearns,
L. A., and Straneo, F.: Quantifying flow regimes in a Greenland glacial
fjord using iceberg drifters, Geophys. Res. Lett., 41, 8411–8420, https://doi.org/10.1002/2014GL062256, 2015. a
Thomsen, H. H.: Mass balance, ice velocity and ice temperature at the inland
ice margin north-east of Jakobshavn, central West Greenland, Rapp. Gronl.
Geol. Unders, 140, 111–114, 1988. a
van As, D., Andersen, M. L., Petersen, D., Fettweis, X., van Angelen, J. H.,
Lenaerts, J. T. M., Broeke, M. R. v. d., Lea, J. M., Boggild, C. E.,
Ahlstrom, A. P., and Steffen, K.: Increasing meltwater discharge from the
Nuuk region of the Greenland ice sheet and implications for mass balance
(1960–2012), J. Glaciol., 60, 314–322, https://doi.org/10.3189/2014JoG13J065, 2014. a
van de Wal, R. S. W., Smeets, C. J. P. P., Boot, W., Stoffelen, M., van Kampen, R., Doyle, S. H., Wilhelms, F., van den Broeke, M. R., Reijmer, C. H., Oerlemans, J., and Hubbard, A.: Self-regulation of ice flow varies across the ablation area in south-west Greenland, The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015, 2015. a, b
Vaughan, D. G.: Relating the occurrence of crevasses to surface strain rates, J. Glaciol., 39, 255–266, https://doi.org/10.3189/S0022143000015926, 1993.
a
Vermote, E. F. and Wolfe, R.: MOD09GA MODIS/Terra Surface Reflectance Daily
L2G Global 1 km and 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD09GA.006,
2015a. a
Vermote, E. F. and Wolfe, R.: MOD09GQ MODIS/Terra Surface Reflectance Daily
L2G Global 250 m SIN Grid V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD09GQ.006,
2015b. a
Vermote, E. F. and Wolfe, R.: MYD09GA MODIS/Aqua Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MYD09GA.006,
2015c. a
Vermote, E. F. and Wolfe, R.: MYD09GQ MODIS/Aqua Surface Reflectance Daily L2G Global 250 m SIN Grid V006, https://doi.org/10.5067/MODIS/MYD09GQ.006, 2015d. a
Werder, M. A., Hewitt, I. J., Schoof, C. G., and Flowers, G. E.: Modeling
channelized and distributed subglacial drainage in two dimensions, J.
Geophys. Res.-Earth, 118, 2140–2158, 2013. a
Williamson, A. G., Banwell, A. F., Willis, I. C., and Arnold, N. S.: Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland, The Cryosphere, 12, 3045–3065, https://doi.org/10.5194/tc-12-3045-2018, 2018a. a, b, c
Wuite, J., Nagler, T., Hetzenecker, M., Blumthaler, U., and Rott, H.:
Continuous monitoring of Greenland and Antarctic ice sheet velocities using Sentinel-1 SAR, EGU2016-12826, European Geosciences Union General Assembly, Vienna, Austria, 17–22 April 2016. a
Yang, K. and Smith, L. C.: Supraglacial Streams on the Greenland Ice Sheet
Delineated From Combined Spectral-Shape Information in High-Resolution
Satellite Imagery, IEEE Geoscience Remote S., 10, 801–805,
2013. a
Yuan, J., Chi, Z., Cheng, X., Zhang, T., Li, T., and Chen, Z.: Automatic
Extraction of Supraglacial Lakes in Southwest Greenland during the
2014–2018 Melt Seasons Based on Convolutional Neural Network,
Water, 12, 891, https://doi.org/10.3390/w12030891, 2020. a
Short summary
This study addresses Greenland supraglacial lake drainages. We analyze ice deformation associated with lake drainages over 18 summers to assess whether
precursorstrain-rate events consistently precede lake drainages. We find that currently available remote sensing data products cannot resolve these events, and thus we cannot predict future lake drainages. Thus, future avenues for evaluating this hypothesis will require major field-based GPS or photogrammetry efforts.
This study addresses Greenland supraglacial lake drainages. We analyze ice deformation...